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Abstract
Highest density regions (HDRs) are defined as level sets containing sample points of
relatively high density. Although Euclidean HDR estimation from a random sample,
generated from the underlying density, has been widely considered in the statistical
literature, this problem has not been contemplated for directional data yet. In this work,
directional HDRs are formally defined and plug-in estimators based on kernel smooth-
ing and associated confidence regions are proposed. We also provide a new suitable
bootstrap bandwidth selector for plug-in HDRs estimation based on the minimization
of an error criteria that involves the Hausdorff distance between the boundaries of
the theoretical and estimated HDRs. An extensive simulation study shows the perfor-
mance of the resulting estimator for the circle and for the sphere. The methodology is
applied to analyze two real data sets in animal orientation and seismology.

Keywords Bootstrap · Confidence regions · Directional data · Hausdorff distance ·
Highest density regions · Kernel density estimation · Level sets

Mathematics Subject Classification 62G05 · 62G07

1 Introduction

Set estimation is focused on the reconstruction of a set (or the approximation of any
of its characteristic features such as its boundary or its volume) from a random sample
of points. One of the specific topics in this area is concerned with the estimation of
sets directly related to density functions such as level sets. Mathematically, for a given
level t > 0, the goal is to reconstruct the unknown set

Gg(t) = {x ∈ R
d : g(x) ≥ t} (1)

B Paula Saavedra-Nieves
paula.saavedra@usc.es

1 Universidade de Santiago de Compostela, Santiago de Compostela, Spain

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11634-021-00457-4&domain=pdf


762 P. Saavedra-Nieves, R. M. Crujeiras

from a random sample of points of a density function g onRd . This topic has received
considerable attention in the statistical literature, specially since the notion of pop-
ulation clusters was established in Hartigan (1975) as the connected components of
the set in (1). This cluster definition relies clearly on the user-specified level t , so
for addressing this problem, an algorithm for estimating the smallest level with more
than a single connected component was proposed in Steinwart (2015). For a general
review on clustering, see (Anderberg 1973; Everitt 1993; Cuevas and Fraiman 1997)
and (Rinaldo and Wasserman 2001).

The number of clusters is a basic feature for a statistical population. However, the
problem of its estimation is not always taken into account in cluster analysis where
it is usually chosen by the practitioner as a first step. Since the number of clusters is
equal to the number of connected components of a level set, a very natural estimator
for this populational parameter is the number of the connected components of the level
set reconstruction. This perspective that solves the problem of selecting this unknown
population parameter is considered, for instance, in Cuevas et al. (2000), Cuevas et al.
(2001) and Biau et al. (2007).

Level set estimation theory has been mainly established for a density supported on
an Euclidean space such as in Eq. (1) with very few contributions in other domains.
Cuevas et al. (2006) consider the estimation of level sets for general functions (not
necessarily a density) providing some consistency theoretical results and showing a
level set on the sphere for illustration.More recently, the reconstruction of density level
sets on manifolds is studied in Cholaquidis et al. (2020). Through some simulations,
the behavior of the proposed method is analyzed on the torus and on the sphere.

Unfortunately, for most applications, the specific value of the level t in (1) is fully
unknown by the practitioner. In addition, areas of the distribution support where g is
close to zero (non-effective support) are usually of limited interest for applications. If
the practitioner establishes the probability content instead of the level t , a new kind
of density level sets emerges known as highest density regions (HDRs) (see Box and
Tiao 1973 andHyndman 1996). The estimation of HDRs involves further complexities
given that the threshold of this particular type of level sets must be determined from
the established probability content. Perhaps due to its practical importance, HDRs
plug-in reconstruction from the linear kernel density estimator has been widely stud-
ied considering also the problem of selecting an appropriate bandwidth specifically
devised for the HDR reconstruction (see, for instance, Baíllo and Cuevas 2006 or
Samworth and Wand 2010). However, as far as we know, the notion of HDR has not
been introduced for directional data yet. Therefore, the main goals of this work are
to (1) generalize HDRs definition to the directional setting, (2) establish a plug-in
procedure for HDRs reconstruction from the proposal of a new bootstrap bandwidth
for a well-known directional kernel density estimator that can be seen as the first
specific selector for directional HDRs, (3) check its performance through an exten-
sive simulation study analysing the effect of considering a smoothing parameter not
specifically designed for HDR estimation and (4) apply this methodology to analyze
data on animal orientation and on seismology.

One may argue that such an absence of a general and effective proposal for direc-
tional HDRs estimation may be due to a lack of practical interest, but this is far from
the truth, so let us present two application examples that motivate the developments
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Zouara beach

Fig. 1 Geographical location of Zouara beach (right). Talorchestia brito (center) and Talitrus saltator (left)

in this work. The first one concerns a problem from animal orientation studies and the
second one is related to earthquakes occurrences. Both datasets are available in the R
package HDiR.1

1.1 Somemotivating examples

Animal orientation example. Behavioral plasticity is considered by biologists as a
feature of adaptation to changing beach environments. In particular, orientation is
an adaptation characteristic that can not be modified by a single factor. Nonetheless,
experts found some regularities in the orientation of sandhoppers and other animals
from beach environments by changing one factor at a time under other controlled
conditions.

For instance, the orientation of two sandhoppers species (Talitrus saltator and
Talorchestia brito) is analyzed in Scapini et al. (2002). Both species are shown in
Fig. 1. Bottom pictures can be found in Dekker (1978). Comparing the two species
through regresion procedures, Scapini et al. (2002) conclude that Talitrus saltator
showed more differentiated orientations, depending on the time of day, period of the
year and sex, with respect to Talorchestia brito. Moreover, it seems that Talitrus salta-
tor shows a higher flexibility (variation) of orientation than Talorchestia brito under
the same environmental conditions, supporting the hypothesis that the former has a
higher level of terrestrialization. As an illustration, Fig. 2 (left panel) shows the 36 ori-
entation points (slightly jittered) corresponding to males of the specie Talitrus saltator
measurements during the noon in April. It also contains the 77 angles (slightly jit-
tered) when the measures are taken in October (Fig. 2, right panel). Differences in
the distribution on the circle of these two samples can be easily observed. Therefore,
the month of the year seems to play a significant role in sandhoppers behavior. In
particular, two clusters for October measurements can be detected around the angle π

but they are not present for the April sample. Similar comments could be done for the

1 https://CRAN.R-project.org/package=HDiR.
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Fig. 2 Orientation data (slightly jittered) corresponding to males of the specie Talitrus saltator registered
in the noon in April (left) and October (right)

situation registered around the angles π/2. HDRs reconstruction (with low probability
content) would allow to determine the biggest modes of the distribution, and then, its
clusters. Therefore, HDRs can be seen as a useful alternative to analyze sandhoppers
orientation.

Earthquakes occurrences. The European-Mediterranean Seismological Centre
(EMSC)2 is a non-governmental and non-profit organisation that has been established
in 1975 at the request of theEuropeanSeismologicalCommission. Since theEuropean-
Mediterranean region has suffered several destructive earthquakes, there was a need
for a scientific organisation to be in charge of the determination, as quickly as pos-
sible (within one hour of the earthquake occurrence), of the characteristics of such
earthquakes. These predictions are based on the seismological data received frommore
than 65 national seismological agencies, mostly in the Euro-Med region. Figure3 (left)
shows the geographical coordinates (red points), downloaded from EMSC website, of
a total of 272 medium and strong world earthquakes registered between 1th October
2004 and 9th April 2020. The magnitude of all these events is at least 2.5 degrees on
the Richter scale. Of course, these planar points correspond to spherical coordinates
on Earth. Due to the important damages that earthquakes cause, cluster detection of
HDRs could be also useful to identify, from a real dataset, where earthquakes are
specially likely. This information is key for decision-making, for example, to update
construction codes guaranteeing a better building seismic-resistance. An interactive
representation of the sphere can be seen in Appendix D.

1.2 Paper organization

This paper is organized as follows. Section 2 contains some background ideas on
directional level set estimation including some discussion on error measurements and
some existing consistency results in the directional setting that will be really useful to
extent the definition of HDRs for directional data in Sect. 3. There, plug-in estimators
and the corresponding confidence regions are also established. Concretely, we con-
sider the plug-in methods based on a well-known directional kernel density estimator,
which requires a smoothing parameter (bandwidth) for its practical implementation.

2 European-Mediterranean Seismological Centre: www.emsc-csem.org.
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Fig. 3 Distribution of earthquakes around the world between October 2004 and April 2020 (left). HDR
contour obtained from the sample of world earthquakes registered between October 2004 and April 2020
(right)

An appropriate bootstrap bandwidth selector, the first one specifically designed for
directional HDRs estimation, is also introduced in this section. Section 4 presents
an extensive simulation study illustrating the performance of the resulting plug-in
reconstruction for the HDRs (for circular and spherical domains) considering the new
bandwidth selector. These results are compared with those obtained with directional
smoothing parameters not specifically designed for HDR estimation. In Sect. 5, the
proposedmethodology is applied to analyze the two real data examples presented in the
Introduction. Finally, some conclusions and ideas for further research are presented in
Sect. 6. Appendix A and the supplementary material that completes this work include
further information on the datasets. Appendix B specifies the parameters taken for the
construction of the spherical densities in the simulation study. Appendix C contains
some additional results of simulations. Appendix D collects the description of the
bandwidth selectors considered in the simulation study. All the methods presented in
this paper, along with the real data examples, are accessible in HDiR package.

2 Some background on directional level sets

The specific problem of reconstructing density level sets in the directional setting is
reviewed in this section: the definition of directional level set is introduced jointly
with a plug-in estimator. Based on the real data and simulated examples, some discus-
sion about how to measure the estimation error and some asymptotic results are also
included.

2.1 On directional level sets

Consider a random vector X taking values on a d−dimensional unit sphere Sd−1 with
density f . Given a level t > 0, the directional level set is defined as:

G f (t) = {x ∈ Sd−1 : f (x) ≥ t}. (2)

123



766 P. Saavedra-Nieves, R. M. Crujeiras

The nature of different level sets is shown in Fig. 4, which represents G f (t) in
grey color for three different circular densities and three different values of the level
t . The threshold t is represented through a dotted grey line. Note that, if large values
of t are considered (bottom row in Fig. 4), G f (t) coincides with the greatest modes.
However, for small values of t , the level set G f (t) is virtually equal to the support of
the distribution.

It is important to noticed that, following (Hartigan 1975), we may also establish
the concept of cluster in directional setting as the connected components of the level
set G f (t). With this view in mind, note that the density represented in the second row
of Fig. 4 presents four connected components for all of the considered values for t ,
determining four population clusters.

Plug-in estimation is themost natural and common choice for reconstructing density
level sets in the Euclidean space. A review of other existing estimation alternatives can
be seen in Rodríguez-Casal and Saavedra-Nieves (2019). Plug-in methods are devised
to reconstruct the level set in (1) as

Ĝg(t) = {x ∈ R
d : gn(x) ≥ t}
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Fig. 4 For thee different circular densities, G f (t) for t = t1 (first column), t = t2 (second column) and
t = t3 (third column) verifying 0 < t1 < t2 < t3. Equivalently, L( fτ ) for τ = 0.2 (first column), τ = 0.5
(second column) and τ = 0.8 (third column)
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where gn usually denotes the classical kernel estimator for Euclidean data (see Parzen
1962 and Rosenblatt 1956). This methodology, which has received considerable
attention (see, for instance, Tsybakov 1997; Baíllo 2003; Mason and Polonik 2009;
Rigollet and Vert 2009; Mammen and Polonik 2013; Polonik 2013 or Chen et al.
2017) can be easily generalized to the directional setting. Given a random sample
Xn = {X1, . . . , Xn} ∈ Sd−1 of the unknown directional density f , the corresponding
level set G f (t) in (2) can be reconstructed as

Ĝ f (t) = {x ∈ Sd−1 : fn(x) ≥ t} (3)

where fn denotes a nonparametric directional density estimator. Following the clas-
sical ideas for real-valued random variables, a kernel estimator on Sd−1 is provided
in Bai et al. (1989) (d > 2) who also proved strong pointwise consistency, uniform
consistency, and L1−norm consistency of the estimator (see also Hall et al. 1987 and
Klemelä 2000 for further results). Following Bai et al. (1989), from a random sam-
ple Xn on a d−dimensional sphere the directional kernel density estimator at a point
x ∈ Sd−1 is defined as

fn(x) = 1

n

n∑

i=1

KvM (x; Xi ; 1/h2), (4)

where 1/h2 > 0 is concentration parameter and KvM denotes the von Mises-Fisher
kernel density (seeAppendixB for explicit formulae). The considerationof a vonMises
kernel in Eq. (4) is not the only option and it is particularly interesting to point out
the use of a wrapped-normal kernel in the circular setting. In this case, Huckemann
et al. (2016) proved that this kernel guarantees the monotonicity on the number of
modes with respect to the smoothing parameter, something that also happens for the
gaussian kernel in the linear case. It may be argued that such a kernel shoud be used
in our problem. Nevertheless, it is computationally more expensive and our practical
experience shows that results in practice are quite similar.

Note that the kernel estimator in (4) can be viewed as a mixture of von Mises-
Fisher. Furthermore, the concentration parameter 1/h2 plays an analogous role to the
bandwidth in the Euclidean case. For small values of 1/h2, the density estimator is
oversmoothed. The opposite effect is obtained as 1/h2 increases: with a large value
of 1/h2, the estimator is clearly undersmoothing the underlying target density. Hence,
the choice of h is a crucial issue. For simplicity, in what follows, we refer to h as
bandwidth parameter. Several approaches for selecting h in practice, in circular and
even directional settings, have been proposed in the literature (see Appendix D). All
the existing proposals aim to minimize some error criterion on the target density, but
none of them is specifically designed focusing on the reconstruction of a directional
level set.

Figure 5 shows three plug-in estimators Ĝ f (t) for models (black colour) and levels
t1, t2 and t3 (dotted grey line) considered in Fig. 4. Kernel density estimators (grey
color) in (4) have been determined from samples of size 250 considering the proposal
in Oliveira et al. (2012) as bandwidth parameter.
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Fig. 5 Plug-in density level sets Ĝ f (t) from X250 for three different circular densities with t = t1 (first
column), t = t2 (second column) and t = t3 (third column) verifying 0 < t1 < t2 < t3
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Fig. 6 Plug-in level set estimators obtained from the orientation samples corresponding males of the specie
Talitrus saltator registered in the noon in April (left) and October (right)

For instance, for the sandhoppers example, Fig. 6 shows the plug-in estimators
obtained for the two samples of sandhoppers represented in Fig. 2. It is possible to
detect the largest modes of the two sample distributions corresponding to April and
October samples. These results allow us to confirm the differences between the two
populations. The largest cluster of April orientations is located around the angle 7π/4.
However, the pattern observed for October registries is completely different. Although
an only cluster is identified around the angle 3π/2, if the level t decreases slightly two
additional groups can be detected around the angles 3π/4 and 5π/4, respectively.

Regarding the earthquakes illustration, Fig. 3 (right) shows the plug-in contour in
blue obtained from the selected sample of world earthquakes considered. Chosing a
convenient value of the level t , the greatest mode of sample distribution is identified
in the Southeast of Europe. Countries such as Italy, Greece or Turkey (located withint
this cluster) are the most affected areas in the recent past.

2.2 Error measures and consistency results on directional level sets

The level set Ĝ f (t3) represented in Fig. 5 (third column) presents two connected
components. However, Fig. 4 (right plot in the bottom row) shows that the theoreti-
cal level set G f (t3) has exactly three components. Therefore, the estimation error is
considerably large. Distances between sets are the common criteria considered in set
estimation to measure the discrepancies between the theoretical region to be estimated
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and the corresponding reconstruction. Of course, this is also applicable when the goal
is to estimate level sets or HDRs.

The distance in measure dμ between two Borel sets A and B in Rd is defined as

dμ(A, B) = μ(A�B) (5)

where μ denotes the Lebesgue measure and A�B, the symmetric difference of
A and B calculated as (A ∩ Bc) ∪ (Ac ∩ B) with Ac representing the comple-
mentary of A. Consistency results for directional plug-in estimators have been
already obtained in the literature for this distance. For the estimator established in
(3) defined on S2, Cuevas et al. (2006) and Cholaquidis et al. (2020) check that
limn→∞ dμ(G f (t), Ĝ f (t)) = 0, a.s., and limn→∞ dμ(G f (t), Ĝ

′
f (t)) = 0, a.s.,

where Ĝ
′
f (t) = {x ∈ Sd−1 : f

′
n(x) ≥ t} and f

′
n denotes the kernel estimator (for

manifolds with boundary) proposed in Berry and Sauer (2017). From the definition in
(5), it easy to check that the distance in measure dμ does not penalize those level set
estimators that have an isolated point as a connected component or any other set with
null Lebesgue measure. Additionally, the undersmoothing caused by the choice of a
small bandwidth valuemay provoque that the estimator Ĝ f (t) presents non-significant
connected components with small Lebesgue measure. In this case, dμ would not be
as effective as, for instance, the Hausdorff distance in detecting this situation.

Let us recall that, if A and B are now non-empty compact sets inRd , the Hausdorff
distance between A and B is established as follows

dH (A, B) = max

{
sup
x∈A

ρ ({x}, B) , sup
y∈B

ρ ({y}, A)

}
(6)

where ρ({x}, B) = inf y∈B{ρ(x, y)} being ρ(x, y) the distance between two points.
Note that the definition of the Hausdorff distance is very general and depending on
the selection of the distance ρ, different error criteria emerge. Usually, ρ corresponds
to the chordal distance (Euclidean distance in R

d , ρ1).

Remark 1 Other natural choices such as the geodesic distance (great circle, ρ2) could
be considered in Eq. (6). Hopf-Rinow Theorem states that ρ1 and ρ2 induce the same
topology on Sd−1. Figure 1 in Jeong et al. (2017) illustrates that ρ1(x, y) ≤ ρ2(x, y)
for any pair of points x, y in the unit circle. Following Lemma 3 in Boissonnat et al.
(2019), a general upper bound for the ρ2(x, y) for all x, y ∈ Sd−1 depending on
ρ1(x, y). Specifically, it is possible to prove that ρ2(x, y) ≤ arcsin(ρ1(x, y)) for all
x, y ∈ Sd−1 when the constant r is equal to 1/2.

The metric dH is not completely successful in detecting differences in shape prop-
erties. In other words, two sets can be very close in Hausdorff distance and still show
quite different shapes. This typically happens where the boundaries ∂A and ∂B are
far apart, no matter the proximity of A and B. So a natural way to reinforce the notion
of visual proximity between two sets provided by Hausdorff distance is to account
also for the proximity of the respective boundaries. This error criterion has been also
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considered for establishing consistency results of several directional plug-in recon-
structions. Cuevas et al. (2006) prove that limn→∞ dH (∂G f (t), ∂Ĝ f (t)) = 0, a.s.,
when the Hausdorff distance is defined from ρ1. If the Hausdorff distance involves
ρ2, (Cholaquidis et al. 2020) prove that limn→∞ dH (∂G f (t), ∂Ĝ

′
f (t)) = 0 and

limn→∞ dH (G f (t), Ĝ
′
f (t)) = 0, a.s. The existing monotone relationship between

chordal and geodesic distances guarantees the consistency of the plug-in estimator in
Cholaquidis et al. (2020) also when the Hausdorff distance depends on ρ1 instead of
ρ2. Therefore, if the target is the reconstruction of a set, the Hausdorff metric (defined
from the chordal distance) can be seen as a suitable error criteria in the directional
setting.

3 HDRs in the directional setting

As noted in the Introduction, the level t is usually unknown in (1) and, for practical
purposes, the practitioner chooses the probability content of the set instead of the level
t . These particular class of level sets widely considered for Euclidean data are the so-
called HDRs (see Box and Tiao 1973; Hyndman 1996 or Samworth and Wand 2010).
However, as far as we know, HDRs were not defined in the directional context yet.
Motivating the need for a proper extension of this notion and the proposal of adequate
estimation tools can be easily justified. Figure 7 (top) shows four different 50%circular
regions (regions containing 50% of the probability, empirically approximated) for the
kernel density estimator fn represented in grey. Although all of them have probability
content equal to 50%, they exhibit completely different shapes. Therefore, it is obvious
that there exists an infinite number of ways to choose a region with given coverage
probability and in a general scenario, it may not be clear which region must be chosen.
The same happens for real-valued random variables, and (Hyndman 1996) suggests
that HDRs are the best subset to summarize a probability distribution.

The usual purpose in summarizing a probability distribution by a region of the
sample space is to delineate a comparatively small set which contains most of the
probability, although the density may be nonzero over infinite regions of the sample
space. Therefore, as in the Euclidean case, it is necessary to decide what properties
the region has to verify. The following conditions are natural:

(C1) The region should occupy the smallest possible volume in the sample space.
(C2) Every point inside the region should have probability density at least as large as

every point outside the region.

Following (Box and Tiao 1973), conditions (C1) and (C2) are equivalent and lead
to regions called HDRs. Definition 1 formalizes this concept in the directional context
taking into account the second criterion.

Definition 1 Let f be a directional density function on Sd−1 of a random vector X .
Given τ ∈ (0, 1), the 100(1 − τ)% HDR is the subset

L( fτ ) = {x ∈ Sd−1 : f (x) ≥ fτ } (7)
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where fτ can be seen as the largest constant such that

P(X ∈ L( fτ )) ≥ 1 − τ (8)

with respect to the distribution induced by f .

According to Polonik (1997) and García et al. (2003) in the Euclidean context, L( fτ )
is the minimum volume level set with probability content at least (1 − τ). Figure 4
shows the HDR L( fτ ) in grey for three different circular densities and three different
values of τ . The threshold fτ is represented through a dotted grey line. Note that, if
large values of τ are considered, L( fτ ) is equal to the greatest modes and, therefore,
the most differentiated clusters can be easily identified. However, for small values of
τ , L( fτ ) is almost equal to the support of the distribution.

3.1 Plug-in estimation of directional HDRs

The first step to reconstruct theHDR inDefinition 1 for a given τ ∈ (0, 1) is to estimate
the threshold fτ . As in the Euclidean case, numerical integration methods could be
also used in the directional setting in order to approximate its value. However, when
the dimension increases, the computational cost becomes a major issue due to the
complexity of the numerical integration algorithms considered on high dimensional
spaces. An alternative approach for estimating fτ with a feasible computational cost
is described next.

As before, let X be a random vector with directional density f and let Y = f (X)

be the random vector obtained by transforming X by its own density function. Since
P( f (X) ≥ fτ ) = 1−τ , fτ is exactly the τ− quantile ofY , following (Hyndman1996),
fτ can be estimated as a sample quantile from a set of independent and identically
distributed random vectors with the same distribution as Y .

In particular, if Xn = {X1, . . . , Xn} denotes a set of independent observations in
Sd−1 from a density f , { f (X1), . . . , f (Xn)} is a set of independent observations from
the distribution of Y . Let f( j) be the j−th largest value of { f (Xi )}ni=1 so that f( j) is
the ( j/n) sample quantile of Y . We shall use f( j) as an estimate of fτ . Specifically,
we choose f̂τ = f( j) where j = �τn�. Cadre et al. (2009) study the convergence of
f̂τ to fτ in the linear setting.
Obviously, if f is a known function, the observations can be pseudorandomly

generated and the estimation of fτ could be made arbitrarily accurate by increasing
n. In practice, f is often unknown and we have as only information a random sample
of points Xn from an unknown density f . From this sample, we propose first to
determine the kernel estimator fn in (4). If n is large enough, then calculate the set
{ fn(X1), . . . , fn(Xn)} in order to estimate f empirically. If n is moderate, it may be
preferable to generate observations Xn = {Xl , . . . , XN } of large size N from fn . For
small values of n it may not be possible to get a reasonable density estimate. Besides,
with few observations and no prior knowledge of the underlying density, there seems
little point in attempting to summarize the sample space (seeWand and Jones 1995 for
some discussion on the number of observations needed for a reasonable linear density
estimate). Note that the problem here is not with the density quantile algorithm (that
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Fig. 7 50% circular regions obtained from the circular kernel estimator fn (Grey color) obtained from a
sample X250. Boxplots of { fn(X1), . . . , fn(X250)} and quantiles (dotted lines) that determine the 50%
regions (bottom)

give results to an arbitrary degree of accuracy given a density), but with estimating
the density from insufficient data.

Once the threshold fτ is estimated, plug-in methods reconstruct the 100(1 − τ)%
HDR namely L( fτ ) in (7) as

L̂( f̂τ ) = {x ∈ Sd−1 : fn(x) ≥ f̂τ }. (9)

Figure 7 shows the circular kernel estimator fn (grey color) calculated from a
sample X250 generated from the second model (black color) in Fig. 4 and different
empirically approximated 50% circular regions (grey color, top). The boxplot of the
transformed values denoted by { fn(X1), . . . , fn(X250)} is also shown (bottom). The
dotted lines represent the quantiles that determine the corresponding 50% (probability
coverage) circular region. Note that only the estimated HDR (left), L̂( f̂τ ), is able to
show the existence of the five existing modes.

Apart from the consistency of f̂τ , Cadre et al. (2009) establish the exact convergerce
rate (considering the distance in measure dμ as error criteria) for Euclidean HDRs.
The extension of these results to the directional setting does not seem straightfor-
ward. However, if f̂τ−consistency remains true, we could prove that L̂( f̂τ ) is also
a dH−consistent estimator of L( fτ ) in S2 under the assumptions of Corollary 1 and
condition (T) in Cuevas et al. (2006). To complete the proof is only necessary to apply
a triangle inequality on dH (L( fτ ), L̂( f̂τ )).

3.1.1 Confidence regions for estimated HDRs

The density quantile algorithm detailed above for approximating the threshold fτ
involves an empirical approximation. Then, it is convenient to compute some uncer-
tainty limits on the estimated regions.

For the simplest case of X being a circular random variable (following Hyndman
1996), standard asymptotic results for a sample in Cox and Hinkley (1979) allow
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to prove that f̂τ is asymptotically normally distributed with mean fτ and variance
τ(1 − τ)/(n[F( fτ )]2) where

F(y) = y
n(y)∑

i=1

| f ′
(zi )|−1

and {zi } denote those points in the sample space of X such that f (zi ) = y, i =
1, 2, . . . , n(y).

Alternatively, a bootstrap algorithm can be easily designed to compute confidence
regions for estimated HDRs. The procedure is detailed in Algorithm 1.

Algorithm 1: Bootstrap procedure to estimate HDRs confidence regions.

Inputs: Xn , τ , the number of bootstrap resamples B and the confidence level α.

1. Calculate the directional kernel density estimador fn from Xn .

2. Initialize the bootstrap procedure:

foreach b ∈ {1, ..., B} do
◦ Generate a bootstrap sample of size n from fn , X ∗

b,n .

◦ Calculate the directional kernel density estimador f ∗
n from X ∗

b,n .

◦ Determine f ∗
n (X ∗

b,n).

◦ Calculate the threshold f̂ ∗
τ,b as the τ -quantile of f ∗

n (X ∗
b,n).

end
3. Determine the thresholds f̂τ1 and f̂τ2 as the (α/2)− and (1 − α/2)−quantiles
of the vector f̂ ∗

τ .

4. Compute L̂( f̂τ1) and L̂( f̂τ2) from fn .

Output: Confidence bands, L̂( f̂τ1) and L̂( f̂τ2).

As an illustration, Fig. 8 shows the estimated confidence regions using the asymp-
totic approach (first row, in dark red color) and the bootstrap procedure (second row, in
purple color) for three different values of τ when α = 0.05 and B = 250. Cross vali-
dation bandwidths introduced in Hall et al. (1987) were used as smoothing parameters
for circular density estimation in both approaches.

3.2 A suitable bootstrap bandwidth selector

The plug-in reconstruction of the directional HDRs in (9) involves the calculation
of the kernel density estimator in (4) that is known to be heavily dependent on the
selection of h. The existing methods for selecting an optimal value for h aim for
minimizing some error criterion on the target density f , but they are not specifically
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Fig. 8 95 % Confidence regions considering the asymptotic approach (first row, in dark red color) and the
bootstrap procedure with B = 250 (second row, in purple color) from X500 of a circular density with τ1
(first column), τ2 (second column) and τ3 (third column) verifying 0 < τ1 < τ2 < τ3 < 1

designed for the estimation of HDRs. The goal of this section is to propose the first
selector of h specifically designed for HDRs reconstruction.

A bootstrap bandwidth selector focused on the problem of reconstructing HDRs
is introduced in what follows. The idea is to use an error criterion that quantifies the
differences between the theoretical region and its plug-in reconstruction. In the real-
valued setting, Samworth andWand (2010) propose one of the first bandwidth selectors
for HDRs estimation studying an relatively uncommon distance (depending on bothμ

and g) between these sets. In this work, we consider the classical Hausdorff distance
(introduced in Sect. 2.2) between the boundaries of the HDR and the corresponding
estimator.

In the directional case, the closed expression of dH (∂L( fτ ), ∂ L̂( f̂τ )) is not known.
However, it could be estimated through a bootstrap procedure. Therefore, a new band-
width selector can be established as

h1 = argmin
h>0

EB

[
dH (∂L∗( f̂ ∗

τ ), ∂ L̂( f̂τ ))
]

(10)

where EB denotes the bootstrap expectation with respect to random samples X ∗
n =

{X∗
1, . . . , X

∗
n} generated from the directional kernel fn that, of course, is dependent

on a pilot bandwidth and also on the choice of the distance ρ in Eq. (6).
Figure 12 shows the theoretical HDR for model S3 (see Sect. 4.2) when τ = 0.5

(first and second columns). Moreover, the plug-in estimator L̂( f̂τ ) obtained from a
sample of size n = 1000 and considering the bandwidth proposed in García-Portugués
(2013) when τ = 0.5 is also represented (third column). Note that, for this sample
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size, only the largest mode is detected. In this particular case, the Hausdorff error
is smaller if the HDR is reconstructed from a cross-validation bandwidth designed
for density estimation (fourth and fifth columns). A relevant issue appears when h1 is
estimated from impreciseHDRestimators.Remember that theminimizationprocedure
considered for determining h1 involves the boundary of the set L̂( f̂τ ). If this set
is poorly approximated the resulting bandwidth surely will not provide competitive
results. Therefore, largest sample sizes will be considered in this section for avoiding
this problem.

Another point that is worth to mention is that diverse bandwidths selectors emerge
from the consideration of the different choices of ρ in the definition of the Hausdorff
distance. In fact, other bandwidths could be defined if, for example, dH in (10) is
replaced by a completely different error criteria such as the distance in measure dμ

that, unlike Hausdorff distance, does not take in account the connected components
of a set only composed by a isolated point. Therefore, we could propose as many
bandwidths as existing distances between sets attending to the specific properties and
characteristics of each distance.

4 Simulation study

The performance of the proposed bandwidth selector is explored in this section. As
it has been mentioned, there exist other bandwidth selectors for directional kernel
density estimation (see Appendix D), although not specifically designed for HDR
reconstruction. We will also check the impact of considering some of these selectors
in the HDR plug-in estimation. Specifically, the selector h1 established in (10) was
implemented considering the chordal distance ρ1 that, as we show in Sect. 2.2, guar-
antees good asymptotic properties of directional level sets. The code for computing it
is available in the R library HDiR. All the other bandwidths are implemented in the
R packages NPCirc3 and Directional4. Sects. 4.1 and 4.2 contain the results
obtained in circular and spherical settings, respectively. Some additional results of
simulations are also contained in Appendix C.

4.1 Estimation of circular HDRs

A collection of 9 circular densities (models C1 to C9) have been considered in this
simulation study. These models are mixture of different circular distributions and they
correspond to densities 5, 6, 7, 8, 10, 11, 16, 19 and 20 fully described in Oliveira et al.
(2014). Figure 9 shows these densities and the thresholds fτ for τ = 0.2, τ = 0.5 and
τ = 0.8 through dotted circles.

A total of 250 random samples of sizes n = 500 and n = 1000 were generated for
each of these models. From each sample, circular HDRs are reconstructed for τ = 0.2,
τ = 0.5 and τ = 0.8. Results for τ = 0.2 and τ = 0.8 are exposed in Appendix
C.1. The behavior of plug-in methods that emerge from the consideration of different

3 https://CRAN.R-project.org/package=NPCirc.
4 https://CRAN.R-project.org/package=Directional.
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Fig. 9 Circular density models for simulations. Dotted circles represent the threshold fτ when τ = 0.2,
τ = 0.5 and τ = 0.8, respectively

bandwidth parameters will be checked. Apart from h1, we will consider the circular
rule-of-thumb by Taylor (2008) (h2); its improved version by Oliveira et al. (2012)
(namely h3); cross-validation methods (likelihood h4 and least squares h5) introduced
by Hall et al. (1987) and the bootstrap bandwidth (h6) presented by Di Marzio et al.
(2011). Note that for computing h1, a pilot bandwidth is required. In this study, h3 has
been taken as a pilot, and B = 200 resamples are considered for obtaining h1.

For each method and each sample, the estimation error is measured by computing
theHausdorff distance (dH ) between the boundaries of estimatedHDR and the frontier
of theoretical set. As a reference, note that the maximum value of this criteria in S1 is
2 (the length of the diameter of the circle).

Tables 1 and 2 show the means and the standard deviations of the 250 estimation
errors obtained when τ = 0.5 from samples of sizes n = 500 and n = 1000, respec-
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Table 1 Means (M) and standard deviations (SD) of 250 errors in Hausdorff distance for τ = 0.5, n = 500
and B = 200

C1 C2 C3 C4 C5

M SD M SD M SD M SD M SD

h1 0.027 0.015 0.120 0.092 0.113 0.052 0.107 0.055 0.425 0.290

h2 0.026 0.014 0.103 0.042 1.303 0.372 0.104 0.047 0.655 0.103

h3 0.026 0.015 0.100 0.088 0.120 0.054 0.112 0.056 0.417 0.307

h4 0.026 0.015 0.090 0.054 0.123 0.060 0.112 0.056 0.588 0.219

h5 0.026 0.015 0.091 0.054 0.122 0.059 0.108 0.054 0.633 0.154

h6 0.026 0.015 0.104 0.051 0.113 0.049 0.103 0.048 0.659 0.054

C6 C7 C8 C9

M SD M SD M SD M SD

h1 0.141 0.063 0.206 0.216 0.504 0.409 0.243 0.211

h2 1.427 0.085 1.313 0.060 0.777 0.385 1.327 0.200

h3 0.141 0.058 0.192 0.221 0.554 0.407 0.213 0.215

h4 0.142 0.062 0.221 0.270 0.665 0.407 0.403 0.363

h5 0.143 0.063 0.221 0.270 0.667 0.404 0.403 0.363

h6 0.136 0.056 0.207 0.252 0.658 0.380 1.273 0.286

Table 2 Means (M) and standard deviations (SD) of 250 errors in Hausdorff distance for τ = 0.5, n = 1000
and B = 200

C1 C2 C3 C4 C5

M SD M SD M SD M SD M SD

h1 0.019 0.011 0.071 0.050 0.080 0.033 0.073 0.031 0.410 0.307

h2 0.018 0.010 0.086 0.030 1.262 0.340 0.070 0.028 0.661 0.080

h3 0.019 0.010 0.062 0.041 0.083 0.033 0.077 0.034 0.414 0.307

h4 0.018 0.010 0.078 0.031 0.084 0.038 0.076 0.033 0.628 0.159

h5 0.018 0.010 0.079 0.031 0.085 0.038 0.075 0.034 0.631 0.153

h6 0.019 0.010 0.073 0.035 0.081 0.032 0.074 0.029 0.646 0.115

C6 C7 C8 C9

M SD M SD M SD M SD

h1 0.095 0.042 0.105 0.065 0.488 0.421 0.133 0.105

h2 1.425 0.082 1.306 0.047 0.673 0.357 1.301 0.191

h3 0.101 0.043 0.095 0.063 0.569 0.390 0.117 0.098

h4 0.099 0.040 0.104 0.116 0.650 0.377 0.297 0.319

h5 0.099 0.041 0.104 0.116 0.650 0.377 0.297 0.319

h6 0.097 0.038 0.092 0.036 0.624 0.357 0.168 0.210

123



778 P. Saavedra-Nieves, R. M. Crujeiras

0.
0

0.
5

1.
0

1.
5

h1 h2 h3 h4 h5 h6

0.
0

0.
5

1.
0

1.
5

h1 h2 h3 h4 h5 h6

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

h1 h2 h3 h4 h5 h6

Fig. 10 Violin plots of Hausdorff errors for models C3, C6 and C8 when τ = 0.5 and n = 1000. Note that
due to the behaviour of h2, the scales of these figures are different

tively. Bold numbers correspond to the lowest mean errors obtained for each density.
Taking into account the variety of models considered, exhibiting different features, it
is not surprising that all of the bandwidth selectors are the best ones for some model,
showing h1 a competitive behavior in all cases. In fact, it is the best one for models
C3, C5, C6 and C8 (with n = 1000).

Figure 10 shows the violin plots of Hausdorff errors obtained for some of the
simulation models when τ = 0.5 (n = 1000). It shows that h2 is the selector that
presents a worst behavior for models C3 and C6. Furthermore, its variance is again
specially large for model C3.

Finally, it isworth tomention that results inAppendixC.1 shows that the competitive
behavior of h1 improves considerably when high values of τ are selected. This is not
a minor question when the goal is to estimate the biggest modes of a distribution.

4.2 Estimation of spherical HDRs

For the spherical scenario, 9 density models have been considered. These models,
namely S1 to S9, are mixtures of von Mises-Fisher densities on the sphere, allowing
to represent complex structures showingmultimodality and/or asymetry. Parameters of
mixtures are fully established in Table 8 in Appendix B for reproducibility. Moreover,
these densities are also implemented in the R package HDiR. Figure 11 shows them
and the corresponding HDRs for τ = 0.2, τ = 0.5 and τ = 0.8.

For sample sizes n = 500, n = 1500 and n = 2500, 200 random samples were
generated from models S1 to S9. From each sample, HDRs are reconstructed for
τ = 0.2, τ = 0.5 and τ = 0.8.As before, results for τ = 0.2 and τ = 0.8 are contained
in Appendix C.2. The performance of different plug-in methods that emerge from the
consideration of different bandwidth parameters discussed in this work is checked.
Apart from h1, cross-validation bandwidth selectors for data on a sphere Sd−1 (h5)
and the plug-in bandwidth selector introduced by García-Portugués (2013) (h7) are
taken into account. In this case, a total of B = 50 resamples are established for
estimating the proposed bootstrap bandwidth h1, taking h5 as a pilot bandwidth.
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3S2S1S

6S5S4S

9S8S7S

Fig. 11 Finite mixtures of von Mises-Fisher spherical models for simulations. HDRs are represented for
τ = 0.2, τ = 0.5 and τ = 0.8

For eachmethod and each sample, the estimation error is againmeasured calculating
the Hausdorff distance between the boundaries of estimated HDR and the frontier of
theoretical set. As reference, note that the maximum value of both criteria S2 is also
2. In this case, this upper bound coincides exactly with the length of the diameter of
the sphere.

Tables 3, 4 and 5 contains the results for τ = 0.5 when n = 500, n = 1500 and
n = 2500, respectively. Bold numbers correspond to the lowest mean errors obtained
for each density. The proposed selector h1 is the best or second best in all cases. In
fact, h1 and h5 usually behave similarly and h7 is the worst selector for S3.

Figure 13 contains the violin plots of Hausdorff errors for some of the considered
models when τ = 0.5 and n = 1500. Remark that h1 and h5 usually present similar
results, see densities S5 and S9. However, h1 is clearly more competitive for models
S1 and S8.

To conclude, simulations in Appendix C.2 allows to confirm the good performance
of the selector h1 when small or big values of τ are considered for spherical data.
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Table 3 Means (M) and standard deviations (SD) of 200 errors in Hausdorff distance for τ = 0.5, n = 500
and B = 50

S1 S2 S3 S4 S5

M SD M SD M SD M SD M

h1 0.044 0.018 0.843 0.249 0.924 0.567 0.113 0.033 0.131 0.048

h5 0.069 0.020 0.796 0.245 0.888 0.552 0.118 0.035 0.130 0.047

h7 0.082 0.022 0.880 0.181 1.497 0.514 0.115 0.031 0.127 0.045

S6 S7 S8 S9

M SD M SD M SD M SD

h1 0.136 0.038 0.307 0.074 0.140 0.070 0.172 0.061

h5 0.135 0.043 0.292 0.066 0.220 0.212 0.174 0.056

h7 0.145 0.045 0.313 0.074 0.147 0.091 0.149 0.049

Table 4 Means (M) and standard deviations (SD) of 200 errors in Hausdorff distance for τ = 0.5, n = 1500
and B = 50

S1 S2 S3 S4 S5

M SD M SD M SD M SD M SD

h1 0.032 0.008 0.568 0.155 0.779 0.590 0.077 0.024 0.092 0.030

h5 0.048 0.013 0.536 0.129 0.591 0.392 0.080 0.021 0.092 0.030

h7 0.057 0.014 0.648 0.144 1.473 0.505 0.079 0.020 0.092 0.029

S6 S7 S8 S9

M SD M SD M SD M SD

h1 0.093 0.027 0.223 0.052 0.095 0.046 0.103 0.032

h5 0.086 0.023 0.218 0.052 0.125 0.117 0.111 0.032

h7 0.093 0.023 0.223 0.055 0.093 0.027 0.098 0.024

Table 5 Means (M) and standard deviations (SD) of 200 errors in Hausdorff distance for τ = 0.5, n = 2500
and B = 50

S1 S2 S3 S4 S5

M SD M SD M SD M SD M SD

h1 0.026 0.005 0.437 0.131 0.760 0.595 0.064 0.019 0.074 0.022

h5 0.042 0.009 0.458 0.123 0.458 0.243 0.066 0.017 0.076 0.024

h7 0.050 0.012 0.523 0.124 1.495 0.508 0.066 0.017 0.076 0.024

S6 S7 S8 S9

M SD M SD M SD M SD

h1 0.088 0.027 0.181 0.052 0.076 0.048 0.085 0.028

h5 0.076 0.023 0.178 0.048 0.113 0.136 0.088 0.025

h7 0.082 0.023 0.180 0.049 0.081 0.053 0.081 0.020
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Fig. 12 Theoretical HDR for model S3 when τ = 0.5 (first and second columns). Sample of size n = 1000
of model 3 (blue color) and corresponding plug-in estimators (black color) when τ = 0.5 considering h7
(third column) and h5 (fourth and fifth columns) as smoothing parameters. Note that the last two columns
show two views of the sphere
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Fig. 13 Violin plots of Hausdorff errors for models S1, S5, S8 and S9 when τ = 0.5 and n = 1500. Note
that the scales of these figures are different

5 Real data analysis

The proposed methodology is now applied to the two real datasets presented in the
Introduction, exemplifying the aplicability of the method for circular and spherical
data.

5.1 Behavioral plasticity of sandhoppers

Adaptation to changing beach environments for the real example on sandhoppers
introduced in Sect. 1.1 is analyzed from HDRs estimation perspective. HDRs are
estimated for τ = 0.8 disaggregating the sandhoppers data taking into account the
categories of variables specie, sex, time of day and month of year. As consequence, a
total of 24 set estimators are determined, numbered E1 to E24. Variables combinations
yielding this group classification are presented in Table 7 in Appendix A.

Note that the estimated HDRs correspond to the largest modes of the orientation
distributions. Hausdorff distances between the boundaries of these 24 sets are able to
establish the degree of dissimilarity of HDRs. In general, large distances between the
boundaries of two sets indicate the existence of modes in different directions. If the
categories of all variables with the exception of one are fixed, it is possible to check
if the different values of the non-fixing variable has some influence in sandhoppers
orientation through the comparisonof the estimatedHDRs.Theupper triangularmatrix
in Table 6 contains the Hausdorff distances (defined from ρ1) between boundaries. The
largest distances are represented in blue color. Grey color is used in order to depict the
next largest values. Furthermore, Table 6 (top) contains some of the estimated HDRs
that present the largest distances.
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In particular, Hausdorff distance between regions 5 and 11 is equal to 1.91 (close
to 2, the maximum value of Hausdorff distance). According to Table 7, the variable
configuration 5 corresponds to the largest orientation modes for females of the specie
Talitrus saltator when the orientation is measure in noon during October. Region 11
refers to same measurements taken in April. Therefore, the month can be seen as
variable that has influence on the orientation for sandhoppers.

Hausdorff distance between regions 5 and 6 is equal to 1.93. According to Table
7, set 6 also corresponds to the HDR for females of the specie Talitrus saltator but,
in this case, when the orientation is registered in morning during October. Then, the
moment of the day also seems a factor with influence on the sandhoppers behavior.

Several cells in Table 6 are represented in pink color. All of them corresponds to
considerable large values of distances (larger than 1.00) and they are used to analyze
briefly the influence of each of the variables in the dataset. Under the same values of
the rest of variables Talitrus saltator and Talorchestia brito present different behaviors.
For instance, distances between sets 5 and 17 or 3 and 15 correspond to this situation.
Sets 5 and 17 can be compared using their representations in Table 6 (top).

The importance of the sex variable for the specie Talitrus saltator can be also
seen considering the Hausdorff distances of the sets 2 and 5, 3 and 6 or 18 and 15.
According to images in Table 6, these sets present their largest modes in completely
different directions. Note that the role of the variable month is clearly remarkable.
The relatively high values of the distances between sets 1 and 7 and 6 and 12 or 14
and 20 for the species Talitrus saltator and Talorchestia brito also corresponds to the
existence of modes in different directions. Finally, the importance of the moment of
the day for the Talitrus saltator can be studied through the distances between sets 4
and 5 or 4 and 6. Remark that set 4 has two connected components while set 5 only
presents one.

Finally, the analysis of Hausdorff distances for the two species of sandhoppers
shows that the median of the Talitrus saltator in Hausdorff distance is 0.76, clearly
bigger than the median of Talorchestia brito that is equal to 0.52. Therefore, Talitrus
saltator presents more differentiated orientations, depending on the time of day, period
of year and sex, with respect to Talorchestia brito. Therefore, conclusions in Scapini
et al. (2002) are corroborated from this perspective.

5.2 Earthquakes distribution on Earth

According to the theory of plate tectonics, Earth is an active planet. Its surface is
composed of about 15 individual plates that move and interact, constantly changing
and reshaping Earth’s outer layer. These movements are usually the main cause of vol-
canoes and earthquakes. Seismologists have related these natural phenomena to the
boundaries of tectonic plates because they tend to occur there, see Selley et al. (2004).
In fact, the concentration of earthquake epicenters traces the filamentary network of
fault lines and, consequently, they could be analyzed alternatively from the perspective
of nonparametric filamentary structure estimation (see, for instance, Genovese et al.
2012). Moreover, tectonic hazards can provoque important damages (destroy build-
ings, infrastructures or even cause deaths). Therefore, it is important to detect which
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Fig. 14 Contours of HDRs for τ1 = 0.1, τ2 = 0.3, τ3 = 0.5, τ4 = 0.7 and τ5 = 0.9 obtained from the
sample of world earthquakes registered between October 2004 and April 2020

areas are specially risky. As an illustration, the recent world earthquakes distribution
is analyzed next through HDRs estimation.

Figure 14 shows themargins of the tectonic plates (grey color) and the geographical
coordinates (red points) of a total of 272 medium and strong earthquakes registered
between 1th October 2004 and 9th April 2020 already introduced in Sect. 1.1. Note
that most of events are exactly located on the plates boundaries.

Ourmain goal is to detect which areas are really problematic nowadays. In Sect. 1.1,
we show that the largest mode is located on the Southeast Europe considering a value
of τ = 0.8. However, a more general view on earthquakes distribution could be
obtained if more HDRs are reconstructed for a range of values of τ . Specifically,
they were estimated choosing τ1 = 0.1, τ2 = 0.3, τ3 = 0.5, τ4 = 0.7 and τ5 =
0.9. The bandwidth parameter used is the proposed in García-Portugués (2013). The
corresponding contours are also represented in Fig. 14 using blue colors. An interactive
representation of these HDRs can be seen in Appendix D.

The two smallest contours (dark blue colors) corresponds to density regions with
probability at least 1− τ5 = 0.1 and 1− τ4 = 0.3, respectively. Therefore, they match
with the greatest modes of earthquakes world distribution and they identify the more
risky parts of the world. They are located on Europe. Concretely, on the boundaries
intersection for the Eurasian and African Plates. Note that the second of these regions
even includes the frontier of the Arabian Plate. Contours for τ2 = 0.3 and τ3 = 0.5
are related to Indo-Australian Plate and margins of Philippine Sea and Pacific Plates
appears when τ1 = 0.1.

As for America, the most problematic area is detected in Central America. Con-
cretely, it is mainly located on the frontiers of Cocos, Nazca and Caribbean Plates.
According to the contours shown, this region belongs to the zone of the world where
the 70% (1−τ2%) of earthquakes are registered. If τ1 = 0.1 is considered then Pacific,
North and South American plates appears as risky areas.
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6 Conclusions and discussion

The main goals of this work are to extend the definition of HDRs for directional
data and propose a plug-in estimator based on a new bootstrap bandwidth selector
that is focused on HDRs reconstruction. The route designed to reach this goal can
be summarized as follows: (1) Extending the definition of HDRs for directional data,
(2) proposing general HDRs plug-in estimators and two different procedures for esti-
mating confidence regions, (3) introducing the first specific selector of the bandwidth
parameter for directional HDRs reconstruction, (4) studying the practical behavior of
the plug-in estimators (using the new selector and other classical directional band-
widths not specifically designed for HDR reconstruction) and (5) applying the plug-in
reconstruction of HDRs to the real data on sandhoppers orientation and earthquakes.

Some further research on the proposed estimator and some natural extensions of
this work are discussed. The performance of the procedures for estimating the HDRs
confidence regions should be compared, for instance, through simulations. Addition-
ally, consistency results on the proposed HDR estimator and the bootstrap bandwidth
selector could be explored following the scheme in Cadre et al. (2009). Regarding
the procedure for bandwidth selection, there are two natural extensions. Firstly, as it
has been mentioned along the paper, other distances may be used. Secondly, the con-
sideration of the kernel density estimates proposed in Di Marzio et al. (2011) (torus)
and García-Portugués et al. (2013) (cylinder) enables the adaptation of our proposal
to these settings.

Note also that in the Introduction, we refer to the notion of cluster as the number of
connected components of the probability density. With this view in mind, an estimator
of the number of directional clusters can be given by the number of connected compo-
nents of the HDRs plug-in estimator. In addition, (two or more) directional densities
could be also compared using the ideas explored in this work: we may compare the
discrepancy between directional HDRs estimations, for instance, measuring distances
between boundaries. The simple geometric structure of estimators could be used to
compute the procedure and calibrate the test using re-sampling schemes.

Finally, earthquakes on Earth could be analyzed following alternative approaches.
Note that contour lines in Fig. 14 do not clearly follow the geometry of tectonic plates.
A possible cause of this behavior is that earthquakes occur very close to the bound-
ary of the density support (that is, the frontiers of the tectonic plates) and this issue
may produce a bias in the estimator. For manifolds with known boundaries, Theorem
3.1 in Berry and Sauer (2017) provides a consistent estimate of the density both in
the interior and the frontier, reducing the bias for density evaluations closed to the
boundaries. Since the concentration of earthquakes epicenters traces the filamentary
network of fault lines, following (Genovese et al. 2012), the performance of nonpara-
metric filament estimators should be also checked for further insight in this problem.
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A Further details on the datasets

A.1 Levels to the estimated HDRs disaggregating the sandhoppers variables

The orientation of two sandhoppers species (Talitrus saltator and Talorchestia brito) is
analyzed in Scapini et al. (2002). The experiment was carried out on the exposed non-
tidal sand of Zouara beach located in the Tunisian northwestern coast. Apart from
the specie and the orientation angles, this dataset contains information about other
variables such as sex (male, female), month (April, October) and moment of the day
(morning, afternoon and noon) when the experiment was done. We refer to Scapini
et al. (2002) and Marchetti and Scapini (2003) for further details on the dataset and
the experimental design.

Table 7 contains the associated levels to the 24 estimated HDRs when variables are
disaggregated.

Table 7 Associated levels to the 24 estimated HDRs

Variables Males Females

levels Afternoon Noon Morning Afternoon Noon Morning

Talitrus saltator October E1 E2 E3 E4 E5 E6

April E7 E8 E9 E10 E11 E12

Talorchestia brito October E13 E14 E15 E16 E17 E18

April E19 E20 E21 E22 E23 E24
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A.2 Interactive representation of HDRs for eathquakes on Earth

An interactive representation of HDRs contours for earthquakes around the world is
contained in the supplementary material.

B Simulated spherical models

The circular models considered in the Simulation Study correspond to models 5, 6,
7, 8, 10, 11, 16, 19 and 20 in Oliveira et al. (2012). The spherical models have been
constructed as mixtures of vonMises-Fisher distributions. Specifically, the vonMises-
Fisher density is given by

KvM (x;μ; κ) = Cd(κ) exp{κxTμ}, with Cd(κ) = κ
d−1
2

(2π)
d+1
2 I d−1

2
(κ)

where μ ∈ Sd−1 is the directional mean, κ > 0 the concentration parameter around
the mean, T stands for the transpose operator and Ip is the modified Bessel function
of order p, given by

Ip(z) = ( z2 )
p

π1/2�(p + 1/2)

∫ 1

−1
(1 − t2)p−1/2eztdt

where �(p) = ∫ ∞
0 x p−1e−xdx, with p > −1.

The spherical models S1 to S9 are obtained as mixtures, given by:

fS =
M∑

m=1

πmKvM (x;μm; κm), πm ≥ 0,
M∑

m=1

πm = 1.

The combination of mean and concentration parameters, as well as the weights πm

considered are specified in Table 8.

Table 8 Parameters for the mixtures of von Mises-Fisher spherical distributions S1 to S9 used in the
Simulation Study

Model μ κ Weights

S1 (0, 0, 1) 10 1

S2 (0, 0, 1); (0, 0, −1) 1; 1 1/2; 1/2

S3 (0, 0, 1); (0, 0, −1) 10; 1 1/2; 1/2

S4 (0, 0, 1); (0, 1/
√
2, 1/

√
2) 10; 10 1/2; 1/2

S5 (0, 0, 1); (0, 1/
√
2, 1/

√
2) 10; 10 2/5; 3/5

S6 (0, 0, 1); (0, 1/
√
2, 1/

√
2) 10; 5 1/5; 4/5

S7 (0, 0, 1); (0, 1, 0); (1, 0, 0) 5; 5; 5 1/3; 1/3; 1/3

S8 (0, 0, 1); (0, 1, 0); (1, 0, 0) 5; 5; 5 2/3; 1/6; 1/6

S9 (0, 0, 1); (0, 1/
√
2, 1/

√
2); (0, 1, 0) 10; 10; 10 1/3; 1/3; 1/3
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C Additional simulation results

C.1 Circular HDRs estimation

Tables 9 and 10 show the results for τ = 0.2 (for n = 500 and n = 1000, respectively).
In this case, h1 (being a competitive selector in all the scenarios) is the best one for
models C3 and C5 (with n = 1000). Note that h2 presents a poor behavior for models
C3, C6, C7, C8 and C9, and h6 performance is also unsatisfactory for models C5 and
C9 (n = 500), although it improves with sample size.

Tables 11 and 12 contain the results obtained for τ = 0.8 when n = 500 and
n = 1000, respectively. According to Table 12, h1 is the best selector for five models
(C2, C6, C7, C8 and C9). It is clear that the new selector improves its results when
large values of τ are considered and, therefore, largest modes are identified.

Figure 15 shows the violin plots of Hausdorff errors obtained for some of the
simulation models when τ = 0.2 (n = 1000). If τ = 0.2, h2 is the selector that
presents a worst behavior for models C3 and C6. Furthermore, its variance is always
specially large.

Table 9 Means (M) and standard deviations (SD) of 250 errors in Hausdorff distance for τ = 0.2, n = 500
and B = 200

C1 C2 C3 C4 C5

M SD M SD M SD M SD M SD

h1 0.086 0.064 0.070 0.071 0.089 0.037 0.084 0.031 0.086 0.053

h2 0.067 0.039 0.049 0.032 1.443 0.309 0.099 0.038 0.206 0.153

h3 0.094 0.060 0.065 0.059 0.090 0.036 0.085 0.031 0.081 0.053

h4 0.075 0.042 0.051 0.036 0.090 0.036 0.085 0.031 0.097 0.072

h5 0.075 0.041 0.051 0.036 0.091 0.036 0.084 0.031 0.190 0.150

h6 0.093 0.058 0.049 0.032 0.087 0.033 0.081 0.031 0.358 0.110

C6 C7 C8 C9

M SD M SD M SD M SD

h1 0.098 0.038 0.081 0.026 0.154 0.098 0.145 0.065

h2 1.786 0.110 1.812 0.064 0.251 0.094 1.758 0.115

h3 0.100 0.038 0.084 0.027 0.153 0.093 0.142 0.063

h4 0.099 0.038 0.081 0.025 0.128 0.067 0.131 0.049

h5 0.100 0.038 0.081 0.025 0.128 0.067 0.131 0.049

h6 0.097 0.037 0.082 0.026 0.156 0.091 1.686 0.372
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Table 10 Means (M) and standard deviations (SD) of 250 errors in Hausdorff distance for τ = 0.2,
n = 1000 and B = 200

C1 C2 C3 C4 C5

M SD M SD M SD M SD M SD

h1 0.058 0.040 0.040 0.034 0.061 0.025 0.058 0.024 0.060 0.028

h2 0.049 0.027 0.036 0.021 1.428 0.334 0.066 0.024 0.097 0.066

h3 0.059 0.039 0.037 0.028 0.063 0.024 0.058 0.025 0.061 0.024

h4 0.053 0.028 0.036 0.021 0.063 0.024 0.057 0.024 0.077 0.037

h5 0.053 0.028 0.036 0.021 0.063 0.024 0.056 0.023 0.083 0.052

h6 0.059 0.039 0.035 0.020 0.061 0.024 0.057 0.024 0.174 0.148

C6 C7 C8 C9

M SD M SD M SD M SD

h1 0.072 0.028 0.057 0.016 0.101 0.060 0.115 0.042

h2 1.798 0.106 1.820 0.057 0.179 0.047 1.759 0.118

h3 0.073 0.028 0.057 0.016 0.097 0.060 0.110 0.044

h4 0.072 0.028 0.056 0.016 0.091 0.043 0.114 0.041

h5 0.072 0.028 0.056 0.016 0.091 0.043 0.114 0.041

h6 0.071 0.028 0.057 0.016 0.107 0.038 0.111 0.042

Table 11 Means (M) and standard deviations (SD) of 250 errors in Hausdorff distance for τ = 0.8, n = 500
and B = 200

C1 C2 C3 C4 C5

M SD M SD M SD M SD M SD

h1 0.022 0.014 0.151 0.108 0.691 0.812 0.610 0.679 0.079 0.075

h2 0.020 0.013 0.184 0.063 1.849 0.282 0.905 0.756 0.058 0.036

h3 0.022 0.014 0.141 0.106 0.705 0.835 0.635 0.701 0.088 0.073

h4 0.019 0.013 0.155 0.081 0.685 0.823 0.634 0.700 0.070 0.045

h5 0.019 0.013 0.157 0.081 0.726 0.844 0.650 0.709 0.061 0.041

h6 0.022 0.014 0.184 0.060 0.784 0.873 0.673 0.721 0.051 0.031

C6 C7 C8 C9

M SD M SD M SD M SD

h1 1.189 0.664 1.076 0.333 0.353 0.243 0.837 0.436

h2 1.747 0.059 1.820 0.068 0.356 0.060 1.809 0.188

h3 1.246 0.644 1.143 0.236 0.342 0.247 0.983 0.363

h4 1.269 0.632 1.171 0.262 0.404 0.195 1.101 0.317

h5 1.246 0.644 1.171 0.262 0.407 0.186 1.101 0.317

h6 1.310 0.606 1.162 0.251 0.396 0.096 1.752 0.251
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Table 12 Means (M) and standard deviations (SD) of 250 errors in Hausdorff distance for τ = 0.8,
n = 1000 and B = 200

C1 C2 C3 C4 C5

M SD M SD M SD M SD M SD

h1 0.015 0.012 0.127 0.075 0.472 0.678 0.441 0.594 0.056 0.038

h2 0.013 0.011 0.157 0.042 1.878 0.231 0.561 0.707 0.045 0.029

h3 0.016 0.012 0.120 0.070 0.461 0.692 0.410 0.588 0.064 0.041

h4 0.013 0.011 0.146 0.046 0.467 0.699 0.412 0.593 0.050 0.032

h5 0.013 0.011 0.146 0.046 0.447 0.680 0.433 0.614 0.050 0.032

h6 0.016 0.012 0.136 0.050 0.460 0.702 0.431 0.613 0.043 0.027

C6 C7 C8 C9

M SD M SD M SD M SD

h1 0.983 0.721 1.048 0.30 0.252 0.220 0.708 0.416

h2 1.746 0.058 1.825 0.063 0.341 0.051 1.810 0.188

h3 1.011 0.724 1.086 0.242 0.257 0.219 0.897 0.334

h4 1.004 0.727 1.112 0.241 0.360 0.176 1.038 0.199

h5 0.998 0.728 1.112 0.241 0.360 0.176 1.038 0.199

h6 1.025 0.724 1.086 0.242 0.396 0.077 0.957 0.289

Fig. 15 Violin plots of Hausdorff errors for models C3, C5, C6 and C8 for τ = 0.2 and n = 1000. Note
that due to the behaviour of h2, the scales of these figures are different

C.2 Spherical HDRs estimation

Tables 13 and 14 show the means and the standard deviations of the 200 estimation
errors obtained when τ = 0.2 from samples of sizes n = 1500 and n = 2500,
respectively. Bold numbers correspond to the lowest mean errors obtained for each
density. Except for model S8, h1 is the best or shows a competitive performance.

Tables 15 and 16 show the means and the standard deviations of the 200 estimation
errors obtained when τ = 0.8 from samples of size n = 1500 and n = 2500,
respectively. Although results for S7 are not good when h1 is considered, this selector
is again the best or competitive with h5. As for h7, results are remarkably poor in S2
and S6.

Figure 16 contains the violin plots of Hausdorff errors for models S3, S4, S6 and S9
when τ = 0.2 and n = 2500. Note that he performance of selector h1 is considerably
good.
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Table 13 Means (M) and standard deviations (SD) of 200 errors in Hausdorff distance for τ = 0.2,
n = 1500 and B = 50

S1 S2 S3 S4 S5

M SD M SD M SD M SD M SD

h1 0.033 0.010 0.757 0.261 0.445 0.168 0.065 0.014 0.074 0.018

h5 0.052 0.012 0.764 0.238 0.598 0.145 0.072 0.018 0.078 0.020

h7 0.063 0.013 1.224 0.243 0.371 0.072 0.073 0.017 0.078 0.019

S6 S7 S8 S9

M SD M SD M SD M SD

h1 0.075 0.019 0.748 0.241 0.302 0.118 0.081 0.017

h5 0.080 0.022 0.651 0.335 0.275 0.082 0.088 0.018

h7 0.089 0.023 0.921 0.199 0.263 0.087 0.079 0.016

Table 14 Means (M) and standard deviations (SD) of 200 errors in Hausdorff distance for τ = 0.2,
n = 2500 and B = 50

S1 S2 S3 S4 S5

M SD M SD M SD M SD M SD

h1 0.029 0.009 0.650 0.212 0.340 0.089 0.059 0.013 0.061 0.014

h5 0.044 0.010 0.648 0.199 0.484 0.097 0.063 0.014 0.067 0.015

h7 0.053 0.011 1.137 0.245 0.306 0.053 0.062 0.014 0.067 0.016

S6 S7 S8 S9

M SD M SD M SD M SD

h1 0.064 0.016 0.667 0.272 0.247 0.099 0.070 0.015

h5 0.071 0.018 0.556 0.336 0.230 0.073 0.075 0.016

h7 0.079 0.017 0.889 0.229 0.218 0.073 0.069 0.014

Table 15 Means (M) and standard deviations (SD) of 200 errors in Hausdorff distance for τ = 0.8,
n = 1500 and B = 50

S1 S2 S3 S4 S5

M SD M SD M SD M SD M SD

h1 0.030 0.012 0.629 0.359 0.040 0.014 0.138 0.042 0.132 0.078

h5 0.054 0.018 0.537 0.295 0.053 0.018 0.134 0.041 0.154 0.101

h7 0.068 0.023 0.915 0.533 0.040 0.012 0.134 0.041 0.155 0.102

S6 S7 S8 S9

M SD M SD M SD M SD

h1 0.089 0.023 0.462 0.231 0.063 0.021 0.243 0.109

h5 0.110 0.033 0.212 0.143 0.083 0.025 0.233 0.123

h7 0.128 0.039 0.195 0.160 0.073 0.022 0.233 0.124
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Table 16 Means (M) and standard deviations (SD) of 200 errors in Hausdorff distance for τ = 0.8,
n = 2500 and B = 50

S1 S2 S3 S4 S5

M SD M SD M SD M SD M SD

h1 0.023 0.008 0.403 0.171 0.031 0.008 0.122 0.033 0.115 0.073

h5 0.043 0.013 0.399 0.128 0.047 0.011 0.117 0.033 0.133 0.097

h7 0.054 0.017 0.670 0.475 0.030 0.009 0.117 0.032 0.135 0.098

S6 S7 S8 S9

M SD M SD M SD M SD

h1 0.081 0.023 0.234 0.200 0.051 0.016 0.201 0.086

h5 0.096 0.032 0.166 0.056 0.066 0.018 0.186 0.090

h7 0.112 0.037 0.140 0.047 0.059 0.017 0.194 0.110

Fig. 16 Violin plots of Hausdorff errors for models S3 and S4, S6 and S9 when τ = 0.2 and n = 2500.
Note that the scales of these figures are slightly different

D Some details on the directional bandwidth selectors

Webriefly revise in this section some bandwidth selectionmethods designed for kernel
density estimation. Although these methods do not focus on HDRs, but on the recon-
struction of the whole density curve, it may be argued that they could also be used
for constructing the proposed plug-in estimator. The performance of our proposal is
compared in all the simulated scenarios with different bandwidth selectors for circular
and spherical data.

As in the Euclidean setting, most used techniques for selecting h are based on the
minimization of some error criteria that quantify the accuracy of the kernel density
estimator.One of themost simple errors to be considered is themean integrated squared
error that can be written as follows:

MI SE(h) = E

[∫

Sd−1
( fn(x) − f (x))2ωd(dx)

]
, (11)

where ωd denotes the Lebesgue in Sd−1. Then, a possibility is to search for the band-
width that minimizes (11). However, the asymptotic version of MI SE , AMI SE , is
more commonly used in the literature. A rule of thumb proposed in Taylor (2008)
adapts the idea in Silverman (1986) in kernel linear density estimation to the circu-
lar setting. The resulting plug-in selector assumes that the data follow a von Mises
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distribution to determine the AMI SE . The bandwidth is chosen by first obtaining an
estimation κ̂ of the concentration parameter κ in the reference density (for example,
by maximum likelihood) through the formula

h2 =
[
4π1/2I0(κ̂)2

3κ̂2I2(2κ̂)n

]1/5
.

Remark that the parametrization in Taylor (2008) has been adapted to the context of
the estimator (4) by denoting by h the inverse of the squared concentration parameter
employed in his paper. The poor performance of this rule is sometimes due to the
non robust estimation by maximum likelihood of the concentration parameter. An
alternative and robustified estimation procedure is considered in Oliveira et al. (2013).

A new selector also devoted to the circular case is established in Oliveira et al.
(2012). It improves the performance of the Taylor’s proposal allowing for more flex-
ibility in the reference density, considering a mixture of von Mises. This selector is
mainly based on two elements. First, the AMI SE expansion derived in Di Marzio
et al. (2009) for the circular kernel density estimator by the use of Fourier expansions
of the circular kernels. This expression has the following form when the kernel is a
circular von Mises (the estimator is equivalent to consider L(r) = e−r and h as the
inverse of the squared concentration parameter in (4):

AMI SE(h) = 1

16

[
1 − I2(h−1/2)

I0(h−1/2)

]2 ∫ 2π

0
f

′′
(θ)2dθ + I0(2h−1/2)

2nπI0(h−1/2)2
. (12)

The second element is the Expectation–Maximization (EM) algorithm in Banerjee
et al. (2005) for fitting mixtures of directional von Mises. The selector, that is denoted
by h3, proceeds as follows: first, apply the EM algorithm to fit mixtures with different
number of components; then, choose the fitted mixture with the lowest AIC. Finally,
compute the curvature term in (12) using the fitted mixture and seek for the h that
minimizes this expression. This value of h is denoted by h3.

Of course, plug-in rules are not the only alternative to smoothing parameter selec-
tion. Some other data-driven directional procedures were already proposed in Hall
et al. (1987) using cross-validation ideas. Specifically, Least Squares Cross-Validation
(LSCV) and Likelihood Cross-Validation (LCV) bandwidth are introduced, arising
as the minimizers of the cross-validated estimates of the squared error loss and the
Kullback–Leibler loss, respectively. The selectors have the following expressions:

h4 = argmax
h>0

2n−1
n∑

i=1

f −i
n (Xi ) −

∫

Sd−1
fn(x)

2ωq(dx)

and

h5 = argmax
h>0

n∑

i=1

log f −i
n (Xi ),

where f −i
n represents the kernel estimator computed without the i−th observation.
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Abootstrap bandwidth selection procedure for data lying on a d−dimensional torus
is proposed in Di Marzio et al. (2011). If a vonMises kernel is used, then the bootstrap
MISE has a closed expression. Then, h6 is selected as the value that minimizes

∫

S1
EB

[
fn

∗(X) − fn(X)
]2

ωd(dx)

where EB denotes the bootstrap expectation with respect to random samples
{X∗

1, . . . , X
∗
n} generated from fn(X). A common problem for small samples is that a

local minimum may be chosen, as pointed out by Oliveira et al. (2012).
Apart from existing cross-validation procedures in the directional setting, García-

Portugués (2013) derives a plug-in directional analogue to the rule of thumb in
Silverman (1986) using the properties of the vonMises density.Moreover, it is the opti-
mal AMI SE bandwidth for normal reference density and normal kernel. Concretely,
if the von Mises kernel is considered and κ is estimated by maximum likelihood,

h7 =

⎧
⎪⎨

⎪⎩

[
4π1/2I0(k̂)2

k̂[I1(2k̂)+3k̂I2(2k̂)]n
]1/5

in S1
[

8 sinh2(k̂)
k̂[(1+4k̂2) sinh(2k̂)−2k̂ cosh 2k̂]n

]1/6
in S2.
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