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Abstract
In model-based clustering, the Galaxy data set is often used as a benchmark data set to
study the performance of different modeling approaches. Aitkin (Stat Model 1:287–
304) compares maximum likelihood and Bayesian analyses of the Galaxy data set
and expresses reservations about the Bayesian approach due to the fact that the prior
assumptions imposed remain rather obscure while playing a major role in the results
obtained and conclusions drawn. The aim of the paper is to address Aitkin’s concerns
about the Bayesian approach by shedding light on how the specified priors influence
the number of estimated clusters. We perform a sensitivity analysis of different prior
specifications for the mixtures of finite mixture model, i.e., the mixture model where
a prior on the number of components is included. We use an extensive set of different
prior specifications in a full factorial design and assess their impact on the estimated
number of clusters for the Galaxy data set. Results highlight the interaction effects
of the prior specifications and provide insights into which prior specifications are
recommended to obtain a sparse clustering solution. A simulation study with artificial
data provides further empirical evidence to support the recommendations. A clear
understanding of the impact of the prior specifications removes restraints preventing
the use of Bayesian methods due to the complexity of selecting suitable priors. Also,
the regularizing properties of the priors may be intentionally exploited to obtain a
suitable clustering solution meeting prior expectations and needs of the application.
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1 Introduction

This paper investigates the impact of different prior specifications on the results
obtained in Bayesian cluster analysis based on mixture models. Mixture models may
be used to either approximate arbitrary densities in a semi-parametric way or in a
model-based clustering context to identify groups in the data. We will focus on the
later applicationwhere each component is assumed to potentially represent a data clus-
ter and the cluster distribution is not approximated by several mixture components.

Hennig and Liao (2013) claim that “there are no unique ‘true’ or ‘best’ clusters in
a data set” but that the prototypical shape of a cluster needs to be specified before this
question can be answered. For clustering methods using mixture models, the proto-
typical shape of a cluster is in general specified by selecting the component-specific
distributions. For the fitted mixture model, then a one-to-one relationship between
components and clusters is assumed. For example, in the case of multivariate met-
ric data one can specify isotropic Gaussian distributions as component distributions,
where the variance is comparable across components, or Gaussian distributions with
arbitrary variance-covariance matrices, which are allowed to considerably vary across
components (see, for example, Fraley and Raftery 2002).

The Bayesian framework provides a principled approach to specify the prototypical
shape of the clusters. By specifying priors on the model parameters, both the mean
prototypical shape aswell as the variability around this prototypical shape are included,
i.e., what the shape on average is aswell as howmuch the component distributions vary
across components. In this sense the Bayesian approach provides, compared to other
clustering methods, more flexibility to incorporate the prototypical shape of a cluster
in the analysis and hence to arrive at a suitable clustering solution for the specific
analysis undertaken. In addition the Bayesian framework also allows to specify a prior
on the component weights, thus influencing if the clusters are a-priori assumed to be
rather balanced in size or if the clustering solution includes both very small and very
large clusters. By contrast, for example, k-means clustering assumes that the clusters
have an isotropic shape with similar cluster size and volume (see, for example, Grün
2019).

However, the additional flexibility provided by the Bayesian approach might also
be perceived as overwhelming, in particular, if the influence of different prior specifi-
cations on results obtained remains rather opaque. Aitkin (2001) compares maximum
likelihood and Bayesian analyses of mixture models and expresses reservations about
the Bayesian approach due to the fact that the prior assumptions imposed remain rather
obscure while playing amajor role in the results obtained and conclusions drawn. Hav-
ing sufficient insight into the influence of prior specifications on the clustering results
is crucial to leverage the advantages of the Bayesian approach where the priors may
be used to regularize the problem and also guide the analysis to focus on the clustering
solution of interest.

In the following we consider the mixture of finite mixture model (MFM), a name
coined by Miller and Harrison (2018) following Richardson and Green (1997), in
the generalized form proposed in Frühwirth-Schnatter et al. (2020). The MFM is a
hierarchical finite mixture model where a prior on the number of components K is
included. We focus on the MFM, because the Bayesian analysis of the MFM results

123



Howmany data clusters are in the Galaxy data set? 327

in an a-posteriori distribution of the number of data clusters K+ as well as an a-
posteriori distribution of partitions C. These are both core components of a Bayesian
cluster analysis to address the questions how many data clusters there are in the data
set and how the observations should be grouped into these data clusters.

Note that in our analyses of the MFM, we make a crucial distinction between K ,
the number of components in the mixture distribution, and K+, the number of filled
components, to which observations are actually assigned. Only a filled component
corresponds to a data cluster. This implies that, when estimating the number of clusters
in the data, the posterior of K+ is of interest, rather than the posterior of K . Previously,
Nobile (2004) already differentiated between K and K+ when analyzing finitemixture
distributions. Also McCullagh and Yang (2008) made the distinction between clusters
in the population (K ) and clusters in the observed sample (K+) and noted that usually
a data set contains little information about the clusters in the population, while being
more informative regarding the number of clusters in the data set. We will thus not
only investigate the prior on K , but also explicitly inspect the prior on K+, which is
induced by the prior on K and the prior on the mixture weights. In the analysis of the
results focus is given to the posterior of K+ (rather than K ), determining in particular
the mode of this distribution and its entropy.

We illustrate the impact of different prior specifications using a MFM of univariate
Gaussian distributions for the (in-)famous Galaxy data set originally introduced to the
statistical literature by Roeder (1990). Several results obtained for this data set using
either maximum likelihood estimation or Bayesian analysis methods were compared
and discussed in Aitkin (2001). Aitkin (2001) concluded that the maximum likelihood
analysis, while having complications of its own, would be rather straightforward to
implement and be well understood. By contrast, Aitkin (2001) formulated a call for
action with respect to the Bayesian analysis, asking for a careful analysis of the role
of the priors. This paper aims at responding to this call for action. Results for the
Galaxy data set are complemented with results of a simulation study with artificial
data to provide further empirical evidence to arrive at recommendations for suitable
prior specifications to obtain a meaningful clustering result.

2 Model specification

In our specification of the MFM model with Gaussian component distributions, the
following data generation process is assumed for a univariate data set of size n given by
y = (y1, . . . , yn) (see also Richardson andGreen 1997). One assumes that the number
of components K of the mixture model is sampled from the prior p(K ). Given K the
component weights η = (η1, . . . , ηK ) are sampled from a symmetric K -dimensional
Dirichlet distribution with parameter γK . For each observation i component assign-
ments Si are drawn from a multinomial distribution with parameter η.

Regarding the Gaussian component distributions, the component meansμk and the
component variances σ 2

k , k = 1, . . . , K , are independently drawn from the same prior
distributions to have exchangeability. The component meansμk are drawn from a nor-
mal distribution with mean b0 and variance B0, while the component precisions σ−2

k ,
i.e., the inverse variances, are assumed to follow a Gamma distribution with param-
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eters c0 and C0 (and expectation c0/C0). Note that for the prior for the component
distributions not the conjugate prior for the normal distribution with unknown mean
and variance is used, but the independence prior is employed. If instead the conju-
gate prior had been used, the component-specific variances would influence the prior
variability of the component means. This would imply that components which have
less variability also have their mean closer to the prior mean b0. This prior implication
does in general not seem to be appealing in the mixture context and hence the indepen-
dence prior is used. For a further detailed discussion of the priors for the component
distributions see Frühwirth-Schnatter (2006, Chapter 6).

Summarizing, this specification results in the followingBayesian hierarchicalMFM
model:

K ∼ p(K ),

η|K ∼ DK (γK ),

Si |η ∼ M(η), i = 1, . . . , n, (1)

μk |b0, B0 ∼ N (b0, B0), k = 1, . . . K ,

σ−2
k |c0,C0 ∼ G(c0,C0), k = 1, . . . K ,

yi |μ, σ 2, Si = k ∼ N (μk, σ
2
k ), i = 1, . . . , n,

where μ = (μk)k=1,...,K and σ 2 = (σ 2
k )k=1,...,K .

Additionally, hyperpriors might be specified. For example, Richardson and Green
(1997) suggest to specify a hyperprior on C0 and Malsiner-Walli et al. (2016) add
an additional layer for the prior on the component means which corresponds to a
shrinkage prior allowing for variable selection. In the following we do not consider
adding hyperpriors in order to be able to assess the influence of different specifications
of these priors and their parameters on the clustering results. In this paper we focus
on the specification of the following priors and parameters:

• The prior p(K ) of the number of components K ,
• The value γK used for the Dirichlet prior,
• The prior parameters b0 and B0 for the component means,
• The prior parameters c0 and C0 for the component variances.

3 The Galaxy data set in statistics

The Galaxy data set was originally published in astronomy by Postman et al. (1986)
and consists of univariate measurements representing velocities of galaxies, moving
away from our galaxy. In this original publication 83 observations are listed. Roeder
(1990) introduced the data set to the statistics literature, but omitted the smallest obser-
vation such that in the following in the statistics literature only 82 observations were
considered. Unfortunately Roeder (1990) also introduced a typo, i.e., one observation
has a different value than in Table 1 in Postman et al. (1986). A further influential
statistics publication using the Galaxy data set was Richardson and Green (1997) who
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also considered only 82 observations, but corrected the typo and scaled the units by
1000.

The data set was used in statistics by a number of authors to demonstrate density
estimationmethods and investigatemixturemodeling approaches. They either used the
version presented by Roeder (1990) or by Richardson and Green (1997). A number of
textbooks on applied statistics also use the data set to demonstrate different statistical
methods (see, e.g., Lunn et al. 2012; Hothorn and Everitt 2014).

In the following we will use the Galaxy data set as used by Richardson and Green
(1997). This version of the data set was also used by Aitkin (2001) when comparing
maximum likelihood and Bayesian analysis methods for estimating mixture models,
focusing in particular on the question of the number of data clusters in the data set.
Within the maximum likelihood framework, Aitkin (2001) considered mixtures of
univariate Gaussian distributions with equal as well as unequal variances. The mixture
models were fitted using the EM algorithm (Dempster et al. 1977) and for each class
of component distributions, the number of components were selected based on the
results of a bootstrap likelihood ratio test (Aitkin et al. 1981; McLachlan 1987). This
maximum likelihood analysis may easily be replicated using the R package mclust
(Scrucca et al. 2016) using also the Bayesian information criterion (BIC) instead of the
likelihood ratio test for model selection. Based on the maximum likelihood results,
Aitkin (2001) concludes that “there is convincing evidence of three equal variance
components, or four unequal variance components, but no convincing evidence of
more than these numbers, in the velocity data” (p. 296).

In addition, Aitkin (2001) reviews the Bayesian analysis of the Galaxy data set
presented in Escobar and West (1995), Carlin and Chib (1995), Phillips and Smith
(1996), Roeder and Wasserman (1997) and Richardson and Green (1997). Table 3 in
Aitkin (2001), according to its caption, summarizes the posterior distributions of K .
However, in fact for the Dirichlet process mixture fitted by Escobar and West (1995),
the posterior distribution of K+ is given. The Bayesian approaches compared differ
considerably with respect to the prior on K and the prior on the component-specific
variances and lead to rather diverse results. Aitkin (2001) concludes that some of the
Bayesian analysis result in overwhelming posterior evidence for three groups, while
other posterior distributions obtained are either relatively diffuse over 4–9with amode
around 6–7 or are concentrated on the range 7–9. Overall the cluster solutions for the
Galaxy data set are interpreted as either being sparse, with up to four clusters, or
contain many, i.e., more than four, clusters.

4 Prior specifications

In this section, we discuss possible specifications and previous suggestions in the
literature for each of the prior distributions and their parameters, taking in particular
those into account considered in the Bayesian analysis reviewed in Aitkin (2001).
We also discuss our expectation regarding the effect of these prior specifications on
the cluster solutions obtained, focusing in particular on the estimated number of data
clusters.
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4.1 Prior on K

Frühwirth-Schnatter et al. (2020) provide an overview on previously used priors on
K including the uniform distribution (Richardson and Green 1997), the truncated
Poisson distribution (Phillips and Smith 1996; Nobile 2004) and the shifted geometric
distribution (Miller and Harrison 2018). They also propose the shifted beta-negative-
binomial (BNB) distribution as a suitable alternative which represents a generalization
of the Poisson and the geometric distribution.

Based on this overview, we consider the following priors on K :

• The uniform distribution K ∼ U(1, 30) with prior mean E[K ] = 15.5 and prior
variance V[K ] = 74.9 (Richardson and Green 1997),

• The truncated Poisson distribution K ∼ trPois(3) with prior mean E[K ] = 3.2
and prior variance V[K ] = 2.7 (Phillips and Smith 1996),

• The shifted geometric distribution K − 1 ∼ Geom(0.1) with prior mean E[K ] =
10 and prior variance V[K ] = 90 (Miller and Harrison 2018),

• The shifted BNB distribution K − 1 ∼ BNB(1, 4, 3) with prior mean E[K ] = 2
and prior variance V[K ] = 4 (Frühwirth-Schnatter et al. 2020).

These priors essentially cover all Bayesian MFM analysis reviewed and compared
by Aitkin (2001). The only exceptions are Carlin and Chib (1995) who performmodel
selection to decide between a 3- and a 4-component solution and Roeder and Wasser-
man (1997) who use a uniform distribution with support {1, 2, . . . , 10}. Richardson
and Green (1997) point out that the upper bound of 30 for the uniform distribution
is inconsequential for their applications, including the Galaxy data set, because this
bound is never hit during sampling from the posterior distribution. We thus also use
this uniform prior for the Galaxy data set.

The proposed priors for K differ considerably in the prior means and variances
induced. The shifted BNB(1, 4, 3) has the smallest prior mean; the truncated Poisson
distribution has the smallest prior variance, with only a slightly higher prior mean. We
expect the two prior distributions trPois(3) and the shifted BNB(1, 4, 3), which have
comparable, small means, to induce cluster solutions with less data clusters compared
to the other two priors.We expect this behavior to bemost pronounced for the truncated
Poisson distribution, because of its lowest variance, thus putting only very little mass
on large values of K , e.g., the probability of K > 10 is less than 0.001.

4.2 Prior parameter �K for the component weights

All Bayesian MFM analyses considered in Aitkin (2001) are based on a MFM with
γK ≡ 1. However, as will be demonstrated in Sect. 4.3, the Dirichlet parameter γK
crucially affects the prior on K+, since it determines how closely the prior on K+
follows the prior on K . A more detailed discussion on the specification of γK for the
MFM is given in Frühwirth-Schnatter et al. (2020).

Frühwirth-Schnatter et al. (2020) suggest to use an arbitrary sequence for the
Dirichlet parameter γK which might depend on the number of components K . They
distinguish two special cases: the static MFM where γK ≡ γ and the dynamic MFM
where γK = α/K . McCullagh and Yang (2008) already discussed these two special
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cases indicating that they are structurally different. While previous applications of the
MFM focused on the static case, the Dirichlet process mixture model is included in
the dynamic case.

In the following we will consider the static as well as the dynamic MFM, with
γ ∈ {0.01, 1, 10} in the static case and α ∈ {0.01, 1, 10} in the dynamic case. Thus,
in addition to the popular choice γ ≡ 1, we consider also a much smaller value of γ

and α as well as a much larger value. The much smaller value is expected to induce
a sparse cluster solution with only very few data clusters and thus also achieve a
certain independence of the specification of the prior on K . The much larger value is
expected to induce cluster solutions with rather equally sized data clusters and also
a stronger link between the number of data clusters and the number of components,
which implies a larger influence of the prior on K in this setting. We expect that the
dynamic MFM leads to sparser solutions than the static MFM given that γK = α/K
is likely to assume small values for large K .

4.3 Induced prior of the number of data clusters K+

As investigating the posterior of K+, the number of filled components, is the aim of
the analysis, it is illuminating to study the prior on K+. The prior on K+ is implic-
itly induced through the specification of the prior on K and the prior parameter γK .
Frühwirth-Schnatter et al. (2020) and Greve et al. (2020) present formulas to derive
this implicit prior in a computational efficient way. We investigate the prior on K+
induced by the prior specifications on K and γK considered for the Galaxy data set to
further gauge our prior expectations of the influence of these prior specifications on
the cluster solutions obtained.

Using n = 82 – the sample size of the Galaxy data set – the priors on K (in blue)
and on K+ (in red) are visualized by bar plots in Fig. 1 for the staticMFM and in Fig. 2
for the dynamic MFM. The different priors on K are in the columns and the values
γ ∈ {0.01, 1, 10} and α ∈ {0.01, 1, 10} are in the rows. The priors on K are ordered
according to the mean of K 2, i.e., the squared mean of K plus the variance of K .
These specifications on (K , γK ) result in 12 combinations in total inducing different
priors on the data clusters K+ for the static as well as the dynamic MFM. Comparing
Fig. 1 with Fig. 2 indicates that in general the dynamic MFM leads to priors on K+
inducing stochastically smaller values.

Figure 1 clearly indicates that only γ = 0.01 leads to a sparse prior on the number
of data clusters K+ and that the impact of the prior on K increases with increasing
γ . For γ = 10, the two priors p(K ) and p(K+) are essentially the same. For the
dynamic case shown in Fig. 2, the prior on the number of data clusters K+ induces a
very sparse solution for α = 0.01 regardless of the prior on K . For α = 1, the prior
on K+ is sparser than the prior on K but the induced prior clearly considerably varies
depending on the selected prior on K . For α = 10 a close link between the priors on
K and K+ is discernible if the prior on K puts essentially all mass on small values
of K , while still considerable differences between these two priors are visible for the
shifted geometric prior and the uniform prior on K which assign substantial mass to
values K > 10.
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Fig. 1 The prior probabilities of K (in blue) and K+ (in red) for the static MFM for different priors on K
and values for γ with n = 82

In summary, if a sparse clustering solution is of interest, also a sparse prior on K+
should be specified. This can be achieved by specifying a sparse prior on K and/or
small values for γ /α. In contrast a flat prior on K (e.g., U(1, 30)) and large values of
γ /α will a-priori support large values of K+ (i.e., larger than 4).

4.4 Prior parameters b0 and B0 for the component means

Richardson and Green (1997) proposed to use empirical Bayes estimates for b0 and
B0 which correspond to the midpoint of the observed data range for b0 and the squared
length of the observed data range R2 for B0. This choice makes the prior invariant to
the scaling of the data, i.e., invariant to the units of the data used or standardization of
the data. Richardson and Green (1997) argue that this is a sensible weakly informative
prior which does not constrain the component means and does not encourage mixtures
with close component means. They perform a sensitivity analysis for this prior by
considering values ranging from R2/102 to R2 for B0, indicating for the Acidity
data set (Crawford et al. 1992) that the estimated number of components are inverse
U-shaped, by first increasing with increasing values for B0 and then decreasing again.

In the following we also use the midpoint of the data for b0. For B0 we vary the
values to assess the impact on the estimated number of data clusters by considering the
values B0 ∈ {6.3, 20, 100, 630}. The extreme values correspond to the limits R2/102
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Fig. 2 The prior probabilities of K (in blue) and K+ (in red) for the dynamic MFM for different priors on
K and values for α with n = 82

and R2 considered by Richardson and Green (1997), 20 corresponds to the empirical
variance of the data and Phillips and Smith (1996) used 100 in their analysis.

Figure 3 visualizes these prior distributions for the component means together with
a histogram of the Galaxy data set. B0 = R2 = 630 induces a flat, weakly informative
prior as suggested by Richardson and Green (1997) with approximately the same prior
density values assigned to all data values observed. B0 = R2/100 = 6.3 induces the
tightest prior for the component means and assigns very low prior density values to
the extreme data values, thus shrinking the prior component means towards b0. The
smallest value for B0 seems problematic as hardly any weight is assigned to values
below 15 or above 30, where, however, the histogram would suggest that the centers
of small data clusters are located. We consider this rather extreme range of B0 values
to assess whether the inverse U-shape for the estimated number of data clusters can
also be observed for the Galaxy data set.

4.5 Prior parameters c0 and C0 for the component variances

Richardson and Green (1997) propose to use σ−2
k ∼ G(c0,C0) with a hierarchical

prior on C0, but also assess differences in results for a fixed and a random C0. As
we are interested in assessing the impact of different prior specifications, we only
consider the case of fixed values for C0. Following Escobar and West (1995), Phillips
and Smith (1996) and Richardson and Green (1997), we use c0 = 2. We consider
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Fig. 3 The prior distributions for the component meansμk ∼ N (b0, B0)with b0 equal to the data midpoint
and B0 ∈ {6.3, 20, 100, 630}, represented by the blue, purple, green and red line respectively, together with
a histogram of the Galaxy data set

Fig. 4 The prior distributions for 4σk induced by the prior on the component precisions σ−2
k ∼ G(c0,C0)

with c0 = 2 and C0 ∈ {0.5, 1, 5, 12.5}, represented by the blue, purple, green and red line respectively,
together with a histogram of the Galaxy data set

C0 ∈ {0.5, 1, 5, 12.5}, where C0 = 0.5 is used in Phillips and Smith (1996), C0 = 1
in Escobar andWest (1995), andC0 = 12.5 corresponds to the mean value considered
for the random C0 in Richardson and Green (1997).

Figure 4 visualizes these prior distributions for the component variances together
with a histogram of the Galaxy data set. The priors induced for 4σk are visualized.
These values correspond to the length of the 95% prediction interval for a single
component and might be thus seen as representing the volume considered for the
components and hence reflect the prototypical shape imposed for the clusters. Clearly
C0 = 0.5 or C0 = 1 induce prior standard deviations which allow to include compo-
nents able to capture the extreme observations in data clusters of their own, whereas
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C0 = 12.5 suggests to approximate the data with overlapping component distribu-
tions. Small values of C0 induce a fine-grained density approximation, whereas large
values of C0 lead to a coarse density approximation and hence we expect the number
of estimated data clusters to decrease for increasing C0.

5 Posterior inference

In order to obtain samples of the entire parameter vector, which consists of K and,
conditional on K , of η = (ηk)k=1,...,K , μ = (μk)k=1,...,K , and σ 2 = (σ 2

k )k=1,...,K ,
from the posterior distribution, a transdimensional sampler is required which is able
to sample parameter vectors of varying dimension. We use the telescoping sampler
proposed by Frühwirth-Schnatter et al. (2020). ThisMCMCsampling scheme includes
a sampling stepwhere K is explicitly sampled as an unknown parameter, but otherwise
requires only sampling steps used for finite mixtures.

The posterior inference uses data augmentation and also samples the component
assignments S = (Si )i=1,...,n . These latent component assignments induce random
partitions of the data. Thus the sampling scheme also allows to directly obtain the
posterior distribution of the partitions C = {C1, . . . , CK+} of the data and the induced
number of data clusters K+, with Ck being the index set of observations assigned to the
kth group of the partitionC. To illustrate the connection between the component assign-
ments S and the partitions, assume that K = 3 and S = (2, 1, 1, 2, 1, 2, 1, 1, 1, 1)
for n = 10 observations. Then K+ = 2, since no observations are assigned to
the third component, and the induced partition is given by C = {C1, C2} with
C1 = {2, 3, 5, 7, 8, 9, 10} and C2 = {1, 4, 6}.

Following Frühwirth-Schnatter et al. (2020), the sampling steps of the telescoping
sampler consist of:

1. Update the partition C by sampling S from p(S|η,μ, σ 2, y) given by

P(Si = k|η,μ, σ 2, yi ) ∝ ηk fN (yi |μk, σ
2
k ).

Determine Nk = #{i = 1, . . . , n|Si = k} for k = 1, . . . , K , i.e., the number of
observations assigned to Ck , the kth group in the partition C and the number K+ =∑K

k=1 I {Nk > 0} of non-empty components with I {·} the indicator function.
Relabel the components such that the first K+ components are non-empty.

2. Conditional on C, update the parameters of the non-empty components for k =
1, . . . , K+:

(a) Draw the component-specific precisions from the posterior:

σ−2
k |μk, C, y ∼ G(ck,Ck),

with

ck = c0 + Nk

2
, Ck = C0 + 1

2

∑

i∈Ck
(yi − μk)

2.
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(b) Draw the component-specific means from the posterior:

μk |σ−2
k , C, y ∼ N (bk, Bk),

with

bk = Bk(B
−1
0 b0 + σ−2

k Nk ȳk), Bk = (B−1
0 + Nkσ

−2
k )−1,

where ȳk is the sample mean of the observations assigned to Ck .
3. Conditional on C, draw a new value of K using

p(K |C) ∝ p(C|K )p(K ) ∝ K !
(K − K+)!

�(KγK )

�(KγK + N )

K+∏

k=1

�(Nk + γK )

�(1 + γK )
p(K ).

4. Add K −K+ empty components with component-specific parameters drawn from
the priors:

μk ∼ N (b0, B0), σ−2
k ∼ G(c0,C0),

for k = K+ + 1, . . . , K .
5. Conditional on N = (N1, . . . , NK+ , 0K−K+), with 0K−K+ being a K −K+ vector

of zeros, draw a new value of η:

η|N ∼ DK (γ ),

with γ = (γk)k=1,...,K and

γk = γK + Nk .

Inspecting the details of the sampling scheme provides insights into how the prior
specifications influence the conditional posterior distributions.

The prior specifications of the component-specific parameters influence Steps 2 and
4. In Step 2, the updates for ck indicate that 2c0 might be interpreted as a prior sample
size and C0/c0 corresponds to the variance assumed for these prior observations. The
choice of c0 = 2 thus corresponds to adding 4 observations a-priori to each component
with a variance of C0/2. If C0/2 is larger than the empirical within-cluster variance,
thenCk is increased leading to the sampling of inflated σ 2

k values. This in turn induces
more overlap across the component densities and thus potentially leads to a sparser
clustering solution with less data clusters estimated.

The updates for bk indicate that bk results as a weighted mean of the prior value
b0 and the mean of the observations currently assigned to the cluster. According to
the formula for Bk , the influence of B0 decreases for data clusters containing many
observations, as the second summand increases with Nk . It is also clear that there is an
interactionwith the estimate for the component-specific variance,with larger variances
allowing the component-specific means to vary more in the posterior updates. For the
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largest values of B0 considered, we expect that the prior influence is negligible, and
that the posterior updates are only influenced by the data points currently assigned to
this cluster.

Step 3 is influenced by the choice of the prior on K and γK . More details on this
step are given in Frühwirth-Schnatter et al. (2020). The new K is sampled from a
discrete distribution with support K ≥ K+. This distribution is the more spread out
the more the prior on K puts mass on larger values of K and the smaller γK is. In
addition the distribution depends on K+ and the data cluster sizes (N1, . . . , NK+).
This step allows for the birth and death of empty components.

In Step 4 the parameters of the component-specific distributions of the empty
components are drawn from the priors. “Unattractive” empty components result in
particular when B0 is large and C0 is small. In this case the sampled μk can be located
far away from the data and the probability that observations are assigned to this empty
component is extremely small in the following Step 1. Thus, the “attractiveness” of
the empty components influences whether new empty components are filled and thus,
whether the number of filled components increases.

Step 5 is influenced by the choice of γK . In particular for empty components, the
value of the Dirichlet parameter only depends on this prior value, influencing the
value ηk drawn for these components and hence also the probability of such an empty
component having observations assigned in Step 1. The smaller γk , the smaller the
sampled ηk and thus the smaller the probability that an observation will be assigned
to this component in Step 1. Furthermore, it can be seen that the prior sample size
is equal to KγK . Thus, for the dynamic MFM where γK = α/K the prior sample
size is constant over mixtures with different number of components, whereas for the
static MFM where γK ≡ γ the prior sample size linearly increases with the number
of components.

6 Assessing the impact of different prior specifications for the Galaxy
data set

After discussing in detail how the prior specifications might affect the posterior of the
number of data clusters, the following analysis investigates whether these theoretical
considerations can be empirically verified for the Galaxy data set. The MFM model
is fitted to the Galaxy data set with 384 different prior settings, using four different
specifications of the prior on K , using either the static or the dynamic MFM, consid-
ering three different values for the Dirichlet parameter and four different parameters
each for B0 and C0 in a full factorial design.

6.1 MCMC estimation

For each prior setting, posterior inference is performed based on 200,000 iterations
after 10,000 burn-in iterations with every fourth draw being recorded (i.e., a thinning
of four). Initially 10 components are filled. The MCMC algorithm is initialized by
specifying values for the component weights and the component-specific parameters.
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Equal component weights are specified and all component-specific variances σ 2
k , k =

1, . . . , 10 are set equal to C0/2. The component-specific meansμk are set equal to the
centroids obtained when applying the k-means algorithm to extract 10 clusters from
the data set. The MCMC iterations start with Step 1 by assigning observations to the
10 components according to their a-posteriori probabilities.

Partitions are label-invariant. Hence also the number of data clusters or filled com-
ponents is a label-invariant quantity and it is not necessary to resolve the label switching
problem (Redner and Walker 1984) for the following analysis of the results.

6.2 Analysis of results

The analysis of the results focuses on the impact of the prior specifications on the
posterior p(K+| y) of the number of data clusters. The mode of p(K+| y) is used as
point estimator. In addition, the entropy of the posterior of K+ is determined to indicate
how informative this posterior is for a point estimate of K+. The entropy of a discrete
random variable X with possible outcomes x1, . . . , xI is given by −∑I

i=1 P(X =
xi ) log(P(X = xi )). Thus, a high entropy value for the posterior of K+ indicates
rather equal posterior probabilities for the different values of K+, while a low entropy
value results if the posterior is concentrated on a few values.

The marginal impact of each of the prior specifications on the estimated number
of data clusters K+, based on the posterior mode, is assessed by averaging the results
across all other prior settings. Table 1 shows the corresponding results. On average,
the estimated number of data clusters K+ (a) is higher for the static than the dynamic
MFM, (b) increases for increasing values of the Dirichlet parameter, (c) is lowest for
the truncated Poisson prior followed by the BNB(1, 4, 3) prior and, after a substantial
gap, followed by the Geom(0.1) and finally the uniform U(1, 30) prior. For the priors
on the component-specific parameters, a non-monotonic influence is indicated for B0.
The average number of estimated data clusters K+ is highest for B0 = 20, comparable
in-between results are obtained for B0 = 6.3 and B0 = 100, and a substantial lower
average number of data clusters K+ is estimated for B0 = 630. The influence of
C0 on the average number of data clusters estimated is monotonic and the number
substantially decreases for increasing values of C0. The marginal effects observed in
Table 1 are in line with our prior expectations based on theoretic considerations and
previous results.

Table 1 Galaxy data set. Average number of estimated data clusters K+, based on the mode, marginally
for each of the different prior specifications

MFM K̂+ γ / α K̂+ p(K ) K̂+ B0 K̂+ C0 K̂+

Static 5.89 0.01 2.98 trPois(3) 3.99 6.3 5.39 0.5 6.93

Dynamic 4.70 1 5.56 BNB(1, 4, 3) 4.35 20 6.69 1 6.21

10 7.33 Geom(0.1) 6.00 100 5.20 5 4.53

U(1, 30) 6.82 630 3.90 12.5 3.50
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Figure 5 visualizes the results obtained for the 384 different settings in more detail.
This figure allows not only to assess marginal effects, but also to gain insights into the
interaction between the prior specifications. For each prior setting, the number of data
clusters K+ estimated based on the posterior mode is indicated by a dot with the value
being shown on the y-axis. The results are split into six panels where the top panels
contain the results for the static MFM, while the bottom panels contain the results
for the dynamic MFM. The columns represent the different values selected for the
Dirichlet parameter, α for the dynamic MFM and γ for the static MFM, with values
0.01, 1, and 10 (from left to right). Within each of the panels the results are grouped
on the x-axis by the prior p(K ). The priors p(K ) are ordered by their prior mean
of K 2. Colors and point characters are used to indicate the different settings used for
the component-specific parameters. Small values of B0 are in red, large values of B0
are in blue. The highly saturated colors indicate the extreme values of B0 and lighter
colors are used for the middle values of B0. Filled shapes represent the large values
of C0, empty shapes are used for the small values of C0.

Focusing on the dynamic MFM with α = 0.01 (in the bottom left panel), one can
clearly see that for nearly all settings the number of data clusters K+ are estimated to
be equal to 3. Only for some cases, an even smaller number of data clusters K+ = 2 is
estimated. This only occurs for settingswhere B0 is small andC0 is large. This suggests
that in this panel, where the dynamic MFM with a sparsity inducing parameter α is
fitted, a sparse clustering solution is obtained regardless of prior on K and also quite
unaffected by the specification on the component-specific parameters.

The results for the static MFM with γ = 0.01 are shown above this panel (in the
top left panel). Clearly the sparsity inducing prior used for K+ leads to the number
of data clusters being estimated as equal to three for most settings. Only for very few
settings, a lower or a higher number of data clusters than 3 (i.e., 2, 4, or 5) is estimated.
Again a lower number of data clusters is only observed in the case where B0 is small
and C0 is large. The higher number of data clusters is observed for small values of C0
and middle values of B0.

Overall the results for α = 0.01 for the dynamic MFM and γ = 0.01 for the static
MFM indicate that the prior on K is not very influential, as regardless of the choice
of the prior on K a sparsity inducing prior for K+ is imposed where a rather large gap
between K and K+ a-priori is likely to occur. Also the results are quite insensitive to
the selection of the parameters for the component-specific distributions. This implies
that if a sparse clustering solution is desired, one clearly needs to use a small value
for the Dirichlet parameter. The results are rather insensitive to the specification of the
other priors. If the cluster analysis aims at answering the questionwhat is theminimum
number of data clusters necessary to approximate the data distribution reasonablywell,
such a sparsity inducing prior is warranted. In this case the question how many data
clusters are in the Galaxy data set would also be rather unambiguously answered by
three.

Increasing α and γ to 1 indicates that the influence of the other prior specifications
on the estimated number of data clusters increases (middle panels). The dynamicMFM
tends to estimate less data clusters than the static MFM. The difference to the static
MFM becomes more pronounced if the prior on K puts more mass on the tails. For
the dynamic MFM, all estimated number of data clusters are at most 7, with higher
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numbers being more likely for the uniform and the geometric prior, followed by the
BNB prior and the truncated Poisson prior. Under the static MFM extremely large
values are obtained for the uniform and the geometric prior, with estimates as large as
20. These large values are obtained if small values are used in the prior specification
for B0 and C0.

For the dynamicMFM, a higher number of data clusters K+ is estimated for α = 10
compared to α = 1, while for the static MFM, rather similar results are obtained for
γ = 1 and γ = 10 (panels on the right). For the uniform and geometric prior on K
the estimated number of data clusters varies most, regardless of whether a static or
dynamic MFM is fitted. The prior on K is not particularly sparsity inducing and thus
the prior on the component-specific parameters influences which approximation of the
data density is selected. Small values for B0 induce the most extreme values for the
estimated number of data clusters, with large values of C0 leading to small numbers
and small values of C0 encouraging large numbers of data clusters.

Figure 6 visualizes the results obtained for the 384 settings in detail based on the
entropy of the posterior of K+. If the entropy is 0, then all mass is assigned to a
single value (which then also corresponds to the mode shown in Fig. 5). For a fixed
support, the uniform distribution has the maximum entropy. For U(1, 30), the entropy
is log(30) ≈ 3.40, which corresponds to the case where the posterior of K+ assigns
the same probability to each value of K+ from one up to 30.

Figure 6 shows that the entropy values are smallest for the dynamic MFM with
α = 0.01 with slightly larger values for the static MFM with γ = 0.01. For the
dynamicMFM, the entropy increases for increasing α. For the staticMFM, the entropy
values also increase from γ = 0.01 to γ = 1, but are rather comparable for γ = 1
and γ = 10.

Regarding the prior on K , smaller entropy values are observed for the truncated
Poisson prior compared to the other priors which have rather comparable entropy
values for a given γK setting. This indicates that the smaller prior variance of the prior
on K has a substantial impact on the entropy.

Regarding the prior on B0, a general pattern of the red points being above the blue
points is discernible. This implies that the posterior on K+ is particularly spread out
for small values of B0, i.e., where the component-specific mean values are shrunken
towards the midpoint. We conjecture that in this setting posterior mass is also assigned
to small values of K+ as due to the shrinkage there is posterior support for solutions
with few data clusters. For example, the observations in the Galaxy data set with large
values which seem to form a small data cluster of their own, might be merged with
observations from the middle bulk of the observations due to shrinkage, inducing a
large component-specific variance and thus a coarse density approximation.

Regarding C0, the general pattern is that the filled shapes are below the empty
shapes, indicating that the entropy increases with decreasing values ofC0. This means
that the probabilitymass ismore spread out if one aims at a fine-grained approximation
using a rather small volume as prototypical shape for the clusters. In particular, if the
aim is semi-parametric density estimation and a small volume is imposed, it is not to
be expected that a single mixture with a specific value of K+ approximates the data
distribution well, but rather a range of mixtures with different values of K+ perform
well and all well fitting mixtures may be combined to obtain a good approximation.
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7 Assessing the impact of different prior specifications for artificial
data

To complement the results obtained for the Galaxy data set, a simulation study with
artificial data is performed where the data generating process and the true number of
data clusters are known. Results are obtained and compared for maximum likelihood
estimation as well as Bayesian inference with different prior specifications. In the
simulation study also the impact of different sample sizes and of fitting a misspecified
mixture model is assessed.

7.1 Data generation and analysis setup

We designed the data generating process in the simulation study to induce data sets
which are similar to the Galaxy data set. The underlying data generating process is
either a mixture of univariate Gaussian distributions or a mixture of univariate uniform
distributions with four components each. Two different sample sizes with n = 100
and 1000 data points are considered. For n = 100, the four cluster sizes are fixed
to 5, 55, 30 and 10 and these cluster sizes are multiplied by 10 for n = 1000. For
the Gaussian mixture, the four component means and standard deviations are given
by μk ∈ {9.5, 20, 24.5, 33} and σk ∈ {0.25, 1, 1, 0.5}, respectively. For the uniform
mixture, the lower and upper bounds of the four uniform component distributions
are given by {(9, 10), (18, 22), (22, 27), (32, 34)}. 100 different artificial data sets are
drawn and analyzed for each of the scenarios.

Results for maximum likelihood estimation are obtained using the R package
mclust. The default initialization scheme implemented in the package is used and
model choice with regard to K is performed using the BIC. Model choice consists
in selecting the best model within three modeling approaches for the component
variances: (1) equal variances across components, (2) unequal variances across com-
ponents, (3) the bestmodel according to theBIC among the equal and unequal variance
models.

The MFM (as given in (1)) is fitted to each of the 100 artificial data sets of each
scenario using essentially the same prior specifications as used for the analysis of the
Galaxy data set. We only make two modifications. We restrict the prior specifications
to the extreme values for B0 and C0, i.e., B0 ∈ {6.3, 630} and C0 ∈ {0.5, 12.5},
to obtain a more succinct presentation of the results. Furthermore, a uniform prior
U(0, 100) for K instead of a uniform prior U(0, 30) is specified. Given that larger
sample sizes are considered, a larger upper bound for the uniform distribution is
selected to ensure that the specific bound selected is still inconsequential. We base the
posterior inference for each prior setting onMCMC sampling using 200,000 iterations
after discarding 10,000 iterations as burn-in samples and using a thinning of four. The
same initialization scheme as for the Galaxy data set is employed.
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Table 2 Artificial data, maximum likelihood estimation with the BIC. Results are shown for the three
different modeling approaches consisting of equal, unequal and equal as well as unequal variances for the
component distributions. The estimated number of components are summarized over 100 data sets by the
minimum, the 25%, 50% and 75% quantile and the maximum in square brackets

n Equal Unequal Equal or unequal

Gaussian 100 [4.0, 4.0, 5.0, 5.0, 7.0] [4.0, 4.0, 4.0, 4.0, 5.0] [4.0, 4.0, 4.0, 4.0, 5.0]

1000 [6.0, 7.0, 9.0, 9.0, 12.0] [4.0, 4.0, 4.0, 4.0, 4.0] [4.0, 4.0, 4.0, 4.0, 4.0]

Uniform 100 [4.0, 5.0, 5.0, 6.0, 8.0] [3.0, 4.0, 4.0, 5.0, 7.0] [3.0, 4.0, 5.0, 5.0, 8.0]

1000 [7.0, 8.8, 9.0, 9.0, 15.0] [5.0, 6.0, 7.0, 7.0, 9.0] [5.0, 6.0, 7.0, 7.0, 9.0]

7.2 Analysis of results

First, we inspect the results obtained using maximum likelihood estimation with the
BIC for the three modeling approaches for the different sample sizes and data gen-
erating processes. It should be noted that BIC selects the number of components K
rather than the number of data clusters K+. The estimated number of components are
summarized in Table 2 for each setting using the minimum, the 25%, 50% and 75%
quantile and the maximum to characterize the distribution of these estimates across
the 100 data sets.

If the data are drawn from a Gaussian mixture and the larger sample size n = 1000
is considered, maximum likelihood estimation in combinationwith BIC always selects
four components in case the unequal variance model is specified or the best model
among the equal and unequal variance models is selected. Only slightly worse results
are obtained for the smaller sample size, n = 100, when these modeling approaches
are considered. If the equal variance model is enforced, the number of components
are correctly selected or slightly overestimated for n = 100. For the larger sample
size, considering only the equal variance model leads to overestimating the number of
components by at least two with a median number of five and up to eight components
in addition.

If the mixture model is misspecified, the performance of the maximum likelihood
estimation deteriorates. This is expected as the BIC takes goodness-of-fit of the esti-
mated density into account to select a suitable number of components for the mixture
distribution. For the smaller sample size, n = 100, the number of components are
only slightly overestimated regardless of the modeling approach. The estimated num-
ber of components increases for the larger sample size, n = 1000. In this case, the
correct number of components is never selected and there are either at least five or
seven components included in the final mixture distribution. The maximum likelihood
estimation approach thus performs poorly if the model is misspecified and the sample
size is rather large.

Table 3 summarizes the results for the Bayesian approach with different prior
specifications when using the same artificial data as used for maximum likelihood
estimation. Here, we report inference regarding the number of data clusters K+ rather
than K . The table shows the marginal effects of the different prior specifications on
the estimated number of data clusters. The effects are again in line with our expec-
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Table 3 Artificial data, Bayesian estimation. Average number of estimated data clusters K+, based on the
mode, marginally for each of the different prior specifications and whether the component distributions are
Gaussian or uniform distributions

Gaussian

n K̂+ MFM K̂+ γ / α K̂+ p(K ) K̂+ B0 K̂+ C0 K̂+

100 5.12 Static 6.15 0.01 3.97 trPois(3) 4.69 6.3 6.34 0.5 6.65

1000 5.87 Dynamic 4.83 1 5.25 BNB(1, 4, 3) 4.97 630 4.65 12.5 4.34

10 7.26 Geom(0.1) 5.66

U(1, 100) 6.66

Uniform

n K̂+ MFM K̂+ γ / α K̂+ p(K ) K̂+ B0 K̂+ C0 K̂+
100 5.56 Static 7.33 0.01 4.85 trPois(3) 5.57 6.3 7.65 0.5 8.61

1000 7.76 Dynamic 5.99 1 6.85 BNB(1, 4, 3) 6.27 630 5.67 12.5 4.71

10 8.27 Geom(0.1) 6.84

U(1, 100) 7.96

tations and confirm the insights gained for the Galaxy data set. More specifically, it
can be observed that the number of estimated data clusters increases for increasing
prior mean of K and smaller values of C0. In addition it can be noted that the model
misspecification leads on average to more data clusters being estimated.

In the following the impact of the prior settings on the estimated number of data
clusters is investigated in more detail for a dynamic MFM with α = 0.01 and a static
MFM with γ = 1. In Figs. 7 and 8, the results over the 100 data sets are summarized.
The median estimated number of data clusters K+ is represented by the bullet points.
In addition error bars connected by straight lines indicate the range between the 25%
and the 75% quantile, whereas dotted lines indicate the total range from minimum to
maximum.

Results for the dynamic MFM with α = 0.01 shown in Fig. 7 indicate that if the
data generating process is a Gaussian mixture, the correct number of data clusters is
selected most of the times, in particular if the sample size is large, i.e., for n = 1000.
For the smaller sample size, n = 100, the number of data clusters is underestimated if
large variances are a-priori assumed for the component distributions and in particular
if also the component-specific means are shrunken together because of the small
value of B0. Further, it can also be seen that for the larger sample size the estimated
number of data clusters coincide with the true number of data clusters regardless of
the prior distributions used for K and the other parameters. Thus, if there is no model
misspecification and the data set is sufficiently large, using a dynamic MFM with a
small α value leads to correct estimates of the number of data clusters regardless of
the other prior settings.

If the component distribution is misspecified but the data set is small, the results
obtained are rather similar to the Gaussian case. However, for the larger sample size,
n = 1000, four clusters are only estimated if the priors on the component distributions
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Fig. 7 Artificial data, dynamic MFM with α = 0.01. Estimated number of data clusters K+ based on the
mode for 100 data sets with different prior specifications for the prior on K , B0 and C0. In the rows, the
results for different samples sizes (n = 100 or 1000) are reported, in the columns for different data gener-
ating processes, mixtures of Gaussians or mixtures of uniform distributions. The results for the (B0,C0)

specifications as listed in the legend are shown from left to right within each prior on K setting

Fig. 8 Artificial data, static MFM with γ = 1. Estimated number of data clusters K+ based on the mode
for 100 data sets with different prior specifications for the prior on K , B0 andC0. In the rows, the results for
different samples sizes (n = 100or 1000) are reported, in the columns for different data generatingprocesses,
mixtures of Gaussians or mixtures of uniform distributions. The results for the (B0,C0) specifications as
listed in the legend are shown from left to right within each prior on K setting
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assume large values forC0 and B0. Otherwise, the number of clusters is clearly overes-
timated with median values between six and seven. Thus, using a dynamic MFMwith
a small α value in combination with sensible priors on the component distributions
results in obtaining the correct estimates for the number of data clusters even if the
model is misspecified and the data set is rather large.

The dynamicMFMwith a smallα value is clearly a successful strategy for obtaining
an estimate of the number of data clusters which could be seen as the “minimum
number of data clusters” being present in the data. To further emphasize the advantages
of this approach, the results for the static MFM with γ = 1 are, in comparison,
inspected in Fig. 8. Regardless of the data generating process and the sample size,
using priors on the component distributions which induce small values for B0 and C0
leads to overestimating the number of data clusters in the data set. The amount of this
overestimation strongly depends on the prior used for K . The estimated number of
data clusters in fact increases with the prior mean of K , e.g., for K ∼ U(1, 100) the
median number of estimated data clusters is about 20 regardless of the data generating
process and the sample size.

For Gaussian mixtures, using a static MFM with γ = 1 again leads to correct
estimates of the number of data clusters for almost all prior specifications. The only
exception is the already highlighted setting where the priors on the component distri-
butions induce small values for B0 and C0.

In contrast, for n = 1000 the number of data clusters is always overestimated in
case of model misspecification and a static MFMwith γ = 1 is fitted. For large values
of C0, consistently five data clusters are estimated instead of four. Using a small value
for C0 allows for semi-parametric density estimation and hence leads to a substantial
overestimation of the number of data clusters. Thus, it is not recommended to use a
static MFM with γ = 1 in applications where the component distributions are likely
to misspecify the cluster distribution and a sparse clustering solution is of interest.

8 Discussion and conclusions

In this paper,we respond to the call for actionmade byAitkin (2001) regarding the need
to provide more insights into the influence of different prior specifications when fitting
Bayesian mixture models. Based on recent developments in the context of MFMs, we
use the model specification of a MFM, considering the static as well as the dynamic
case. The Galaxy data set is used to illustrate the prior impact on the estimated number
of data clusters K+ using the mode as well as on the entropy of the posterior of K+.
Results confirm the marginal effects postulated, but also interesting interaction effects
are discerned.

Aiming at a sparse clustering solution using a dynamic MFM with α = 0.01
gives stable results regardless of the prior on K . The clustering solution is also rather
insensitive to the prior on the component-specific parameters as long as they are
sensible. Such a prior is especially recommended to be combinedwith large component
variances and large variances of the component means, if the data set is large and the
cluster density is unknown and likely to be misspecified (which is often the case in
applications). Such a prior specification will avoid overfitting and lead to an estimate
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of K+ that could be interpreted as the “minimum number of data clusters” being
present in the data and in general might provide a better clustering performance than
the maximum likelihood approach combined with the BIC.

For the Galaxy data set, a dynamic MFM with α = 0.01 would lead to an unam-
biguous estimate of three data clusters with also the posterior distributions being rather
concentrated on very few values. This is in line with the conclusion drawn in Aitkin
(2001) for the maximum likelihood framework using equal variance components in
the mixture model.

We suggest to use the dynamic MFM with small α value and reasonable
component-specific distributions in a Bayesian model-based clustering application
where a minimum number of data clusters is to be identified. For the component-
specific distributions, shrinking the prior mean is not recommended, whereas for the
component-specific variances using reasonable values is important to guard against
too fine-grained or too coarse approximations. In the univariate case the visualization
of the induced volume (see Fig. 4) is useful to determine a suitable value forC0. A gen-
eralization of such a visual tool to the multivariate case or other component-specific
distributions would be of interest. Further analysis is also required to gain insights of
the prior impact on Bayesian cluster analysis results for data sets with many variables
and with other component-specific distributions. In addition, if less focus is given to
the clustering aspect of the MFMmodel, it might also be interesting to investigate the
posterior of the number of components K , in particular based on a simulation study
where K and K+ are known and may be manipulated to be different.
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