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Abstract
In this paper, an ordinal multilevel latent Markov model based on separate random
effects is proposed. In detail, two distinct second-level discrete effects are considered
in the model, one affecting the initial probability vector and the other affecting the
transition probability matrix of the first-level ordinal latent Markov process. To model
these separate effects, we consider a bi-dimensional mixture specification that allows
to avoid unverifiable assumptions on the random effect distribution and to derive a
two-way clustering of second-level units. Starting from a general model where the
two random effects are dependent, we also obtain the independence model as a special
case. The proposal is applied to data on the physical health status of a sample of elderly
residents grouped into nursing homes. A simulation study assessing the performance
of the proposal is also included.

Keywords Latent Markov model · Multilevel modeling · Nursing home · Random
effect separation

Mathematics Subject Classification 62H30

1 Introduction

Latent Markov models are a well-established tool for the analysis of longitudinal cat-
egorical data. In particular, this class of models is well tailored to settings where some
repeatedly measured categorical variables are likely to be simultaneously influenced
by an underlying latent trait of interest, which is assumed to be also a categorical
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variable that probabilistically evolves over time according to a first-order Markov
chain (Wiggins 1973; Bartolucci et al. 2013).

In the last decades, numerous extensions of the basic latent Markov model have
been proposed to incorporate additionalmodel features. These includemultilevelmod-
eling, which is in order when sample units are grouped and the number of groups is
considerable. Examples of applications ofmultilevel latentMarkovmodels (MLMMs)
concern longitudinal datasets of individuals grouped in households (e.g., Koukounari
et al. 2013), students in classes (e.g., Bartolucci et al. 2011) or workers in firms (e.g.,
Bartolucci and Lupparelli 2016). Hereafter, we will refer to such groups as to second-
level units (SLUs). In these settings, the multilevel structure of the data is typically
accounted for by introducing a second-level latent variable affecting the observed
responses coming from the same group—either directly or through the first-level latent
Markov chain—via a set of random effects. This approach is somewhat related to other
proposals, which also make use of continuous or discrete random effects in latent
Markov models, though not in a formal multilevel setting (Altman 2007; Maruotti and
Rydén 2009; Maruotti and Rocci 2012; Marino and Alfò 2016; Marino et al. 2018).

In the multilevel approaches mentioned before, the second-level latent variable is
discrete with a fixed number of states, resulting in a clustering of SLUs. In particular,
in Bartolucci and Lupparelli (2016) such a clustering structure is assumed to be time-
varying and to directly affect the distribution of the observed responses, together with
some covariates and the first-level latent process. In the other multilevel approaches,
SLU clustering is assumed to be time-invariant and is considered as a determinant—
possibly with some covariates—of the first-level latent process, which in turn has a
probabilistic influence on the observed categorical variables. In this case, the first-
level process can be interpreted as a (possibly multidimensional) underlying trait the
outcome variables are a measure of.

When SLU clustering is assumed to be time-invariant, each state of the second-
level latent variable is associated to a multivariate support point occurring with a
certain probability. In detail, every support point identifies a global effect on all the
components of the first-level Markovian process, meaning that there is no separation,
for instance, between the effect on the initial probabilities and that on the transition
probabilities of the Markov chain. This model feature might represent an important
limitation when SLU effects on initial and transition probabilities have a substan-
tially different interpretation and a two-way classification of SLUs according to these
different dimensions is therefore needed.

A motivating example is represented by longitudinal datasets collecting health
indicators for elderly residents grouped in Nursing Homes (NHs). In this context, the
first-level latent trait may be an ordinal one representing one domain of residents’
overall health status and the main interest resides in detecting NH effects on the
transition probabilities. Indeed, these are typically associated to the quality of the
health care service they provide. Conversely, NH effects on the initial probabilities
usually reflect admission policies, since NHs may have different tendencies to admit
residents in more severe health conditions. With reference to this problem, some
recently proposed solutions rely on modeling the transition probabilities as a function
of fixedNH effects (Bartolucci et al. 2009) or introducing a bivariate Gaussian second-
level latent variable (Montanari et al. 2018). Both these approaches allow to obtain an
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Two-way clustering of SLUs in ordinal MLMMs 459

NH ranking along the dimension of the SLU effects on transition probabilities only.
However, the former is likely to result in poor effect estimation when the number
of NHs is high or some NHs have just a few residents, while the latter relies on the
Gaussianity assumption for the second-level latent effects, which is not testable and
requires a remarkable computational effort to approximate integrals that do not admit
a closed-form solution.

In this paper, wemodify the setting inMontanari et al. (2018) introducing a discrete
(rather than continuous) bivariate random effect. Such an approach has a twofold aim:
(i) avoiding unverifiable parametric assumptions on the second-level latent variable;
(ii) obtaining a direct two-way clustering of SLUs. In this respect, an ordinal two-
way MLMM is introduced. This is based on the specification of a joint probability
matrix assigning weights to the discrete support points of a bivariate second-level
latent variable. When the two components of this latent variable are independent, the
entries of such a joint probability matrix reduce to the product of the corresponding
marginal probabilities, leading to an independence model. That is, the latter is nested
into the proposed ordinal two-way MLMM, so that standard theory can be applied in
a hypothesis testing perspective.

The paper is organized as follows. In Sect. 2, we set the notation and formulate the
model, reporting also the details for its estimation procedure (Sect. 2.2). Moreover, we
introduce the independence model (Sect. 2.3). In Sect. 3, we reconsider the motivating
example described above andfit the proposed two-wayMLMMto a longitudinal health
care dataset referring to residents hosted in theNHs ofUmbria, a region of central Italy.
In Sect. 4, we report evidence from a small simulation study conducted to evaluate the
model parameter estimators in a setting similar to the one considered in the empirical
application, while in Sect. 5 some concluding remarks are given.

2 The two-wayMLMM

2.1 Themodel

Let Y (t)
hi = (Y (t)

hi1, . . . ,Y
(t)
hi J ) denote the vector containing the J categorical response

variables for the i-th unit in the h-th SLU at time occasion t . Every item can have
a different number of response categories labelled from 1 to c j , with j = 1, . . . , J .
Each of the H SLUs has its own number of units nh , so that the overall sample size is
n = ∑H

h=1 nh . The number of measurement occasions Thi ≤ T is unit-specific, with
T denoting the maximum number of occasions. Response vectors can be collected
across time, i.e. Y hi = (Y (1)

hi , . . . ,Y (Thi )
hi ), and across first-level units, i.e. Y h =

(Y h1, . . . ,Y hnh ). The same notation applies to vectors of individual covariates, that

we denote by X(t)
hi .

For each unit, theMarkovian latent process V hi = (V (1)
hi , . . . , V (Thi )

hi ) is a collection
of Thi categorical unobserved variables with kv latent states labelled from 1 to kv .
SLU random effects affecting such a process are assumed to be time-invariant and
determined by a bivariate latent variable denoted by Zh = (Uh,Wh). Here,Uh affects
the initial probabilities, whileWh affects the transition probabilities. Formally,Uh and
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Wh represent two separate latent variables defined on ku and kw support points; these
are denoted by ψu (u = 1, . . . , ku) and ξw (w = 1, . . . , kw), respectively.

To formalize the two-way SLU clustering procedure, we denote by SLU-uw (u =
1, . . . , ku, w = 1, . . . , kw) the group of SLUs sharing the u-th level of Uh and the
w-th level of Wh . Every SLU belongs to the SLU-uw group with probability

τuw = P(Uh = ψu,Wh = ξw), u = 1, . . . , ku, w = 1, . . . , kw.

To emphasize the two-way nature of our clustering approach, the above joint proba-
bilities can be arranged in the probability matrix

T =
⎛

⎜
⎝

τ11 . . . τ1kw

...
. . .

...

τku1 . . . τkukw

⎞

⎟
⎠ ,

whose rows and columns sum to

τu. =
kw∑

w=1

τuw u = 1, . . . , ku and τ.w =
ku∑

u=1

τuw w = 1, . . . , kw

respectively. These marginals are collected in the vectors τ u. = (τ1., . . . , τku .) and
τ .w = (τ.1, . . . , τ.kw).

As typical in settings where the primary interest lies in modeling the latent trait,
we assume covariates and SLU latent variables to influence the individual Markovian
processes V hi but not the measurement model, that is, the model for the response
variables given the latent trait. Specifically, such a dependence structure leads to define
the initial probabilities

πhi (v|u) = P(V (1)
hi = v|X(1)

hi = x(1)
hi ,Uh = ψu),

the first-order transition probabilities

π
(t)
hi (v|v̄, w) = P(V (t)

hi = v|V (t−1)
hi = v̄, X (t)

hi = x(t)
hi ,Wh = ξw)

(t = 2, . . . , Thi ), and the conditional response probabilities

φ j yv = P(Y (t)
hi j = y|V (t)

hi = v)

( j = 1, . . . , J ; y = 1, . . . , c j ; v = 1, . . . , kv), that are time-invariant. The resulting
path diagram is depicted in Fig. 1 for a unit with Thi = 4measurement occasions. This
diagram highlights the random effect separation characterizing our two-way MLMM.
Indeed, Uh affects V (1)

hi only, whereas Wh affects all the other latent variables via its

effect on π
(t)
hi (v|v̄, w) (t = 2, . . . , Thi ).
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Fig. 1 Path diagram of the two-way MLMM for a unit with Thi = 4 measurement occasions

As mentioned in Sect. 1, we assume that the latent trait V (t)
hi is ordinal, with states

corresponding to increasing intensities of a certain attribute. In the presence of an
ordinal trait, a number of parametrizations for the initial and transition probabilities
can be adopted. These include, among others, the adjacent category, global and con-
tinuation logit parametrizations; see Bartolucci et al. (2013) for an overview. Here, for
the initial probabilities a global logit parametrization based on the proportional odds
model (McCullagh 1980) is used; that is,

log
πhi (v + 1|u) + · · · + πhi (kv|u)

πhi (1|u) + · · · + πhi (v|u)
= β0v + x(1)

hi β1 + ψu (1)

(u = 1, . . . , ku; v = 1, . . . , kv − 1). The parameter β0v in the equation above is
an intercept varying with the logit equations, ψu represents the effect due to SLU h
belonging to latent group u, while β1 is a vector of fixed regression coefficients related
to individual covariates. The global logit parametrization requires the components of
β0 = (β01, . . . , β0kv−1)

′ be non-increasing to ensure the cumulative probabilities are
non-decreasing. Further, to identify the model, we set ψ1 = 0 together with the order
constraints ψ1 ≤ · · · ≤ ψku .

With regard to the (kv × kv) transition probability matrices, we specify a global
logit model similar to the previous one; that is,

log
π

(t)
hi (v + 1|v̄, w) + · · · + π

(t)
hi (kv|v̄, w)

π
(t)
hi (1|v̄, w) + · · · + π

(t)
hi (v|v̄, w)

= γ0v̄ + γ1v + x(t)
hi γ 2 + ξw, (2)

with w = 1, . . . , kw, v̄ = 1, . . . , kv , v = 1, . . . , kv − 1 and t = 2, . . . , Thi .
Again, the components of γ 1 = (γ11, . . . , γ1kv−1)

′ must be non-increasing, whereas
γ 0 = (γ01, . . . , γ0kv )

′ is a vector of additive shifts introduced to diversify the transition
probability distributions among the rows of the transition matrices. No mathematical
constraints are posed on the elements of γ 0, apart from the necessary identifiabil-
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ity constraint γ01 = 0. The vector γ 2 is a time-invariant vector of fixed regression
coefficients—constant across logit equations—for the effect of individual-level covari-
ates, while ξw represents the effect due to SLU h belonging to latent group w. These
effects are also time-invariant and constant across logit equations, subject to the iden-
tifiability constraints ξ1 = 0 and ξ1 ≤ · · · ≤ ξkw . These order constraints, together
with those on the support points ofUh , ensure that the SLU-uw clusters are univocally
identified, tackling the well-known problem of label switching (Stephens 2000) at the
second level.

2.2 Two-stepmaximum likelihood estimation

The model log-likelihood can be written as

	(θ) =
H∑

h=1

log P(Y h = yh | Xh = xh), (3)

where θ is a vector collecting all the parameters of the model and

P(Y h = yh | Xh = xh) =
∑

vh

∑

zh

P(Y h = yh, V h = vh, Zh = zh | Xh = xh)

is obtained by summing over all the possible configurations of vh and zh . The logarithm
of each term in the summation above, that we denote by 	


h(θ), can be explicitly related
to the model parameters. In detail, given the model assumptions we have

	

h(θ) =

nh∑

i=1

Thi∑

t=1

J∑

j=1

kv∑

v=1

c∑

y=1

a(t)
hi (v) f (t)

hi j (y) logφ j yv

+
nh∑

i=1

kv∑

v=1

ku∑

u=1

a(1)
hi (v)ch(u) logπhi (v | u)

+
nh∑

i=1

Thi∑

t=2

kv∑

v=1

kv∑

v̄=1

kw∑

w=1

b(t)
hi (v, v̄)dh(w) logπ

(t)
hi (v | v̄, w)

+
ku∑

u=1

kw∑

w=1

eh(u, w) log τuw.

(4)

In the expression above, a number of binary indicator variables are present. Specif-
ically, a(t)

hi (v) takes value 1 if unit hi is in latent state v at time t , while b(t)
hi (v, v̄)

indicates whether the same unit is in latent state v at time t and in latent state v̄ at time
t − 1. Moreover, ch(u) and dh(w) indicate whether the h-th SLU belongs to the u-th
and w-th cluster formed with respect to the SLU effect on the initial and transition
probabilities, respectively, with eh(u, w) denoting the joint membership of the same
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SLU to these two clusters (i.e., to the SLU-uw group). Finally, f (t)
hi j (y) takes value 1

if at time t unit hi responds with category y at the j-th item.
Given the overall complexity of the proposed model, full maximum likelihood

(ML) methods are likely to be unfeasible or highly unstable (Di Mari et al. 2016).
Therefore, a two-step approach (Bartolucci et al. 2014) is undertaken. In the first step,
conditional response probabilities φ j yv (i.e., the measurement model) are estimated
by fitting a latent class (LC) model (Lazarsfeld and Henry 1968; Goodman 1974)
where all the individual records are pooled together. In the second step, ML esti-
mates of these conditional response probabilities, φ̂ j yv , are plugged through (4) in
the log-likelihood (3), which is then maximized with respect to the remaining model
parameters, θ	 (i.e., the latent model). The two-step method was proved to be con-
sistent (Bartolucci et al. 2014, 2015) and is less likely to suffer from the instability
issues mentioned above (Montanari and Pandolfi 2018).

At both steps, the log-likelihood maximization process is performed via an
Expectation-Maximization (EM) algorithm (Dempster et al. 1977). While EM esti-
mation of LC models is well-established and standard software is available for its
implementation (see Sect. 3.2), that of the latent model requires a more in-depth dis-
cussion due to the specifics of the two-way MLMM we have introduced. Formally,
taking the conditional response probability estimates as fixed, at the second step the
complete-data log-likelihood can be regarded as a function of θ	 only and written as

	̂
(θ	) =
H∑

h=1

	̂

h(θ	).

In the above expression, 	̂

h(θ	) is as in the right-hand side of (4) with φ̂ j yv in place of

φ j yv , while the binary indicator variables a(t)
hi (v), b(t)

hi (v, v̄), ch(u), dh(w), eh(u, w)

and f (t)
hi j (y) are unchanged. Since they refer to the components of the latent processes,

all these variables but f (t)
hi j (y) are not observed. The first stage of the EM algorithm

(E-step) consists in computing their conditional expectations given the observed data.
These are denoted by adding the hat symbol to the corresponding indicator variables
(e.g., â(t)

hi (v) in place of a(t)
hi (v)). In practice, the expressions for â(t)

hi (v), b̂(t)
hi (v, v̄),

ĉh(u), d̂h(w), and êh(u, w) reduce to a list of posterior probabilities, which is reported
in Appendix A. These are used in the following stage of the algorithm (M-step). At
this stage, the value of θ	 is updated according to a constrained maximization of the
expected second-step complete-data log-likelihood

E(	̂
(θ	) | Y = y, X = x) =
H∑

h=1

nh∑

i=1

Thi∑

t=1

J∑

j=1

kv∑

v=1

c∑

y=1

â(t)
hi (v) f (t)

hi (y) log φ̂ j yv

+
H∑

h=1

ku∑

u=1

ĉh(u)

nh∑

i=1

kv∑

v=1

â(1)
hi (v) logπhi (v | u)

+
H∑

h=1

kw∑

w=1

d̂h(w)

nh∑

i=1

Thi∑

t=2

kv∑

v=1

kv∑

v̄=1

b̂(t)
hi (v, v̄) logπ

(t)
hi (v | v̄, w)

+
H∑

h=1

ku∑

u=1

kw∑

w=1

êh(u, w) log τuw
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(where Y = (Y1, . . . ,Y H ) and X = (X1, . . . , XH )), which is performed in a way
such that all the order constraints due to the global logit parametrization (see Sect. 2.1)
as well as the probability constraint

∑ku
u=1

∑kw

w=1 τuw = 1 are met. The EM algorithm
alternates the E-step and the M-step until convergence. Notice that the expression
above directly involves the initial and transition probabilities. Thus, the present esti-
mation framework based on theEMalgorithm is valid regardless of the parametrization
used for these probabilities. However, parametrizations alternative to the global logit
might not require the aforementioned order constraints, that would be removed from
the M-step.

As typical in complex latent variable models, the EM solution might correspond to
a local maximum of the likelihood function rather than to the global one. A circum-
vention of this problem usually consists in performing multiple initializations of the
algorithm, with the number of runs being a multiple of the number of latent groups at
any unit level. In the two-step approach we undertake, this strategy has to be carried
out separately for the measurement and the latent model; see Appendix B for further
details in the context of our application in Sect. 3.

Once the ML estimate for the latent model parameter vector, θ̂	, is obtained, its
estimated variance-covariance matrix can be computed via the sandwich formula

̂Cov(θ̂	) = {−H(θ̂	)}−1S(θ̂	){−H(θ̂	)}−1 (5)

(White 1980; Royall 1986; see also Spagnoli et al. 2018). In the above equation,
denoting by sh(θ	) the independent contribution of the h-th SLU to the score function

s(θ	) = ∂	(θ	)

∂θ	

=
H∑

h=1

sh(θ	),

H(θ	) = ∂s(θ	)/∂θ ′
	 represents the Hessian information matrix while S(θ	) is given

by

S(θ	) =
H∑

h=1

sh(θ	){sh(θ	)}′.

In practice, H(θ	) is obtained by numerical derivation of the score s(θ	), whose
expression is reported, together with that of its components sh(θ	), in Appendix C.
Although it is known to be robust to some degree of model misspecification, it is
important to underline that the sandwich estimator in (5) ignores the sampling vari-
ability of the φ̂ j yv estimates, which are taken as fixed in place of the true φ j yv values
in its expression. In principle, this might lead to systematically underestimate the vari-
ances in the true variance-covariance matrix Cov(θ̂	); see Bakk and Kuha (2018) for
a related discussion and an adjusted variance estimator in the context of LC models.
However, this problem becomes negligible when an estimator with good finite-sample
properties is used at the first step. This seems to be the case in our setting, where the
first-step estimator of the φ j yv probabilities is based on a pooled LC model including
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all the available observations, which results in an increased sample size. An empirical
account of the first-step estimator performance is reported in the simulation study,
where the explored context is rather similar to the one considered in the empirical
application (see Sect. 4 for details).

Finally, it is worth to mention that within this estimation framework also the model
selection procedure consists of two phases. The first phase involves the choice of kv ,
that is, the number of latent states characterizing the first-level unit latent process
V hi . The second phase is about determining the value of the pair (ku, kw), that is,
the number of groups of second-level units formed across the two dimensions of the
proposed two-way MLMM.With regard to the empirical application considered here,
these two phases are addressed in Sects. 3.2 and 3.3.

2.3 The independencemodel

As mentioned in Sect. 1, a nice feature of the proposed MLMM is that it nests the
independence model. That is, it nests the model assuming independence among the
latent variables influencing the initial and the transition probabilities of the first-level
latent Markov chain, which allows the two SLU clustering procedures not to be influ-
enced from one another. In the path diagram of Fig. 1, this would result in deleting
the arrow connecting Uh and Wh .

As stated above, when Uh and Wh are independent, every joint probability τuw

reduces to the product of the corresponding marginals

τuw = τu. × τ.w. (6)

The estimation of model parameters may proceed as detailed in Sect. 2.2, by simply
replacing (6) in Eq. (3) (via (4)) and solving with respect to τu. and τ.w, under the
constraints

∑ku
u=1 τu. = ∑kw

w=1 τ.w = 1.
This result can be fruitfully employed also in a hypothesis testing perspective. To

this end, we start by defining the following logit transformation for the joint masses
τuw:

log
τuw

τku .τ.kw

= λI
u + λT

w + ζuw

(u = 1, . . . , ku − 1; w = 1, . . . , kw − 1), where

λI
u = log

τu.

τku .
, λT

w = log
τ.w

τ.kw

,

and

ζuw = log
τuw

τu.τ.w

.

The ζuw parameters directly provide a measure of the dependence between Uh and
Wh and are null when Eq. (6) holds (see, e.g., Spagnoli et al. 2018). In this sense,
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the independence model occurs when ζ = (ζ11, . . . , ζku−1,kw−1)
′ = 0. Defining the

system of hypotheses

{
H0 : ζ = 0
H1 : ζ �= 0,

standard Wald-type, score, or likelihood ratio test (LRT) statistics may be employed.
As regards the latter, we may compute

LRT = −2
{
	(θ̂0) − 	(θ̂1)

}
,

where 	(θ̂0) and 	(θ̂1) denote the likelihood values obtained at convergence of the
EM algorithm under H0 and H1, respectively. From standard theory, it is known that
all these statistics are asymptotically equivalent and follow a χ2 distribution with
(ku − 1) × (kw − 1) degrees of freedom under the null hypothesis.

3 Application to NH data

3.1 The LTCF dataset

The proposed two-way MLMM is used to analyze a longitudinal dataset collecting
information on the health status of elderly residents hosted in the NHs of Umbria, a
region of central Italy. Data are gathered within the Suite interRAI protocol (Carpenter
andHirdes 2013), an international system the regional government of Umbria has been
adhering to for many years. In detail, NH residents are administered the Long Term
Care Facilities (LTCF) questionnaire (Hirdes et al. 2008; Kim et al. 2015), which is
specifically designed to investigate their health conditions within these facilities.

For this application, we consider a set of n = 1548 residents, grouped in H = 43
NHs, whose first observation falls in the second semester of 2017. These residents are
then followed up for the years 2018 and 2019. According to the LTCF protocol, each
resident should be administered a questionnaire every six months and whenever a sig-
nificant change in their health status is acknowledged by the NH staff. For this reason,
we have collected all the available observations for each resident, removing those with
a subsequent one taken within seven days. In these cases, the second observations are
almost identical to those deleted, probably because they are just amendments rather
than actual new measurements. The resulting dataset comprises 5582 observations.
Notice that the rationale leading to the construction of such a dataset is somewhat
different from that in Montanari et al. (2018), where a panel dataset was obtained by
taking the observations that were closest to predetermined six-month spaced dates.

Although the LTCF questionnaire investigates many health domains (physical lim-
itations, psychological conditions, auditory and view sphere etc.), we here focus on a
specific section namedActivities of Daily Living (ADL). This section includes J = 10
ordinal response variables measuring resident difficulties in taking everyday actions
like walking, getting dressed or maintaining personal hygiene. All these items have
c j = c = 6 categories, with labels increasing with the experienced difficulty level.
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Table 1 Frequency distributions of the 5582 observations for theADL items; summary statistics for resident
age (years) and gender (1 = male) at baseline and for the distance from the previous observation (months,
t > 1); summary statistics for the number of residents and observations across the NHs

Activities of Daily Living Response category

1 2 3 4 5 6

1 Use of the shower stall/bath tub 0.015 0.083 0.109 0.207 0.157 0.428

2 Personal hygiene 0.037 0.109 0.107 0.207 0.146 0.395

3 Dressing (upper part) 0.057 0.126 0.123 0.205 0.131 0.359

4 Dressing (lower part) 0.049 0.105 0.093 0.200 0.149 0.403

5 Walking 0.156 0.114 0.069 0.134 0.083 0.443

6 Locomotion 0.165 0.130 0.072 0.136 0.071 0.426

7 Transfer to WC 0.143 0.093 0.092 0.165 0.112 0.395

8 WC use 0.113 0.100 0.084 0.164 0.101 0.438

9 Bed mobility 0.245 0.131 0.110 0.152 0.098 0.265

10 Eating 0.251 0.365 0.085 0.084 0.023 0.192

Covariates & NHs Mean Min Q1 Median Q3 Max

x(1)
hi1 Age 82.63 25 77 85 90 106

x(1)
hi2 Gender 0.284

x(t)
hi3 Distance from previous obs. 5.30 0.27 5.23 5.83 6 12.33

nh Number of residents 36 16 20 25 47.5 86

Nh Number of obs. 139.8 45 79 106 177 344

A description of the items is contained in the upper part of Table 1, together with
the associate frequency distributions. In this setting, the Markovian individual pro-
cess V hi is meant to represent the overall level of physical impairment, justifying the
assumption that the latent trait is ordinal (see Sect. 2.1) as well as the global logit
parametrization in Eqs. (1) and (2).

It is important to point out that, within the Suite interRAI protocol, questionnaires
are filled in by the NH staff rather than by the residents personally. This fact should
guarantee that compilation criteria are objective and time-invariant, thereby preventing
from the well-known issue of response shift (Sprangers and Schwartz 1999; Visser
et al. 2005). Response shift occurs with self-reported questionnaires and consists in
respondents changing their internal standards and reconceptualizing quality of life
domains between measurement occasions. It is likely to threaten the identification of
true changes in the latent trait, resulting in the misspecification of the measurement
model (Oort 2005). Since in our approach the conditional response probabilities are
assumed to be time-invariant and their estimation is performed by pooling all the
individual records together (see Sects. 2.1 and 2.2), ruling out the presence of response
shift appears to be of the essence.

Another relevant aspect concerns resident dropout, that can be due to death or
to other reasons not explicitly linked to health status transition. While the latter can
essentially be treated like an ignorable missing data mechanism (Rubin 1976; Little
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1995), the former clearly corresponds to a worsening in personal health conditions.
In other words, death can be considered as an outcome of residents’ health status
trajectories rather than a source of missing data. For these reasons, we identify it with
the kv-th latent state of the individual Markov process. Such a latent state has two
specific features. In detail, it is an absorbing state and it has null probability at t = 1.
This means that residents can not be dead at the first measurement occasion and can
not revert to other latent states once they have reached it. Clearly, this requires the
constraints πhi (kv|u) = 0, as well as π

(t)
hi (v|kv, w) = 0 and π

(t)
hi (kv|kv, w) = 1, for

every value of u and w and for v = 1, . . . , kv − 1. These constraints are met simply
by setting β0kv−1 = −∞ and γ0kv = +∞. Thus, these two parameters are not to
be estimated anymore. To identify dropout in the data, the 430 residents dropping
out due to death are assigned an extra observation dated on the day of death with
all the ADL items set to the additional response category c + 1 = 7. In terms of
conditional response probabilities, this univocal association corresponds in practice
to φ j,c+1,v = 0 and φ j,c+1,kv = 1 (v = 1, . . . , kv − 1; j = 1, . . . , J ). Therefore,
the final dataset contains N = 6012 observations, with about 3.88 observations per
resident on average.

As for the covariates in the latent model, resident age (in years) and gender (a binary
variable taking value 1 formales) form the individual covariate vector x(1)

hi appearing in
Eq. (1). These two covariates have been proved in different studiesmentioned in Sect. 1
to affect both the initial probabilities and the probability of transition between latent
states. Furthermore, in Eq. (2), the time distance from the previous collection occasion
(x (t)

hi3, measured in months) is included as an additional covariate, together with age

and gender, in the vector x(t)
hi to account for the different amount of time occurring

from the previous observation on the same unit. Given the data collection mechanism
discussed above, such a variable is expected to play a role also inmeasuring the overall
quality of NH care services. Indeed, since questionnaires are administered prior to the
six-month schedule if a sensible change in the health conditions is observed, such a
variable is expected to be related to the probability that a transition occurs, thoughwith
some important provisos discussed in Sect. 3.3. Within this scheme, the latent variable
Uh is meant to capture NH effects on the initial probabilities that are unexplained
by age and gender, whereas Wh models NH effects on the transition probabilities
unexplained by age, gender and time distance. In other words, time distance and Wh

are two concomitant components of the overall NH performance. This is to some
degree different from the panel-based approach in Montanari et al. (2018), where
time distance was only included in the covariate set to adjust for unequally spaced
measurements and not used in the NH performance evaluation process.

Since the date of death is recorded by the NH staff, all the covariates are available
also for the dropout-related extra observations. The bottom part of Table 1 contains
some summary statistics of these covariates, as well as of the number of residents and
observations available for each NH. It is worth to highlight that some young residents
are present in the dataset, although the interRAI protocol is in principle designed for
elderly people. However, these cases are quite rare (there are only 9 residents aged
less than 50), and are typically associated to rather serious impairments or mental
handicap.
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Fig. 2 BIC of the LC measurement models (kv = 2, . . . , 10)

3.2 Measurementmodel

As stated in Sect. 2.2, the two-way MLMM is estimated via a two step procedure. In
this section, we show results for the first estimation step, i.e., for the measurement
model, obtained via a pooled LC analysis without covariates performed on the ADL
items presented in Sect. 3.1. ML estimation of the pooled LC models was performed
via the poLCA R package (Linzer and Lewis 2011).

To address model selection, we have explored a set of models by letting kv vary
from 2 to 10. The model with kv = 1 was not included since in the LTCF data we
always have to account for the death-related extra latent state. That is, we always have
at least two latent states; see Sect. 3.1. In Fig. 2, the Bayesian Information Criteria
(BIC, Schwarz 1978) of the estimated models are plotted. In theory, models with a
lower BIC should be preferred. Nevertheless, in the context of latent variable models
this index is known to have a tendency to inflate the number of latent states (Pohle
et al. 2017; Bacci et al. 2014). Specifically, when the BIC reaches a minimum within
a reasonably large set of candidate models, then the model with the minimum value
is typically a reliable choice. However, if it keeps decreasing with the consecutive
reductions being always smaller, then it is a good practice to consider also alternative
factors in the final model choice. This appears to be the case for the ADL-LC models
considered here, where we observe a sensible reduction of the BIC until kv = 6, with
some kind of stabilization for kv ≥ 7 (Fig. 2).

In principle, the poLCA package is designed for nominal (not ordinal) responses
and latent variables. However, starting from the estimated conditional response prob-
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abilities, ordinality can be assessed a posteriori by means of the scores

ŝ jv = 1

c

c+1∑

y=1

(y − 1)φ̂ j yv v = 1, . . . , kv, j = 1, . . . , J .

For each pair ( j, v), ŝ jv is a normalized score laying in the 0-1 range and representing
the average impairment level of residents in latent state v with respect to the j-th ADL.
In line with the model formulation highlighted in Sect. 2.1, lower labels are assigned
to states with lower values of ŝ jv . Clearly, in the ordinal setting considered here it
would be desirable that the same latent state ordering is maintained for every item. As
a matter of fact, this ordering univocality among items is another relevant factor the
choice of kv might be based upon.

To investigate this issue in the LTCF data, the ŝ jv scores for all the fitted models
are reported in Fig. 3. Specifically, in each plot of the 3 × 3 panel latent states are
ordered according to the ŝ jv scores of the first item, with a line for each latent state
(v = 1, . . . , kv) joining the ŝ jv values across the remaining items. Looking at the plots,
it is possible to notice that for kv ≥ 7 (as well as for kv = 3) the lines tend to overlap
each other, meaning that the latent state ordering is not univocal. Another noteworthy
feature is that when kv ≥ 4, the LC model correctly identifies the last extra latent state
associated to death, where ŝ jkv = 1 by virtue of φ j,c+1,kv = 1 ( j = 1, . . . , J ).

In light of such considerations, a natural choice for the final measurement model is
kv = 6. The resulting conditional response probability structure (not shown) is aligned
with those obtained in similar settings (Montanari et al. 2018). With regard to the ŝ jv
scores, we evince that the last two items (bed mobility and eating) present the smallest
values for every latent state. This finding is sensible since they represent abilities that
are usually lost latest by residents. As a sensitivity check, the whole LC analysis was
repeated including φ j,c+1,kv = 1 ( j = 1, . . . , J ) as a formal probability constraint.
This procedure involves fitting models for the remaining kv − 1 latent states on the
reduced dataset obtained removing the 430 extra observations. The conclusions we
may draw are substantially equivalent.

3.3 Latent model

Taking the estimated conditional response probabilities as fixed parameters, a number
of two-wayMLMMs are fitted. In detail, we let ku and kw vary between 1 and 3, so that
9 possible models are inspected overall. Before showing the estimation results, a more
detailed discussion about the nature of the effect of x (t)

hi3 (distance from the previous
observation) in Eq. (2) is necessary. Specifically, it is important to observe that almost
80% of the values of x (t)

hi3 lie between 5 and 7 months, that is, in the neighbourhood of
the canonical measurement distance of 6 months. Because of this inflation, the effect
of x (t)

hi3 is likely to be blurred in this neighbourhood, and more distinct for x (t)
hi3 < 5.

This intuition is confirmed by a sensitivity analysis we performed on the estimated
measurement model. Specifically, we assigned each record a latent state based on
a maximum-a-posteriori rule. In this way, we were able to build a binary variable
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Fig. 3 Normalized item scores ŝ jv (kv = 2, . . . , 10)
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Table 2 Log-likelihood,
parameters and BIC for the
models with
(ku , kw) ∈ {1, 2, 3}2

(ku , kw) 	(θ̂) # par BIC

(1,1) − 52,647.99 18 105,428.19

(1,2) − 52,626.84 20 105,400.58

(1,3) − 52,625.58 22 105,412.74

(2,1) − 52,617.12 20 105,381.13

(2,2) − 52,592.56 23 105,354.05

(2,3) − 52,589.02 26 105,369.01

(3,1) − 52,607.82 22 105,377.23

(3,2) − 52,584.05 26 105,359.07

(3,3) − 52,582.59 30 105,385.53

taking value 1 if a latent state worsening with respect to the previous observation was
observed and 0 otherwise, in the spirit of the global logit parametrization in (2). An
extensive investigation about the relationship between x (t)

hi3 and this variable, including
the estimation of several logistic regression models and other empirical analyses, led
to opt for the linear spline encoded by the covariate

x̃ (t)
hi3 =

⎧
⎪⎨

⎪⎩

3 if x (t)
hi3 < 3

x (t)
hi3 if 3 ≤ x (t)

hi3 ≤ 5

5 if x (t)
hi3 > 5.

In practice, the effect of x (t)
hi3 on the worsening probability (that is, the probability

of moving towards more impaired latent states) is assumed to be constant before 3
months, then it is assumed to be linear (on the logit scale) between 3 and 5 months,
and then constant again after 5 months. This functional form allows to account for
the data inflation around x (t)

hi3 = 6, as well as for a sort of flattening of the effect for

lower values of x (t)
3hi emerging from empirical analyses. In what follows, we undertake

this spline approach, including x̃ (t)
hi3 rather than x

(t)
hi3 as the third component of the x(t)

hi

vector for every fitted model. Also, age and x̃ (t)
hi3 were centered at the values of 80

years and 6 months, respectively, in order to ease the overall interpretation of β0, γ 0
and γ 1.

Table 2 reports the log-likelihood, the number of parameters in the latent model, and
the BIC index for all the fittedmodels.With regard to the log-likelihood, for each value
of ku wenotice that its increase is sensibly greaterwhenmoving from kw = 1 to kw = 2
than when moving from kw = 2 to kw = 3. The same argument applies swapping ku
and kw. This intuition is confirmed by the BIC index, that reaches its minimum for
the (2, 2) model. In other words, the log-likelihood gain due to the introduction of
a third SLU cluster for the effect on either the initial and the transition probabilities
is not worth the increase in the overall model complexity. As a consequence, we
consider the (2, 2) model as the final one. For such a model, diagnostic checks based
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Table 3 Estimates, standard errors and posterior SLU probabilities for the (2, 2) model

Parameters Posterior SLU probabilities êh(u, w)

par. est. s.e. h êh(1, 2) êh(2, 1) êh(2, 2) h êh(1, 2) êh(2, 1) êh(2, 2)

β0 1.553 0.165 1 1.000 0.000 0.000 23 0.995 0.000 0.005

0.576 0.152 2 0.973 0.000 0.027 24 0.998 0.000 0.002

−0.151 0.173 3 0.999 0.000 0.001 25 0.993 0.000 0.007

−0.978 0.177 4 0.996 0.000 0.004 26 0.000 1.000 0.000

β1 0.012 0.007 5 1.000 0.000 0.000 27 0.016 0.000 0.984

−0.493 0.109 6 1.000 0.000 0.000 28 0.873 0.000 0.127

ψ2 1.036 0.205 7 1.000 0.000 0.000 29 1.000 0.000 0.000

γ 0 5.278 0.337 8 0.332 0.000 0.668 30 1.000 0.000 0.000

8.282 0.453 9 0.833 0.000 0.167 31 1.000 0.000 0.000

10.765 0.574 10 0.059 0.000 0.941 32 0.806 0.000 0.194

13.427 0.670 11 0.536 0.001 0.463 33 0.860 0.026 0.114

γ 1 −0.661 0.264 12 0.000 1.000 0.000 34 0.000 0.000 1.000

−4.759 0.411 13 0.795 0.017 0.188 35 1.000 0.000 0.000

−7.354 0.507 14 0.997 0.000 0.003 36 0.995 0.000 0.005

−9.664 0.611 15 0.000 0.000 1.000 37 0.976 0.000 0.024

−13.257 0.695 16 0.000 0.353 0.647 38 0.979 0.000 0.021

γ 2 0.016 0.002 17 0.124 0.000 0.876 39 0.011 0.001 0.988

0.107 0.049 18 0.000 1.000 0.000 40 0.281 0.004 0.715

−1.464 0.257 19 0.032 0.001 0.967 41 0.535 0.002 0.464

ξ2 0.917 0.268 20 0.988 0.000 0.012 42 0.952 0.000 0.048

21 0.989 0.000 0.011 43 0.997 0.000 0.003

22 1.000 0.000 0.000

on ordinary normal pseudo-residuals (Zucchini andMacDonald 2009,Chapter 6) show
a satisfactory fitting for every item; see Fig. 4.

The left-hand side of Table 3 reports the estimates, together with their standard
errors, for all the parameters of the latent (2, 2) model but the probability matrix T .
From this table, we may conclude that, for both the initial and transition probabilities,
the estimated effect of age and gender is in line with that observed in similar analyses
of the LTCFdata referring to other years (Bartolucci et al. 2009;Montanari et al. 2018).
In detail, given the global logit parametrization in Eqs. (1) and (2), the positive effect
of age shows that older residents are more likely to find themselves in a worse physical
health status at admission (β̂11 = 0.012), aswell as tomove towardsmore serious latent
states at the following occasions (γ̂21 = 0.016). However, the β̂11 estimate is barely
significant (p-value 0.098). As for the effect of gender, we can conclude that males
typically have lower physical impairment at the first occasion (β̂12 = −0.493, p-value
5.68×10−6), but are also more likely to worsen their condition (γ̂22 = 0.107, p-value
0.030) with respect to females. Regarding the effect of x̃ (t)

hi3, its estimated coefficient
γ̂23 = −1.464 is highly significant (p-value 1.29 × 10−8) and shows that shorter
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Fig. 4 QQplots of ordinary normal pseudo-residuals for the (2, 2) model
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distances between observations—within the interval [3, 5] months—are associated
to higher probabilities of moving towards higher (i.e., more impaired) latent states.
This effect is in line with subject-matter related expectations, since sudden changes in
residents’ health status are more likely to correspond to a worsening in their physical
conditions.

Looking at the second-level latent variables, it is possible to notice that ψ̂2 = 1.0356
and ξ̂2 = 0.9174 are both significantly different from zero (p-values 4.16× 10−7 and
6.25 × 10−4 respectively), thereby corroborating the adoption of the (2, 2) model.
In other words, there is evidence of the presence of 4 SLU clusters corresponding to
the 4 combinations of the joint effect Zh = (Uh,Wh) on the initial and transition
probabilities of the first-level-unit Markov process. Recalling the notation introduced
in Sect. 2.1, we label these clusters by SLU-uw (u, w = 1, 2).

The estimated SLU joint probability matrix is

T̂ =
(
0.000 0.672
0.079 0.249

)

.

Combining the estimates above with ψ̂2 and ξ̂2, it is possible to compute the estimated
correlation betweenUh andWh , which is equal to –0.420. Such an estimate suggests a
deviation from the independence model, which is confirmed by a formal LRT. Specif-
ically, the log-likelihood of the (2, 2) independence model is –52596.1, so that the
LRT statistic is equal to 7.072 (p-value 0.008 under the null χ2(1) distribution).

Since τ̂11 ≈ 0, we can conclude that there are no NHs belonging to the SLU-11
cluster. Conversely, the model suggests that around 8% of the NHs belong to cluster
SLU-21. The remaining 92% of NHs are placed in the other two clusters. Of these,
around 73% are estimated to belong to cluster SLU-12.

In order to understand which group each NH is more likely to belong to, one can
rely on the posterior SLU probabilities êh(u, w) estimated at convergence of the EM
algorithm. All these probabilities but êh(1, 1), which are always lower than 10−3, are
reported in the right-hand side of Table 3. It is possible to pinpoint threeNHs belonging
to the SLU-21 group with a very low degree of uncertainty (h ∈ {12, 18, 26}). The
other NHs are estimated to split between clusters SLU-12 and SLU-22 with a varying
degree of uncertainty.

To characterize the identified clusters, the estimated initial probability distribution
of the latent states for an 80-year-old female resident hosted in an NH belonging to
the SLU-1w clusters (w = 1, 2) is

π̂hi (u = 1) = (
0.175 0.185 0.178 0.189 0.273 0.000

)
,

whereas the vector for a resident with the same individual covariate pattern hosted in
an NH of the SLU-2w clusters (w = 1, 2) is

π̂hi (u = 2) = (
0.070 0.097 0.126 0.193 0.514 0.000

)
.
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In line with the parameter constraints ψ2 ≥ ψ1 = 0, this shows that the NHs in the
latter clusters tend to admit residents in worse conditions with respect to physical
impairment.

For the same reference resident, the 6-month ahead (x̃ (t)
hi3 = 0) transition matrix

associated to the SLU-u1 clusters (u = 1, 2) is

�̂
(t)
hi (w = 1) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

0.659 0.332 0.008 0.001 0.000 0.000
0.010 0.364 0.515 0.099 0.012 0.000
0.000 0.028 0.255 0.516 0.194 0.007
0.000 0.002 0.030 0.218 0.674 0.076
0.000 0.000 0.002 0.020 0.435 0.543
0.000 0.000 0.000 0.000 0.000 1.000

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

while that for the SLU-u2 groups (u = 1, 2) is

�̂
(t)
hi (w = 2) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

0.436 0.543 0.019 0.002 0.000 0.000
0.004 0.188 0.569 0.209 0.029 0.001
0.000 0.011 0.125 0.478 0.369 0.017
0.000 0.001 0.012 0.104 0.711 0.172
0.000 0.000 0.001 0.008 0.243 0.748
0.000 0.000 0.000 0.000 0.000 1.000

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

It is worth to recall that the two matrices above differ only for the residual NH effect
Wh . Again, conditional on the previous latent state and the covariates, in the first
matrix a lower chance of worsening the physical conditions or of dying is observed,
corresponding to a better performance of the NHs belonging to the SLU-u1 clusters.
However, to properly evaluate the overall performance of an NH in avoiding the
worsening of physical impairment, one should also take into account the effect of
the x̃ (t)

hi3 covariate: as previously mentioned, worsening is more likely as its value
decreases.

Although primarily intended as a SLU clustering tool, in the context of this applica-
tion the proposed two-way MLMMmay be used also for NH performance evaluation
and ranking purposes. For example, an overall index can be built given by the sum of
the averaged contribution, on the global logit scale of Eq. (2), of the observed values of
x̃ (t)
hi3 in a NH and the corresponding posterior expected value ofWh , controlling for age

and gender. However, in principle such a procedure should be conducted separately
for the groups formed with respect to the NH effect on the initial probabilities. In this
way, the lack of independence between the latent variables Uh and Wh is properly
accounted for. In a policy evaluation perspective, this approach would discourage the
adoption of unfair practices like adverse selection of residents at baseline (Montanari
et al. 2018; Montanari and Doretti 2019). We argue that these group-dependent mea-
sures would be more naturally obtained from the present discrete-effect model rather
than from continuous-effect models. However, this kind of development is beyond the
scope of the present paper.

123



Two-way clustering of SLUs in ordinal MLMMs 477

4 Simulation study

In this section, we present some evidence from a small simulation study conducted
within the two-way MLMM framework. For the reasons outlined in Sect. 2.2, the
main purpose of this simulation is checking the performance of the proposed two-step
procedure in a setting close to the LTCF application rather than comparing different
estimation methods. To this end, B = 500 datasets are generated from a two-way
MLMM with kv = 6, ku = 2, kw = 2 and the same probability constraints as in
Sect. 3.2 for the sixth state of the individual level latent process.

Each dataset includes H = 60 SLUs with nh = 50 first-level units. At baseline, a
normal variate with mean equal to 83 and variance equal to 49 and a Bernoulli variate
with probability 0.3 are generated for every first-level unit tomimic the distributions of
age (in years) and gender (1=male) in the LTCF data. However, to simplify the whole
setting, each unit is assigned T = 3 equally spaced measurement occasions. Thus,
the x (t)

hi3 covariate is removed and a constant number of observations across datasets
(N = 9000) is generated. Sincewe assume the canonical distance of 6months between
measurements, at t = 3 age is deterministically increased of 1 unit with respect to
t = 1, whereas at t = 2 such an increase is random. This mechanism reflects the fact
that residents are born in different times of the year.

The data generating process follows the scheme outlined in Sect. 2.1 according
to a sequential procedure. First, SLUs are assigned to SLU-uw clusters based on the
SLU probabilities τuw. Conditional on this assignment, the values of the covariates
and the remaining latent model parameters, initial and transition probabilities are then
determined and used to simulate the first-level unit Markov chains vhi (h = 1, . . . , H ;
i = 1, . . . , nh). The numerical values for the latent model parameters are reported
in the second column of Table 4. Notice that two scenarios are considered which
differ for the values of the T matrix only, with the first scenario corresponding to
an independence model. Finally, given the realized vhi processes, J = 10 ordinal
items with c + 1 = 7 categories are generated according to a conditional response
probability array similar to the one of the LTCF data (not shown). In detail, items are
set to the seventh category with probability 1 if a unit is in the sixth latent state andwith
probability 0 otherwise, in line with the conditional response probability constraints
introduced in Sect. 3.1.

The two-step estimator of the two-way MLMM fitted on the simulated datasets
is as described in Sect. 2.2. For each dataset, at the first step 10 random starts are
run, whereas at the second step the true latent model parameter vector is taken as
initial guess. This combined strategy allows to avoid local maxima issues as well as
to speed up the overall computational time. As expected, the performance of the first-
step LC model estimator is highly remarkable. Indeed, for the conditional response
probabilities the maximum absolute bias is 0.0016 for the first scenario and 0.0022
for the second scenario, while the maximum simulation standard deviation is 0.0195
for the first scenario and 0.0201 for the second scenario. Importantly, discrepancies
about latent state ordering across different items are absent.

While the LC measurement model is always fitted with 6 latent states like in the
true data generating process, at the second step all the latent models with (ku, kw) ∈
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Table 4 Simulation results for the latent model (independence model in the upper part of the table)

Latent model

par. True Min. Median Mean Max. SD Bias RRMSE AESE

β0 0.35 −0.861 0.323 0.332 1.314 0.395 −0.018 1.129 0.393

−0.75 −1.895 −0.773 −0.769 0.236 0.393 −0.019 0.525 0.393

−1.50 −2.633 −1.525 −1.522 −0.498 0.393 −0.022 0.263 0.393

−2.45 −3.628 −2.469 −2.470 −1.432 0.394 −0.020 0.161 0.395

β1 0.02 0.008 0.020 0.020 0.034 0.005 0.000 0.232 0.005

−0.38 −0.577 −0.377 −0.376 −0.182 0.071 0.004 0.188 0.071

ψ2 1.05 0.804 1.050 1.051 1.269 0.074 0.001 0.070 0.069

γ 0 4.25 3.573 4.251 4.252 4.818 0.190 0.002 0.045 0.185

7.05 6.289 7.054 7.055 7.787 0.210 0.005 0.030 0.208

9.15 8.380 9.157 9.160 9.912 0.219 0.010 0.024 0.216

11 10.122 11.007 11.013 11.781 0.221 0.013 0.020 0.220

γ 1 −3.65 −4.786 −3.662 −3.670 −2.506 0.339 −0.020 0.093 0.334

−7.20 −8.505 −7.230 −7.217 −5.935 0.374 −0.017 0.052 0.372

−9.55 −10.896 −9.579 −9.568 −8.318 0.382 −0.018 0.040 0.383

−11.45 −12.940 −11.472 −11.473 −10.192 0.389 −0.023 0.034 0.389

−13.60 −15.037 −13.632 −13.627 −12.336 0.394 −0.027 0.029 0.396

γ 2 0.02 0.007 0.020 0.020 0.033 0.004 0.000 0.192 0.004

0.15 −0.017 0.155 0.152 0.299 0.060 0.002 0.403 0.058

ξ2 1.50 1.319 1.501 1.501 1.696 0.058 0.001 0.039 0.057

τ11 0.20 0.057 0.200 0.201 0.363 0.052 0.001 0.257 0.116

τ12 0.30 0.114 0.300 0.299 0.508 0.062 0.000 0.206 0.072

τ21 0.20 0.042 0.203 0.203 0.372 0.051 0.003 0.253 0.059

τ22 0.30 0.101 0.293 0.296 0.509 0.059 −0.003 0.196 0.072

β0 0.35 −1.212 0.338 0.348 1.571 0.408 −0.002 1.166 0.397

−0.75 −2.265 −0.751 −0.750 0.507 0.403 0.000 0.538 0.396

−1.50 −3.005 −1.505 −1.499 −0.211 0.406 0.001 0.271 0.396

−2.45 −3.942 −2.458 −2.451 −1.182 0.407 −0.001 0.166 0.397

β1 0.02 0.005 0.020 0.020 0.038 0.005 0.000 0.242 0.005

−0.38 −0.653 −0.381 −0.383 −0.172 0.073 −0.003 0.193 0.071

ψ2 1.05 0.844 1.052 1.054 1.306 0.071 0.004 0.068 0.068

γ 0 4.25 3.756 4.263 4.266 4.781 0.190 0.016 0.045 0.190

7.05 6.287 7.064 7.071 7.781 0.209 0.021 0.030 0.213

9.15 8.497 9.172 9.175 9.849 0.214 0.025 0.024 0.220

11 10.318 11.027 11.030 11.725 0.218 0.030 0.020 0.225

γ 1 −3.65 −4.724 −3.646 −3.647 −2.508 0.350 0.003 0.096 0.338

−7.20 −8.332 −7.215 −7.207 −5.967 0.380 −0.007 0.053 0.378

−9.55 −10.770 −9.569 −9.565 −8.275 0.389 −0.015 0.041 0.390

−11.45 −12.721 −11.456 −11.468 −10.279 0.395 −0.018 0.035 0.396

−13.60 −14.824 −13.631 −13.621 −12.368 0.401 −0.021 0.030 0.403
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Table 4 continued

Latent model

par. True Min. Median Mean Max. SD Bias RRMSE AESE

γ 2 0.02 0.007 0.020 0.020 0.031 0.004 0.000 0.198 0.004

0.15 −0.034 0.152 0.149 0.318 0.057 −0.001 0.383 0.058

ξ2 1.50 1.304 1.507 1.503 1.675 0.059 0.003 0.040 0.059

τ11 0.20 0.063 0.199 0.199 0.395 0.052 0.003 0.268 0.116

τ12 0.29 0.120 0.290 0.291 0.480 0.057 −0.001 0.197 0.071

τ21 0.12 0.011 0.119 0.122 0.317 0.044 0.003 0.369 0.045

τ22 0.39 0.232 0.395 0.389 0.601 0.061 −0.005 0.156 0.082

{1, 2, 3}2 are estimated. In this way, we are able to control the performance of the
BIC index as a model selection tool for the second step. In detail, for the first scenario
only for 3 of the 500 datasets (3, 2) model is selected in place of the true one. For the
second scenario, the (2, 3) model is selected 6 times, the (3, 2) model is selected 2
times, while in the other cases the correct (2, 2) model is chosen. These results denote
a good performance of the BIC index in this context.

With regard to the performance of the proposed estimation procedure at the latent
layer, results are summarized in Table 4. For each parameter, the true value is accom-
panied by the main summary statistics of the simulation distribution, including the
standard deviation (SD) and the relative root mean squared error (RRMSE). From this
table, it is possible to observe that parameter estimators exhibit very small bias and a
modest degree of variability, with some deviations occurring for the first element of
β0. Also, results are very stable across the two scenarios, with little differences only
concerning the minimum and maximum values.

The last column of Table 4 contains the average estimated standard error (AESE)
for each parameter. As mentioned in Sect. 2.2, in principle these values might be prone
to underestimate the true standard deviations of the parameter estimators, due to the
estimator in (5) ignoring the sampling variability concerning the conditional response
probabilities. However, the results in Table 4 show that AESEs are quite close to
Monte Carlo standard deviations (that is, the SD column in the table), apart from
some degree of overestimation observed for the SLU-group probabilities. This is not
surprising given the very good performance of the measurement model estimator and
the adoptionof a robust estimationmethod like the sandwich estimator. Similar patterns
are observed for the models fitted with (ku, kw) �= (2, 2). However, when ku or kw are
greater than 2, the variability of the estimators of theψ3 and ξ3 parameters is sometimes
underestimated. It seems reasonable to ascribe this fact to amodelmisspecification (we
recall that data are generated under the (2,2) model) rather than to first-step variability.

5 Conclusions

In this paper, a two-waymultilevel latentMarkovmodel (MLMM) is introduced,which
is in order when sample units are grouped into second level units (SLUs). In these
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settings, the multilevel structure of the data is typically accounted for by introducing
second-level latent variables affecting the observed responses via a set of random
effects. These random effects are assumed to be discrete, resulting in a clustering of
SLUs. The main methodological innovation of the proposed model consists in the
fact that the vector of discrete second-level random effects does not have a univocal
influence on the whole first-level Markovian process. Indeed, distinct effects for the
initial and transition probabilities are specified, so that SLUs can be clustered along
the two dimensions separately, using the Cartesian product of the support points for the
randomeffects on the initial probabilities and those for the transition probabilities. This
feature is particularly appealing for those applications where SLU random effects on
these two components have a substantially different interpretation. An independence
test between the effects on the initial probabilities and the effects on the transition
probabilities is also proposed. This test allows to detect when the SLU clustering
process along a dimension is independent of that along the other.

An application of the proposal is illustrated with reference to health care data
collected on residents hosted in Nursing Homes (NHs), which are the SLUs at issue.
NH effects on the initial probabilities of the latent states of first-level units can be
ascribed to different admission policies (i.e., NHs tend to admit residents in different
health conditions at baseline), whereas those on the transition probabilities are related
to the quality of the health care service provided (i.e., NHs with their actions generate
different impacts on their residents’ probabilities ofmoving to a different health status).
For such data, modeling the NH effects beside those of the available covariates on the
transition probabilities may allow to build indicators of NH performances in taking
care of their residents.

Although it appears to be absent in the considered application (see Sect. 3.1),
response shift might characterize other settings involving latent Markov models.
Therefore, solutions to this issue in the latent Markov framework are desirable. In par-
ticular, one could adopt a time-varying parametrization for the conditional response
probabilities, and perform its estimation accordingly. This approach seems to be the
categorical counterpart to the one developed for structural equation models (Oort
2005), which refers to linear models and continuous latent traits and response vari-
ables.

The proposedmodel is tailored to an ordinal first-level latent trait.As a consequence,
the marginal SLU clusters defined along the two random effect dimensions also have
a conceptual ordering and, thus, a clear interpretation. While the extension to non-
ordinal settings is possible, interpretation issues might arise. In this sense, a partially
ordered set approach could be helpful. Such an approach has already been introduced
within the hidden Markov model framework (Ip et al. 2013) and would be particularly
sensible for those datasets where indicators measuring several latent domains are
collected. Its extension to a multilevel setting would be a promising topic for future
research.
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Appendix A: E-step details

As mentioned in Sect. 2.2, the indicator variables a(t)
hi (v), b(t)

hi (v, v̄), ch(u), dh(w),

eh(u, w) and f (t)
hi j (y) are defined as

a(t)
hi (v) = I (V (t)

hi = v) t = 1, . . . , Thi ;
b(t)
hi (v, v̄) = I (V (t−1)

hi = v̄, V (t)
hi = v) t = 2, . . . , Thi ;

ch(u) = I (Uh = ψu);
dh(w) = I (Wh = ξw);

eh(u, w) = I (Uh = ψu,Wh = ξw);
f (t)
hi j (y) = I (Y (t)

hi j = y) t = 1, . . . , Thi .

The conditional expectations of the first five variables, given the data and the param-
eter vector θ , are the posterior probabilities

â(t)
hi (v) = P(V (t)

hi = v | Yh = yh , Xh = xh)

=
ku∑

u=1

kw∑

w=1

{
P(V (t)

hi = v | Yh = yh , Xh = xh ,Uh = ψu ,Wh = ξw)×

P(Uh = ψu ,Wh = ξw | Yh = yh , Xh = xh)
}

t = 1, . . . , Thi ;
b̂(t)
hi (v, v̄) = P(V (t−1)

hi = v̄, V (t)
hi = v | Yh = yh , Xh = xh)

=
ku∑

u=1

kw∑

w=1

{
P(V (t−1)

hi = v̄, V (t)
hi = v | Yh = yh , Xh = xh ,Uh = ψu ,Wh = ξw)×

P(Uh = ψu ,Wh = ξw | Yh = yh , Xh = xh)
}

t = 2, . . . , Thi ;

ĉh(u) =
kw∑

w=1

P(Uh = ψu ,Wh = ξw | Yh = yh , Xh = xh);

d̂h(w) =
ku∑

u=1

P(Uh = ψu ,Wh = ξw | Yh = yh , Xh = xh);

êh(u, w) = P(Uh = ψu ,Wh = ξw | Yh = yh , Xh = xh).
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The probabilities involved in the expressions above can be obtained from the
parametrized ones (i.e., the initial, transition and SLU probabilities), by using Bayes’
theorem and/or the forward and backward Baum-Welch recursions (Baum et al. 1970;
Welch 2003), which are commonly adopted in the hidden Markov model literature.

Appendix B: multiple initialization of EM algorithms

With regard to the measurement model, 20 × kv replications are run for every model
(kv ∈ 2, . . . , 10) to overcome localmaxima issues. As for the latentmodel, a combined
strategy is undertaken which consists of the following steps: (i) fit the three models
with kw = 1 adopting multiple random starting points, (ii) use the corresponding
solutions as a basis for the starting vectors of the other models, with the remaining
parameters varying according to a deterministic grid. Such a grid allows to explore all
the plausible values in the parametric subspaces.

With regard to step (i), we perform 50 × ku random starts with initial values given
by

βSTART
0 = (−3,−1, 1, 3)′ + ε1

γ START
0 = (3, 4, 5, 6)′ + ε2

γ START
1 = (0,−1.5,−3,−4.5, 6)′ + ε3

(recall that kv = 6 with β05 = −∞ and γ06 = +∞). In the above, ε1, ε2 and ε3
are drawn from a standard normal distribution. Moreover, the elements of regression
coefficient vectors β1 and γ 2 are sampled from a N (0, 0.01) distribution, whereas
(ψ2, . . . , ψku ) are drawn from non-overlapping uniform distributions whose centers
are spaced by 0.7. Finally, the probabilities T = (τ11, . . . , τku1)

′ are sampled from a
Dirichlet distribution with parameter vector given by 3 · 1ku .

With regard to step (ii), for the (ku = 1, kw = 2) model we take 48 starting points
obtained by combining ξ2 ∈ {0.25, 0.5, . . . , 2.75, 3} and τ11 ∈ {0.2, 0.4, 0.6, 0.8}.
For the (ku = 1, kw = 3) model, we consider the combinations arising from ξ2 ∈
{0.5, 1, . . . , 2.5, 3}, ξ3 ∈ {ξ2 + 0.5, ξ2 + 1, . . . , 2.5, 3} and T = (τ11, τ12, τ13) given
by the rows of

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

0.2 0.2 0.6
0.2 0.4 0.4
0.2 0.6 0.2
0.4 0.2 0.4
0.4 0.4 0.2
0.6 0.2 0.2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

so that 90 starting points are obtained. For the models with ku > 1, the scheme above
is replicated for the ξ vector and for the conditional probability distributions

τ−1
u. (τu1, . . . , τukw) u = 1, . . . , ku .
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Essentially, since these conditional distributions are kept constant for every u, the
algorithm starts from the independencemodel. Asmentioned above, the starting values
for τ u. = (τ1., . . . , τku .) are taken from the final estimates of the correspondingmodels
with kw = 1.

Appendix C: log-likelihood score function

The log-likelihood score function is

s(θ	) =
H∑

h=1

sh(θ	) =
H∑

h=1

∂

∂θ	

log P(Y h = yh | Xh = xh)

=
H∑

h=1

∂
∂θ	

∑ku
u=1

∑kw

w=1 P(Y h = yh | Xh = xh,Uh = ψu,Wh = ξw)τuw

P(Y h = yh | Xh = xh)

=
H∑

h=1

{

P(Y h = yh | Xh = xh)−1
ku∑

u=1

kw∑

w=1

∂

∂θ	

exp(	huw)τuw

}

,

with 	huw = log P(Y h = yh | Xh = xh,Uh = ψu,Wh = ξw). Therefore, we have

s(θ	) =
H∑

h=1

{

P(Y h = yh | Xh = xh)−1
ku∑

u=1

kw∑

w=1

exp(	huw)dhuw

}

,

where

dhuw = τuw

∂

∂θ	

	huw + ∂

∂θ	

τuw

and ∂
∂θ	

	huw is computed by deriving the SLU-uw group specific expected complete
log-likelihood. These two derivatives are identical (Oakes 1999). Finally, notice that
to avoid numerical problems the score is computed as

s(θ	) =
H∑

h=1

[

exp(	h,max − 	h)

ku∑

u=1

kw∑

w=1

{

exp(	huw − 	h,max)dhuw

}]

,

where 	h,max = maxu,w 	huw and 	h = log P(Y h = yh | Xh = xh) is calculated
relying on the same numerical trick, i.e.

	h = 	h,max + log
ku∑

u=1

kw∑

w=1

{
exp(	huw − 	h,max)τuw

}
.
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