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Abstract Longitudinal categorical data are often collected using an experimental
designwhere the interest is in the differential development of the treatment group com-
pared to the control group. Such differential development is often assessed based on
average growth curves but can also be based on transitions. For longitudinal multino-
mial data we describe a transitional methodology for the statistical analysis based
on a distance model. Such a distance approach has two advantages compared to a
multinomial regression model: (1) sparse data can be handled more efficiently; (2) a
graphical representation of the model can be made to enhance interpretation. Within
this approach it is possible to jointly model the observations and missing values by
adding a new category to the response variable representing the missingness condi-
tion. This approach is investigated in aMonte Carlo simulation study. The results show
this is a promising way to deal with missing data, although the mechanism is not yet
completely understood in all cases. Finally, an empirical example is presented where
the advantages of the modeling procedure are highlighted.

Keywords Longitudinal data ·Missing values ·Multinomial data ·Multidimensional
scaling · Multinomial regression

Mathematics Subject Classification 62-07 · 62P25 · 62H30
1 Introduction

For the analysis of longitudinal data three families of models can be distinguished
(Diggle et al. 2002; Molenberghs and Verbeke 2005; Bartolucci et al. 2013): mar-
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ginal models, subject specific models, and transitional models. In marginal models
the conditional mean given the time variable and possible explanatory variables is
modeled, where the interest is mainly in the average growth and the dependencies
among repeated observations are treated as a nuisance. Contrarily, in subject specific
models the dependencies among repeated observations are modeled using a set of
subject specific parameters and the interest is in individual growth trajectories. In the
third class of models, the transition models, the joint distribution of the responses is
decomposed in the marginal distribution of the response at the first time point and a
set of conditional distributions of the other responses given the earlier responses.

In an experimental study, where a treatment is compared to a control condition,
researchers often use either marginal or subject specific models. Following Albert
(2000) we argue that a transitional approach can also be of interest in such a design
where the focus is then on the question whether the transition probabilities for the
treatment group differ from those of the control group. The expectation is that the
transition probabilities for a treatment group are such that transitions to a ‘better’
category are more likely for the treatment than for the control condition.

When the response variable is categorical with three or more nominal categories a
natural type of model to use is the multinomial regressionmodel, sometimes called the
multinomial baseline category logit model (Agresti 2002). In this model the log-odds
of every category of the response variable against a baseline is modeled using a linear
predictor. For a response variable with C categories this amounts to C − 1 differ-
ent regression equations. The simultaneous modeling of a set of log-odds equations
makes it difficult to obtain an overall picture of the model. This interpretational dif-
ficulty becomes especially problematic in the case of interactions among explanatory
variables (Fox andAnderson 2006). In a transitional framework the previous responses
would act as predictor variables for the current response. In an experimental study the
interest would be in the interaction between treatment condition and previous response
to see whether the two groups develop in a different manner.

De Rooij (2009a) proposed the Ideal Point Classification (IPC) model as a sim-
plification of ideal point discriminant analysis proposed by Takane et al. (1987). The
IPCmodel is a multinomial model based upon a two mode distance model, sometimes
called the ideal point model. Compared to the multinomial model this distance model
has two advantages: First, the model can be visualized such that a comprehensive
picture can be given of the model; Second, for sparse data the model is much more
stable and less vulnerable to separation effects because less parameters are estimated.
The IPC model has been generalized for longitudinal data in a series of papers. De
Rooij (2009b) proposed a marginal model and Yu and De Rooij (2013) discuss model
selection for this marginal model; De Rooij and Schouteden (2012) and De Rooij
(2012) developed a subject specific approach; De Rooij (2011) developed a transi-
tional approach. In the current paper the interest is in this transitional model when
applied to data from an experimental design. We will study in detail the various ques-
tions that arise during such an investigation and how to translate those questions in
statistical models. Moreover, model misspecification will be discussed and how to
deal with this in model selection and statistical inference.

Furthermore, in longitudinal data often subjects drop out. Current approaches to
dealwithmissing data are to either ignore themissing values (Jeličić et al. 2009),which
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generally leads to biased parameter estimates, or to use full maximum likelihood (ML)
or multiple imputation (MI, see Enders 2010; Van Buuren 2012). The latter two are
invalid when themissing values are not at random (MNAR, see Little andRubin 2002).
Whenmissing values are of the not at random type, the modeling process needs to take
into account both a model for the responses as well as a model for the missingness
(Molenberghs and Verbeke 2005). We will present a novel methodology to deal with
missing data in ourmodel. The approach taken is to dealwithmissing values as an extra
category of the response variable. In such a way, the new response variable represents
both the responses as well as the missingness. Within homogeneity analysis such an
approach has been studied byMeulman (1982), but within a likelihood framework this
approach has, as far as the author knows, not been investigated. Within a likelihood
framework a similar procedure has been investigated for treating missing values in
the predictor variable (Greenland and Finkle 1995; Donders et al. 2006), where it was
shown that the procedure leads to biased parameter estimates. We, however, apply the
procedure to the response variable. A small Monte Carlo experiment is performed to
investigate the behavior of the approach under several forms of missing data.

In the next section the transitional ideal point model is described in detail, includ-
ing parameter estimation, model selection and inference under strong and relaxed
assumptions about the dependencies. In Sect. 3 an approach to deal with missing data
is presented and Sect. 4 describes a Monte Carlo study to investigate this approach
and its results. Section 5 describes an empirical example in detail. We conclude with
a general discussion.

2 Transitional ideal point model

2.1 Transitional models

In longitudinal data various subjects i (i = 1, . . . , n) are measured on several
time points t = 1, . . . , Ti . Let the outcome vector for subject i be Yi = (Yi1,
Yi2, . . . ,YiTi )

T where Yit ∈ {1, . . . ,C}. For each observation a vector of real valued
predictor values Xi t of length q is obtained, which are collected in the Ti × q matrix
Xi . In order to build transitional models the joint distribution f (·) of the responses
given the explanatory variables for subject i can be factored using

f (Yi1,Yi2, . . . ,YiTi |Xi ) = f (Yi1|Xi )

Ti∏

t=2

f (Yit |Yi1, . . . ,Yi(t−1),Xi ). (1)

Transitionalmodelsmake use of this factorization. InMarkovmodels, the factorization
is further simplified by assuming that

f (Yit |Yi1, . . . ,Yi(t−1),Xi ) = f (Yit |Yi(t−1),Xi ), (2)

i.e. given the past response the current response is independent from responses two or
more time points back. A further simplification is that the influence one step forward
is constant, i.e. the Markov chain is said to be stationary in that case.
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For modeling this means that the response at T2 is conditional on the response at
T1, the response at T3 is conditional on the response at T2, and the response at T4 is
conditional on the response at T3. In practice this means that the previous response
is used as a predictor variable of the current response. Bonney (1987) showed that
standard software can be used in case of a binary response variable, by appropriately
defining the matrix with explanatory variables. De Rooij (2011) generalized this result
for multinomial data.

2.2 IPC model for transitional data

We will model the probability πc of category c (c = 1, . . . ,C) using the IPC model
(De Rooij 2009a). The IPC model in this context is defined as

πc(Xi t ) = exp(−δi tc)∑C
h=1 exp(−δi th)

, (3)

where δi tc is the squared Euclidean distance in M-dimensional space (M being an
integer) between a position for subject i at time point t with coordinates ηi tm (m =
1, . . . , M) and a point for category c with coordinates γcm ; more specifically

δi tc =
M∑

m=1

(ηi tm − γcm)2. (4)

The coordinates for the position of subject i at time point t on the m-th dimension are
given by a linear predictor

ηi tm = αm + XT
i tβm . (5)

For transitional models the vector Xi t represents the combination of the previous
response, group membership and time. More specifically, the previous response is
represented by a set of dummy variables, group membership is a dummy variable,
time can either be coded as a continuous variable, representing linear change, or a
categorical variable, representing nonlinear change.When time is used as a categorical
variable it is coded as a set of dummy variables. All these variables including possible
interactions are collected in the vector Xi t . A detailed representation will be given in
the application section.

2.3 Estimation, model selection, and statistical inference

The model described above can be estimated by minimizing the following function

D(αm,βm, γm;m = 1, . . . , M) = −2
∑

i

∑

t

∑

c

yitc logπc(Xi t ), (6)
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where yitc is the observed value of the response variable, i.e. yitc = 1 if person i on
time point t answers with category c, otherwise yitc = 0. Equation (6) is the standard
deviance function for independent multinomial data. This means that we assume that
by taking the previous responses into account as predictors all dependencies between
the responses at different time points are captured.

The model as specified in Eqs. (3), (4), and (5) is not identified. De Rooij (2009a)
discusses identification issues in detail. Themodel can be identified by fixing some γcm
to given values. For example, the origin of the Euclidean space is fixed by restricting
γ1m = 0. Furthermore, the rotational indeterminacy is solved by restricting γcm = 0
for m > c. Depending on specific values for C and M a scaling constraint is needed
in which case we set γcm = 1 when c = m + 1.

For model selection the AIC (Akaike 1973; Anderson 2008) will be employed
which is defined by

AIC = D + 2p, (7)

where p is the number of parameters in the model. The AIC is a measure of Kullback–
Leibler information, that is, the amount of information lost when a model is used to
approximate full reality.

From the AIC it is possible to define

Δk = AICk − min
k

(AICk)

whereAICk is theAICvalue formodel k. TheΔk are estimates of theKullback–Leibler
information between the best (selected model) and model k. Anderson (2008, p.85)
states that only models with values of Δ till about 9, 12, or 14 have much credibility.
Models with larger Δ values are implausible.

The likelihood of a model k given the data can also be computed from these Δk

values. The likelihood of model k given the data is given by

L(Mk |X,Y) ∝ exp

(
−1

2
Δk

)

where Mk refers to model k and X, Y represent all available data. These likelihoods
can be standardized to obtain a type of model probabilities or Akaike’s weights (wk),
that sum to one, and are defined by

wk = exp(− 1
2Δk)∑

l exp(− 1
2Δl)

.

Theweightswk represent the probability thatmodel k is the expectedKullback–Leibler
best model.

Finally, from the Akaike’s weights evidence ratios can be obtained, which are
defined by L(Mk |X)/L(Mk′ |X) = wk/wk′ . These evidence ratios will specifically be
used for comparing the best model against others.
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Under the independence assumption that given the previous status the responses are
independent we can use the Hessian-matrix to provide standard errors of the parameter
estimates. This is a result from general maximum likelihood theory (Agresti 2002;
Eliason 1993).

2.4 Relaxing the assumptions

If the model captures the correct dependencies, Eq. (6) is a true likelihood function.
If the model is, however, misspecified, i.e. the dependencies are not fully described
by the model, Eq. (6) is not a likelihood function. However, Liang and Zeger (1986)
showed that minimization of this function provides consistent parameter estimates
even when the dependencies are not adequately modeled. This result was the basis for
the generalized estimating equation framework often utilized to fit marginal models.
More specifically, estimates obtained by minimizing Eq. (6) are equal to estimates
of generalized estimating equations using an independence working correlation form.
So, even if the assumption of independence is relaxed, minimizing (6) still provides
consistent parameters.

The AIC is defined for independent responses. When the assumption of inde-
pendence is relaxed another criterion is needed. Therefore, an information criterion
designed for dependent data will be used. This QIC criterion (Pan 2001) is an adap-
tion of the AIC for clustered (dependent) data. The QIC can be defined for different
working correlation forms, but Pan (2001) showed that for model selection purposes
the independent working assumptions works best. The QICwith independent working
assumptions reduces to the AIC, so whether the model is specified correctly or in case
not all residual correlations are captured the formula in Eq. (7) can be used for model
selection.

In case the independence assumption is not correct the parameter estimates are still
consistent, but standard errors obtained from the Hessian matrix will be wrong (Liang
and Zeger 1986). To deal with the dependency, a bootstrap procedure can be used. It is
important that the resampling should be performed at the level of the individual rather
than at the level of the observations per time point. This is called the cluster bootstrap.

Several authors studied the use of generalized linear models (GEE with indepen-
dence working correlation) and cluster resampling methods. An advantage of such
resampling procedures over GEE is that no choice has to be made of the dependence
structure. The bootstrap naturally adapts to the structure in the data. Paik (1988) pro-
posed to use a cluster jackknife for repeatedmeasures data of non-normally distributed
data. In a simulation study, he showed that these jackknife estimates of the standard
errors are superior to the sandwich estimates obtained in a GEE procedure. Sher-
man and Le Cessie (1997) compared the cluster bootstrap with GEE methodology
for dichotomous, Poisson, and normally distributed response variables. For normally
distributed outcomes they conclude that “the bootstrap variance estimate is as close as
or closer to the truth than the robust sandwich estimate, most dramatically for small
sample sizes” (p. 916). Note that the authors designate a sample size of 100 as small.
Also the coverage of the confidence intervals is better for the bootstrap procedure.
For logistic models, Sherman and Le Cessie showed that bootstrapping and GEE pro-
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vide comparable results. Sherman and Le Cessie also pointed out that the bootstrap
procedure is a powerful diagnostic tool. Cheng et al. (2013) provided a theoretical
justification of using the cluster bootstrap for inference in GEE. They showed that the
cluster bootstrap yields a consistent approximation of the distribution of the regression
estimate, and a consistent approximation of the confidence intervals. In a simulation
study they showed that the coverage of the bootstrap methods outperforms GEEmeth-
ods for binary and count response variables and that for normally distributed response
variables the results are comparable. De Rooij andWorku (2012) presented the cluster
bootstrap procedure for marginal multinomial regression models for clustered data.

Summarizing, in case the model does not capture the true dependencies we can still
use Eq. (6) as minimization function to estimate the parameters of the model. Further-
more, the AIC statistic becomes the QIC statistic, but its definition is unchanged. In
order to obtain standard errors, however, we can not use the Hessian matrix anymore.
A good alternative is to use the cluster bootstrap procedure in order to obtain standard
errors.

3 Treatment of missing data

One of the major problems of longitudinal studies is the occurrence of missing data
due to drop out or intermittent missing values. Such missing values are detrimental for
statistical analysis and should be dealt with appropriately in order to obtain unbiased
results. In this paper we propose to deal with missing values by creating an extra
category in the response variable. Such an approach has been studied for the case of
missing in the predictor variables (covariates) (Greenland and Finkle 1995; Donders
et al. 2006), but to our knowledge not for missing values in the response variable.
Before further discussing the motivation we first show the relationship of the IPC
model with multinomial logistic regression.

3.1 IPC-multinomial logistic regression

For the comparison of the IPC model with multinomial logistic regression we repeat
the definition of the IPC model

πc(Xi t ) = exp(−δi tc)∑
h exp(−δi th)

In maximum dimensionality, i.e. M = C − 1 the IPC model is equivalent to the
multinomial logistic regression model. For a response variable with two categories
the maximum dimensionality is 1 and the coordinates of the class points are fixed to
γ11 = 0 and γ21 = 1. For a response category with three categories, the maximum
dimensionality is two, and the model is identified using a fixed set of coordinates for
the positions of the categories of the response variable, that is the matrix with γcm
equals
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⎡

⎣
0 0
1 0
0 1

⎤

⎦ .

With four categories in three dimensions this matrix becomes

⎡

⎢⎢⎣

0 0 0
1 0 0
0 1 0
0 0 1

⎤

⎥⎥⎦ ,

etc.
To see the equivalence of the IPC model with multinomial logistic regression we

work out the case of the IPC model with three categories in the response variable and
a two dimensional model:

πc(Xi t ) = exp (−δi tc)∑
h exp (−δi th)

= exp
(− (ηi t1 − γc1)

2 − (ηi t2 − γc2)
2)

∑
h exp

(− (ηi t1 − γh1)
2 − (ηi t2 − γh2)

2)

= exp
(−η2i t1 + 2ηi t1γc1 − γ 2

c1 − η2i t2 + 2ηi t2γc2 − γ 2
c2

)
∑

h exp
(−η2i t1 + 2ηi t1γh1 − γ 2

h1 − η2i t1 + 2ηi t2γh2 − γ 2
h2

)

= exp
(−η2i t1 − η2i t2

)
exp

(
2ηi t1γc1 − γ 2

c1 + 2ηi t2γc2 − γ 2
c2

)
∑

h exp
(−η2i t1 − η2i t2

)
exp

(
2ηi t1γh1 − γ 2

h1 + 2ηi t2γh2 − γ 2
h2

)

= exp
(
2ηi t1γc1 − γ 2

c1 + 2ηi t2γc2 − γ 2
c2

)
∑

h exp
(
2ηi t1γh1 − γ 2

h1 + 2ηi t2γh2 − γ 2
h2

) .

Using the class coordinates as defined above, i.e. γ11 = 0, γ21 = 1, γ31 = 0 and
γ12 = 0, γ22 = 0, γ32 = 1 the model probability for the first class becomes

πi t1 = exp
(
2ηi t10 − 02 + 2ηi t20 − 02

)
∑

h exp
(
2ηi t1γh1 − γ 2

h1 + 2ηi t2γh2 − γ 2
h2

)

= exp(0)
∑

h exp
(
2ηi t1γh1 − γ 2

h1 + 2ηi t2γh2 − γ 2
h2

) .

For the second class it becomes

πi t2 = exp
(
2ηi t11 − 12 + 2ηi t20 − 02

)
∑

h exp
(
2ηi t1γh1 − γ 2

h1 + 2ηi t2γh2 − γ 2
h2

)

= exp (2ηi t1 − 1)
∑

k exp
(
2ηi1γh1 − γ 2

h1 + 2ηi t2γh2 − γ 2
h2

) ,
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and for the third class it becomes

πi t3 = exp
(
2ηi t10 − 02 + 2ηi t21 − 12

)
∑

h exp
(
2ηi t1γh1 − γ 2

h1 + 2ηi t2γh2 − γ 2
h2

)

= exp (2ηi t2 − 1)
∑

h exp
(
2ηi t1γh1 − γ 2

h1 + 2ηi t2γh2 − γ 2
h2

) .

These latter equations show that the model reduces to a linear model. The baseline
category in the multinomial logistic regression model is represented by the class that
has coordinates equal to zero on all dimensions.

More generally, defining the IPC models with the sets of coordinates shown above,
working out the squared distances and simplifying we have that 2α I

0m − 1 = αM
0c and

2β I
m = βM

c , where the superscript I identifies the parameters from the IPC model
and the superscript M those of the multinomial model. The IPC model in maximum
dimensionality is thus exactly equal to the multinomial logistic regression model. If
the dimensionality is reduced this equivalence is lost.

3.2 Missing responses as extra response category

Suppose, the response variable has two categories, A and B, i.e. a binary logistic
regression problem.Whenmissing values occur, they can be treated as a third category
of the response variable. This changes the problem to a multinomial one, where the
response variable now has three categories, A, B, and missing (M). To these data a
multinomial model can be fitted with three categories. In the multinomial model for
three response categories two regression equations are fitted: A baseline category is
chosen and contrasts are made of the two other categories against this baseline. For
example, when A is the baseline category the following two contrast are defined:
B against A, and M against A. For each of these contrasts a regression equation is
developed. With a single predictor, xi , for example this looks like

log

(
πB(xi )

πA(xi )

)
= αB + xiβB,

log

(
πM (xi )

πA(xi )

)
= αM + xiβM .

The interpretation of the first equation is that, given the value is non missing, with
every unit increase in x the log odds for category B against A goes up by an amount
of βB . Similarly, the second equation also has a conditional interpretation, given the
response value is not equal to B. From the two equations the third contrast of B against
M can be obtained, which again has a conditional interpretation, given the response
value is not equal to A.

Because IPC models in maximum dimensionality equal multinomial models the
same reasoning is valid for the IPC models. That is, if we set category A equal to
category 1 in Sect. 3.1, category B equal to 2, and category M equal to 3, and we
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identify the model as defined in Sect. 3.1 with category A in the origin, the first
dimension of the IPC solution pertains to the contrast B against A and the second
dimension to the contrast M against A.

Now, suppose our response variable has three categories. With missing values and
treating them as a fourth category the IPC model can be fitted using three dimensions.
The class point matrix is fixed and defined as in the previous section. It should be
noted that the model for complete data is equal to a multinomial logistic regression
for a response category with three levels. The model for incomplete data is equal
to a multinomial logistic regression model for a response category with four levels.
Therefore, the model actually changes in definition and interpretation. Similarly to
the previous case the interpretation of the first two dimensions refers to log odds
relationships among these three response categories, given that the observation is not
missing.

In the IPC model often dimension reduction is used. In that case the equality of
IPC and multinomial logistic regression is lost. However, it is still possible to define
a new category for missing responses and it is still possible to define the conditional
odds, given the observation is not missing.

4 Monte Carlo simulation study

In this section we investigate the approach to deal with missing values using a Monte
Carlo study.

4.1 Data generation

Data were generated for three categories, A, B, and C, with initial probabilities π0 =
[0.7, 0.2, 0.1]T. Two groups were defined, resembling a control and a treatment group.
Transition probabilities were defined for two conditions: a persistent condition and a
high-change condition.

In the persistent condition the transition probabilities, Pr(Yt = c|Y(t−1) = c′), for
the treatment group are

⎡

⎣
0.4 0.2 0.4
0.2 0.4 0.4
0.2 0.2 0.6

⎤

⎦ ,

while the transition probabilities for the control group are

⎡

⎣
0.6 0.2 0.2
0.2 0.6 0.2
0.2 0.2 0.6

⎤

⎦ .

This last matrix shows that for someone who was in category A the probability to stay
in A is 0.6, the probability to transit to category B is 0.2, and the probability to transit
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to category C is also 0.2 (first row). The second row pertains to subjects who were in
category B, and the third row to subjects who were in category C.

In the high-change condition the transition probabilities for the treatment group are

⎡

⎣
0.1 0.3 0.6
0.3 0.1 0.6
0.4 0.4 0.2

⎤

⎦ ,

while the transition probabilities for the control group are

⎡

⎣
0.2 0.4 0.4
0.4 0.2 0.4
0.4 0.4 0.2

⎤

⎦ .

In both conditions the treatment group has larger probabilities to make a transition
towards category C. These transition probabilities are homogeneous over time. Data
were generated for four time points and 400 participants. R = 500 replicated data sets
were generated, indexed by r .

4.2 Creating missing values

Missing values were created with four conditions. To create missing we defined for
every response at each time point a probability by

Pr(S = 1) = exp(μ)

1 + exp(μ)

where S is a missing indicator. The term μ differs per condition. The four conditions
are (Rubin 1976):

– Missing Completely at Random [MCAR]. The probability of a missing does not
depend on other variables but is constant over conditions, i.e.

μ = −0.32;

– Missing at Random [MAR1]. The probability of missing depends on the previous
response. Subjects that were in categoryC have a higher probability to be missing

μ = −0.4 + 0.1I (Y−1 = A) + 0.1I (Y−1 = B) + 0.3I (Y−1 = C),

where I (·) is an indicator function and Y−1 denotes the previous response;
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– Missing at Random [MAR2]. The probability of missing depends on the previous
two responses. Subjects that were in category C at both time points have a higher
probability to be missing

μ = −0.4 + 0.1I (Y−1 = A) + 0.1I (Y−1 = B) + 0.3I (Y−1 = C)

−0.1I (Y−2 = A) − 0.1I (Y−2 = B) + 0.2I (Y−2 = C),

where Y−1 denotes the previous response and Y−2 the response two time points
back. Note that in this condition the missingness mechanism is more complex than
either the data generation scheme or the analysis model (next section), i.e. both
take only the previous time point into account;

– Missing Not at Random [MNAR]. The probability of missing depends on the
previous response and the current response. Subjects that are or were in category
C have a higher probability to be missing

μ = −0.4 + 0.1I (Y−1 = A) + 0.1I (Y−1 = B) + 0.3I (Y−1 = C)

−0.1I (Y = A) − 0.1I (Y = B) + 0.2I (Y = C).

Here the missing depends on the otherwise observed value (Y ), a condition that
usually leads to bias.

4.3 Analysis

Complete data were analyzed using the IPC model in two dimensions, i.e. a full
dimensional analysis. The following model was used for the subject positions

ηim = αm + β1m I (Yi(−1) = B) + β2m I (Yi(−1) = C) + β3mGi

+β4m I (Yi(−1) = B) × Gi + β5m I (Yi(−1) = C) × Gi (8)

where I (·) is an indicator function, so I (Yi(−1) = B) indicates whether the previ-
ous response of subject i was category B, and Gi represents an dummy variable for
treatment group. Per dimension there are six parameters.

Data withmissing values, where themissing category is treated as a fourth category,
were analyzed using the IPCmodel in three dimensions. The same linear predictor was
used for the positions of the persons (Eq. 8), but now there are three linear predictors
because it is a three dimensional model. It should be noted that the model for complete
data is equal to a multinomial logistic regression for a response category with three
levels. The model for incomplete data is equal to a multinomial logistic regression
model for a response category with four levels. Therefore, the model actually changes
in definition and interpretation.

The regression weights on the first two dimensions from the analysis of complete
data can be compared with the regression weights on the first two dimensions of the
analysis of data including missing values. Denote by θ̂cr an estimated parameter in
the r -th replication for the complete data. Denote by θ̂ ir an estimated parameter in the
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r -th replication for the incomplete data (one of the four conditions). To investigate the
influence of missing data, analysis focuses on relative bias

1

R

∑

r

(θ̂cr − θ̂ ir ),

that is, we compare parameter estimates obtained on complete data with estimates
obtained on data including missing values.

4.4 Results

In the persistent condition themean percentage ofmissingness in each of the conditions
is 42.0, 43.9, 42.4, and 44.2 % in MCAR, MAR1, MAR2, and MNAR, respectively.
So, differences in relative bias are not due to differences in the number of missing
values. The results of the Monte Carlo study for the persistent condition are shown in
Table 1, where it can be seen that the approach with an extra category for a missing
response leads to almost unbiased parameter estimates compared to an analysis on
the complete data. This is true for all conditions of missingness, even the missing
not at random condition. The only exception seems to be the intercept of the second
dimension for the Missing Not at Random condition. Because there is no general
pattern this seems to be a case of random fluctuation.

In the high-change condition the mean percentage of missingness in each of the
conditions is 42.0, 44.1, 43.8, and 44.6 % in MCAR, MAR1, MAR2, and MNAR,
respectively. The results of the Monte Carlo study for the high-change condition are
shown in Table 2, where it can be seen that the results are very similar to the results
obtained in the persistent condition.

5 Empirical illustration

As an illustration of our methodology, data from the McKinney Homeless Research
Project (MHRP) in San Diego as described in chapters 10 and 11 in the book by
Hedeker and Gibbons (2006), will be used. The aim of this project was to evaluate
the effectiveness of using an incentive (a so-called Section 8 incentive) as a means
of providing independent housing to homeless people with severe mental illness. A
sample of 361 individuals took part in this longitudinal study and were randomly
assigned to the experimental or control condition. Individuals’ housing status was
assessed using three categories (living on the street (S)/living in a community center
(C)/living independently (I)). As inmany longitudinal data sets, some observations are
missing at specific time points. We will use missing (M) as a fourth response category.
Measurements are taken at baseline and at 6, 12, and 24 month follow up. Since we
will be specifically interested in transitions the transition rates for the control condition
and the experimental condition are shown in Tables 3 and 4 respectively.

Notice that within both tables there are many entries with zero observations. This
would be problematic for a standard approach asmultinomial logistic regressionwhere
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Table 3 Transition frequencies over time for the control group

T1–T2 T2–T3 T3–T4

S C I M S C I M S C I M

Street 23 45 21 11 8 12 5 5 8 1 2 2

Community 6 40 10 5 5 60 18 10 8 50 22 5

Independent 1 8 7 3 0 8 25 5 0 9 34 5

Missing 0 0 0 1 0 5 0 15 2 6 3 24

Table 4 Transition frequencies over time for the experimental group

T1–T2 T2–T3 T3–T4

S C I M S C I M S C I M

Street 11 28 37 4 9 0 4 2 11 5 2 1

Community 3 13 45 14 7 12 20 6 0 16 4 3

Independent 1 4 19 2 3 9 85 4 4 13 94 4

Missing 0 0 0 0 0 2 6 12 4 2 3 15

such zeros lead to parameter estimates that tend to plus or minus infinity. Using dimen-
sion reduction in a distance framework these problems do not occur.

With these data we can pose ourselves the following questions:

1. Are the transitions homogeneous over time?
2. Are the transitions homogeneous over groups?
3. Are the transitions homogeneous over time and groups?

5.1 Models for MHRP data

We denote the predictor variables by P for previous response, G for treatment group,
and T for time. The variable G is dichotomous with G = 0 for the control group
and G = 1 for the experimental group. Following general log-linear notation, main
effects are denoted by single letters while interactions are denoted by adjacent letters,
i.e. PG denotes an interaction between previous response and treatment and PGT
indicate a three variable interaction. Only hierarchical models are used, meaning that
if an interaction is present also the underlying main effects are present in the model.
The research questions are translated in the following models of interest

M1 (P) Only the previous status has an influence on the current status. This influ-
ence is the same for both the treatment group and the control group and is
homogeneous over time;

M2 (P,G) Previous status plus treatment has influence on the current status, they
have an additive effect on the log odds;

M3a (P,G, Tl) Previous status plus treatment and time have an influence on current
status. Time is treated in a linear way;
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M3b (P,G, Tc) Previous status plus treatment and time have an influence on current
status. Time is treated in a discrete way;

M4a (PG, Tl) The interaction between previous status and treatment plus a main
effect of time influence the current status. Time is treated in a linear way;

M4b (PG, Tc) The interaction between previous status and treatment plus a main
effect of time influence the current status. Time is treated in a discrete way;

M5a (G, PTl) The interaction between previous status and time plus a main effect
of treatment influence the current status. Time is treated in a linear way;

M5b (G, PTc) The interaction between previous status and time plus a main effect
of treatment influence the current status. Time is treated in a discrete way;

M6a (PG, PTl) The interaction between previous status and time plus a an interac-
tion of previous status and treatment influence the current status. Time is treated
in a linear way;

M6b (PG, PTc) The interaction between previous status and time plus a an interac-
tion of previous status and treatment influence the current status. Time is treated
in a discrete way;

M7a (PG, PTl ,GTl) The interaction between previous status and time, an interac-
tion of previous status and treatment influence the current status. Time is treated
in a linear way;

M7b (PG, PTc,GTc) The interaction between previous status and time plus a an
interaction of previous status and treatment influence the current status. Time
is treated in a discrete way;

M8a (PGTl) The three-way interaction between previous status, time, and treatment
influence the current status. Time is treated in a linear way;

M8b (PGTc) The three-way interaction between previous status, time, and treatment
influence the current status. Time is treated in a discrete way.

5.2 Model selection

The AIC/QIC statistic for each of the described models is given in Table 5, where it
can be seen that the model with all pairwise interactions and time used in a linear way
has the smallest AIC. In fact, it is quite a bit lower than all other models except for
Model 8a which is a more complex model. The model probability for Model 7a is
0.98, the evidence ratio compared to the second best model equals 0.98/0.02 = 49,
indicating that the support of model 7a is 49 times that of model 8a.

5.3 Model interpretation

The final selected model has the following linear predictor for the subjects positions
on dimension m

ηi tm = αm + β1m I (Yi(−1) = C) + β2m I (Yi(−1) = I ) + β3m I (Y(−1) = M)

+ β4mGi + β5mTit + β6m I (Yi(−1) = C)Gi

+ β7m I (Yi(−1) = I )Gi + β8m I (Yi(−1) = M)Gi

+ β9m I (Yi(−1) = C)Tit + β10m I (Yi(−1) = I )Tit + β11m I (Yi(−1) = M)Tit

+ β12mGi Tit ,
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Table 5 AIC/QIC values and number of parameters (npar) for the models of interest

AIC/QIC npar Δk wk

M1 2374.60 11.00 130.60 0.00

M2 2309.46 13.00 65.46 0.00

M3a 2288.48 15.00 44.48 0.00

M3b 2313.63 17.00 69.64 0.00

M4a 2283.54 21.00 39.54 0.00

M4b 2286.14 23.00 42.15 0.00

M5a 2290.98 21.00 46.98 0.00

M5b 2274.45 29.00 30.45 0.00

M6a 2295.37 27.00 51.37 0.00

M6b 2272.67 35.00 28.67 0.00

M7a 2244.00 29.00 0.00 0.98

M7b 2259.36 39.00 15.36 0.00

M8a 2252.34 35.00 8.34 0.02

M8b 2275.21 51.00 31.22 0.00

C
I

M

S

S0 S1

C0

C1

I0
I1

M0

M1

Fig. 1 Solution of themodel with pairwise interactions between previous vote, treatment and time. S Street,
C community house, I independent,Mmissing, 1 incentive group, 0 control group. The large dots represent
the categories of the response variable. The arrows represent joint values of the predictor variables. The tail
of the arrow represents the value at T1, the head at T3; Exactly in the middle is T2
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Fig. 2 Contour lines of equal probabilities for each of the four categories of the response variable. S Street,
C community house, I independent,M missing, 1 incentive group, 0 control group

where I (·) is the indicator function. The three terms I (Yi(−1) = C), I (Yi(−1) = I ),
and I (Yi(−1) = M) jointly represent the variable P , previous state; The term Gi

indicates whether a person i receives treatment (Gi = 1) or not (Gi = 0). The
variable Tit represents time, with codes 0, 1, and 2. This is a complicated model, every
variable has an interaction with each other variable on the prediction of the response.
The graphical solution of the model is given in Fig. 1. In this graph the four classes
of the responses are given together with prediction regions. The prediction regions
specify areas where the probability for a certain category are highest. The decision
boundaries are exactly at equal distances of two class points. In the upper region the
class Missing is most probable, while at the left hand side the class Living on the
Street is most probable. The probabilities for each category are visualized in Fig. 2 by
a contour plot, giving lines of subjects’ positions with a constant probability for a given
class. These can be used in combination with Fig. 1 to provide actual probabilities for
all categories.

In Fig. 1 eight arrows are visualized that define possible subject positions for a
combination of previous response and treatment at the three consecutive time points.
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C
I

M

S

S0 S1

C0

C1

I0
I1

M0

M1

Fig. 3 Individual trajectory of a subject receiving the incentive who lives on the street at T1, lives indepen-
dently at T2, and lives on the street again at T3. S Street, C community house, I independent,M missing, 1
incentive group, 0 control group

That is, for a person that lived in a community house on the previous time point and
did not obtain treatment (i.e. the C0 group), the arrow gives the positions at T = 0, 1,
and 2 respectively where 0 is at the tail of the arrow, 2 is at the head and T = 1 in the
middle. The fact that the categories for Community house are moving shows that the
Markov chain is not homogeneous. Of note is that these ‘groups’ are not formed by a
constant group of individuals, i.e., for a subject in the control condition living on the
street at the start but making a transition towards living in a community house, (s)he
starts in group S0 and later on is in group C0.

It can be seen that subjects who receive the incentive andwho live on the street at T1
(the arrow indicated by S1) have a high probability of a transition towards living inde-
pendently (I) or towards living in a community center (C), i.e. this position is almost
on the boundary between these two class points somewhat nearer to living indepen-
dently. For the same category at T2, however, the probability for a transition towards
living independently became smaller and the probability of a transition towards living
in a community house is larger. Also, the probability of no transition, i.e. keep living
on the street, became larger. For the same previous status at T3, the probability of a
transition towards living independently strongly diminished, and chances are highest
for no transition.

For subjects who did not receive the incentive and are living on the street (the
arrow indicated by S0) a transition towards living in a community house is most likely
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between T1 and T2 and between T2 and T3; from T3 to T4 the probability of staying
on the street is the highest.

For subjects in the control condition and who live in a community house (The C0
group) the probability are rather high to stay in the community house. In contrast,
subjects that receive the incentive and who live in a community house have a high
probability to transit to living independently, but this probability becomes smaller
over time.

For subjects that live independently and received the incentive (arrow indicated by
I1) the probability is quite high (>0.8) to keep living independently; for those that live
independently and did not receive the incentive (arrow indicated by I0) the probability
of no transition is also highest and this probability becomes larger over time.

It should be noted that the arrows do not represent individual trajectories. Indi-
vidual trajectories are characterized by the coordinates ηi tm . For every time point,
t = 1, . . . , Ti , subject i has a position ηi t in the Euclidean space. Joining the ηi1,
ηi2, and ηi3 gives an individual trajectory. For example, a subject who starts in the
treatment group and who is living on the street at T1 and makes a transition towards
living independently makes a ‘jump’ from the S1 arrow towards the I1 arrow. When
this person transits back between T2 and T3 (s)he ‘jumps’ towards the arrow head of
the S1 arrow. This individual trajectory is indicated in Fig. 3. At every time point the
subject has a set of probabilities for the response variable, defined by the position of
the subject and the distances towards each of the response category points.

5.4 Previous MHRP analyses

Hedeker and Gibbons (2006) analyzed the data using a mixed effect multinomial logit
model and De Rooij and Schouteden (2012) provide a graphical representation of that
model. The mixed effect multinomial logit model looks at the temporal development
of the three category probabilities for the two groups. The results presented in Hedeker
and Gibbons (2006) and De Rooij and Schouteden (2012) suggest that the subjects in
the treatment group have higher probability to be in the Independent Living condition,
although this probability declines at the end of the study. For the control condition the
probability of Living on the Street also becomes smaller. The same conclusions can
be derived from our model. For the treatment group, all arrows start in the region for
Independent living or close to that (M1). The head of these arrows are closer to other
regions indicating that the probabilities to transit towards either a Community house
or Living on the Street become larger.

6 Discussion

Wepresented a transitional approach to analyze data froman experimental longitudinal
design. Having such data, often a marginal or subject specific model is used for the
analysis but a transitional approach might provide additional information. Having
such a design it is expected that the transition probabilities differ for the two groups,
where the treatment condition has more favorable transitions compared to the control
condition.
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Such a transitional approach was developed within a distance framework. The
distance framework has several advantages compared to a multinomial regression
model. First, dimension reduction is possible such that the number of parameters is
kept low compared to the multinomial regression model. Furthermore, the distance
approach is not as vulnerable to empty cells as the multinomial regression model.
Therefore, in cases where parameter estimates of the multinomial regression model
do not exist, the IPC model may still be estimable.

In longitudinal data often missing values occur. Within the modeling framework
we created one extra category in the response variable. As such, we created a model
for the simultaneous analysis of the response and the missingness. Treating missing
values as an extra category of the response variable seems a promising way to deal
with missing values. It hardly complicates the analysis and, although the Monte Carlo
study was limited, the results are promising.

In our Monte Carlo study we investigated a three category multinomial regression
model. When missing data occur, a four category multinomial model is obtained. No
dimension reduction was utilized in the Monte Carlo study. It should be noted that
for binary outcome variables, that are much more common than multinomial ones,
with missing values a multinomial model with three categories is obtained that can
be fitted using the IPC model in two dimension. That is, having longitudinal binary
data with missing values an IPC model may be utilized in two dimensions to obtain
unbiased parameter estimates. Moreover, using this approach we also obtain insight
in the relationship between explanatory variables and drop out.

In our Monte Carlo study we found that the results obtained with missing data are
almost the same as obtained on complete data, even in the Missing Not at Random
situation. Although this seems promising, care should be taken, because the mecha-
nism by which the missing values are treated and why this results in almost unbiased
results is not completely understood. At least in the MNAR condition more bias was
expected. Further simulation studies and theoretical work is needed in order to com-
pletely understand the process. A line of reasoning about the process is as follows.
For MNAR situations a model that jointly models the responses and the missingness
is often needed. Two types of models are distinguished by Molenberghs and Ver-
beke (2005): selection models and pattern mixture models. Albert (2000) discusses a
transitional model for longitudinal binary data where missingness may occur. He dis-
tinguishes between intermittent missingness and drop-out and developed a transition
model that deals with non-ignorable missingness, i.e. missing values that do depend
on the otherwise observed value. Therefore, he developed a joint model where the
responses follow a k-th order Markov model and the missingness follows a first order
Markov model, where missingness is dependent on the current (possibly missing)
response. An EM algorithm was proposed for fitting the model. In our case we also
jointly model the responses and missingness, but in a rather simple way: we just added
an extra category to our response variable. It should be noted that this changes the def-
inition and interpretation of the model. However, it is well known that a multinomial
regression can be fitted using separate binary logistic regressions (Agresti 2002).

We also showed a detailed application on a longitudinal experimental study.A series
of potential models was outlined and one model clearly stood out as best fitting using
a AIC/QIC criterion. This model is a non homogeneous Markov model, the transition
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probabilities change over time. The selectedmodel incorporates three interaction terms
which makes a traditional multinomial logit model very difficult to interpret. Our
graphical representation in Fig. 1 helps to get a clearer interpretation. In the application
dimension reduction was applied, while in theMonte Carlo studymodels were fitted in
the highest dimensionality. How parameters are recovered using the proposed method
for missing data when also dimension reduction is applied is unknown. Therefore,
more extensive simulation studies are needed. This issue could affect the results in our
application.

All models and analyses were performed in R. R-code of both the Monte Carlo
study as well as the empirical data analysis can be obtained from the website of the
author, http://www.markderooij.info.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.
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