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Abstract An n × n agreement table F = { fi j } with n ≥ 3 ordered categories can
for fixed m (2 ≤ m ≤ n − 1) be collapsed into

(n−1
m−1

)
distinct m × m tables by com-

bining adjacent categories. It is shown that the components (observed and expected
agreement) of Cohen’s weighted kappa with linear weights can be obtained from the
m × m subtables. A consequence is that weighted kappa with linear weights can be
interpreted as a weighted average of the linearly weighted kappas corresponding to
the m × m tables, where the weights are the denominators of the kappas. Moreover,
weighted kappa with linear weights can be interpreted as a weighted average of the
linearly weighted kappas corresponding to all nontrivial subtables.

Keywords Cohen’s kappa · Inter-rater agreement · Merging categories ·
Linear weights · Quadratic weights · Subtables
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1 Introduction

The kappa coefficient (Cohen 1960; Brennan and Prediger 1981; Zwick 1988; Hsu
and Field 2003; Warrens 2008a,b, 2010a,b) is a popular descriptive statistic for sum-
marizing the cross-classification of two nominal variables with identical categories.
Often used as a measure of agreement between two observers classifyingsubjects
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68 M. J. Warrens

into mutually exclusive categories, Cohen’s kappa is commonly applied to cross-
classifications encountered in psychometrics, educational measurement, epidemiol-
ogy (Jakobsson and Westergren 2005) and diagnostic imaging (Kundel and Polansky
2003). Various extensions of kappa have been developed (Berry and Mielke 1988;
Nelson and Pepe 2000; Kraemer et al. 2004), including, multi-rater kappas (Conger
1980; Warrens 2010c), kappas for groups of raters (Vanbelle and Albert 2009a,b) and
weighted kappas (Cohen 1968; Vanbelle and Albert 2009c; Warrens 2010d, 2011a,c).
An important generalization of Cohen’s kappa is the weighted kappa coefficient
(Cohen 1968; Fleiss and Cohen 1973; Brenner and Kliebsch 1996; Schuster 2004;
Vanbelle and Albert 2009c). This descriptive statistic is commonly used for sum-
marizing the cross-classification of two ordinal variables with identical categories.
Weighted kappa allows the use of weights to describe the closeness of agreement
between categories.

Popular weights for weighted kappa are the so-called linear weights (Cicchetti and
Allison 1971; Vanbelle and Albert 2009c) and quadratic weights (Fleiss and Cohen
1973; Schuster 2004). A general criticism formulated against the use of weighted
kappa is that the weights are arbitrarily defined (Vanbelle and Albert 2009c). In sup-
port of the quadratic weights, Fleiss and Cohen (1973) and Schuster (2004) showed
that the quadratically weighted kappa can be interpreted as an intraclass correlation
coefficient. Support for the use of the linearly weighted kappa was derived in Vanbelle
and Albert (2009c). An agreement table with n ∈ N≥3 ordered categories can be
collapsed into n − 1 distinct 2 × 2 tables by combining adjacent categories. Vanbelle
and Albert (2009c) showed that the components (observed and expected agreement)
of weighted kappa with linear weights can be obtained from the 2 × 2 subtables.
A consequence is that the weighted kappa with linear weights can be interpreted as
a weighted average of the 2 × 2 kappas, where the weights are denominators of the
2 × 2 kappas (Warrens 2011b).

In this paper we focus exclusively on the linearly weighted kappa. We show that
the results presented in Vanbelle and Albert (2009c) and Warrens (2011b) describe
a special case of a more general property of weighted kappa. An n × n agreement
table F = { fi j } with n ≥ 3 ordered categories can for fixed m ∈ {2, 3, . . . , n − 1} be
collapsed into

M(n, m) =
(

n − 1

m − 1

)
= (n − 1)!

(n − m)!(m − 1)!
distinct m × m tables by combining adjacent categories. It is proved that the compo-
nents of weighted kappa with linear weights can be obtained from the m×m subtables.
A consequence is that the weighted kappa with linear weights can be interpreted as a
weighted average of the linearly weighted kappas corresponding to the m × m tables,
where the weights are denominators of the kappas. Moreover, the n × n weighted
kappa with linear weights can thus be interpreted as a weighted average of the linearly
weighted kappas corresponding to all nontrivial subtables.

The paper is organized as follows. In the next section we introduce the weighted
kappa coefficient with linear weights. In Sect. 4 we present the main results. First,
Sect. 3 provides a numerical illustration of the main results. Section 5 contains a
discussion.
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Cohen’s linearly weighted kappa is a weighted average 69

2 Linearly weighted kappa

In this section we define Cohen (1968) linearly weighted kappa coefficient. Suppose
that two observers each distribute the same set of u objects (individuals) among a set of
n ≥ 2 ordered categories that are defined in advance. To measure the agreement among
the two observers, a first step is to obtain a square agreement table F = {

fi j
}

where
fi j indicates the number of objects placed in category i by the first observer and in
category j by the second observer (i, j ∈ {1, 2, . . . , n}). For notational convenience,
let P = {

pi j
}

be the table of proportions with relative frequencies pi j = fi j/u. Row
and column totals

pi =
n∑

j=1

pi j and qi =
n∑

j=1

p ji

are the marginal totals of P.
An example of P is presented in Table 1. The data in Table 1 are the relative frequen-

cies of data presented in Landis and Koch (1977) and originally reported by Holmquist
et al. (1968) (see also, Agresti 1990, p. 367). Two pathologists classified each of 118
slides in terms of carcinoma in situ of the uterine cervix, based on the most involved
lesion, using the ordered categories (1) Negative, (2) Atypical squamous hyperplasia,
(3) Carcinoma in situ, (4) Squamous carcinoma with early stromal invasion, and (5)
Invasive carcinoma.

The linearly weighted kappa coefficient (Cohen 1968) is defined as

L = P − E

1 − E
(1)

where

P =
n∑∑

i, j=1

[
1 − |i − j |

n − 1

]
pi j

Table 1 Relative frequencies of classifications of 118 slides in terms of carcinoma in situ of the uterine
cervix by two pathologists

Pathologist A Pathologist B Row totals

1 2 3 4 5

1 0.186 0.017 0.017 0 0 0.220

2 0.042 0.059 0.119 0 0 0.220

3 0 0.017 0.305 0 0 0.322

4 0 0.008 0.119 0.059 0 0.186

5 0 0 0.026 0 0.026 0.052

Column totals 0.229 0.102 0.586 0.059 0.026 1
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70 M. J. Warrens

and

E =
n∑∑

i, j=1

[
1 − |i − j |

n − 1

]
pi q j

are the observed and expected agreement respectively. It is usual to use the symbol
κw to denote weighted kappa. In (1) we use the symbol L for notational convenience.
For the data in Table 1 we have P = 0.896, E = 0.704 and L = 0.649.

3 Numerical illustration of the main results

In this section we give an illustration of the main results presented in the next section.
As an example we consider the 5× 5 agreement table presented in Table 1. It is some-
times desirable to combine some of the categories of an agreement table (Warrens
2010e), for example, when categories are easily confused (Schouten 1986). Since the
categories are ordered, it only makes sense to combine adjacent categories.

By combining adjacent categories, a 5 × 5 table can be collapsed into a subtable of
size 4 × 4, 3 × 3 or 2 × 2. A trivial subtable is obtained if we combine all categories
into one single category. Given a n ×n table and a positive integer m (2 ≤ m ≤ n −1),
there are

(n−1
m−1

)
ways to obtain a m × m table by combining adjacent categories. For

each collapsed table we may calculate the corresponding P value, E value and L
value. In the following it is discussed how the P values, E values and L values of the
subtables are related to the P value, E value and L value of the original 5 × 5 table.

By combining two adjacent categories, a 5 × 5 table can be collapsed into
(4

3

) = 4
distinct 4×4 tables. Let P(1)(2)(3)(45), E(1)(2)(3)(45) and L(1)(2)(3)(45) denote
respectively the P value, E value and L value of the 4 × 4 table that is obtained by
combining categories 4 and 5 into a new category. For the data in Table 1 we have

P1 = P(12)(3)(4)(5) = 0.887, E1 = E(12)(3)(4)(5) = 0.722

P2 = P(1)(23)(4)(5) = 0.915, E2 = E(1)(23)(4)(5) = 0.765

P3 = P(1)(2)(34)(5) = 0.912, E3 = E(1)(2)(34)(5) = 0.699

P4 = P(1)(2)(3)(45) = 0.870, E4 = E(1)(2)(3)(45) = 0.630

L1 = L(12)(3)(4)(5) = 0.594, w1 = 1 − E1 = 0.278

L2 = L(1)(23)(4)(5) = 0.639, w2 = 1 − E2 = 0.235

L3 = L(1)(2)(34)(5) = 0.709, w3 = 1 − E3 = 0.301

L4 = L(1)(2)(3)(45) = 0.649, w4 = 1 − E4 = 0.370.

Note that weights w1, w2, w3 and w4 are the denominators of L1, L2, L3 and L4.
We have

1

4

4∑

�=1

P� = 0.896 = P and
1

4

4∑

�=1

E� = 0.704 = E,
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Cohen’s linearly weighted kappa is a weighted average 71

and

∑4
�=1 w�L�

∑4
�=1 w�

= (0.278)(0.594)+(0.235)(0.639)+(0.301)(0.709)+(0.370)(0.649)

0.278 + 0.235 + 0.301 + 0.370

= 0.649 = L .

Thus, the overall P value and E value are respectively equivalent to the average P�

value and E� value of the four distinct 4 × 4 tables that are obtained by combining
two adjacent categories. Furthermore, the overall L value is equivalent to a weighted
average of the L values of the 4 × 4 tables.

A 5 × 5 table can be collapsed into
(4

2

) = 6 distinct 3 × 3 tables. Let
P(12)(3)(45), E(12)(3)(45) and L(12)(3)(45) denote respectively the P value, E
value and L value of the 3 × 3 table that is obtained by combining categories 1 and 2,
and 4 and 5. For the data in Table 1 we have

P5 = P(123)(4)(5) = 0.911, E5 = E(123)(4)(5) = 0.822

P6 = P(1)(234)(5) = 0.949, E6 = E(1)(234)(5) = 0.789

P7 = P(1)(2)(345) = 0.881, E7 = E(1)(2)(345) = 0.586

P8 = P(12)(34)(5) = 0.907, E8 = E(12)(34)(5) = 0.723

P9 = P(12)(3)(45) = 0.843, E9 = E(12)(3)(45) = 0.619

P10 = P(1)(23)(45) = 0.886, E10 = E(1)(23)(45) = 0.685

L5 = L(123)(4)(5) = 0.499, w5 = 1 − E5 = 0.178

L6 = L(1)(234)(5) = 0.759, w6 = 1 − E6 = 0.211

L7 = L(1)(2)(345) = 0.713, w7 = 1 − E7 = 0.414

L8 = L(12)(34)(5) = 0.663, w8 = 1 − E8 = 0.277

L9 = L(12)(3)(45) = 0.588, w9 = 1 − E9 = 0.381

L10 = L(1)(23)(45) = 0.637, w10 = 1 − E10 = 0.315.

We have

1

6

10∑

�=5

P� = 0.896 = P and
1

6

10∑

�=5

E� = 0.704 = E,

and
∑10

�=5 w�L�
∑10

�=5 w�

= 0.649 = L .

Thus, the overall P value and E value are equivalent to the average P� value and
E� value of the six distinct 3 × 3 tables that can be obtained by combining adjacent
categories. Furthermore, the overall L value is equivalent to a weighted average of the
L values of the 3 × 3 tables.
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Finally, a 5 × 5 table can be collapsed into
(4

1

) = 4 distinct 2 × 2 tables. Let
P(12)(345), E(12)(345) and L(12)(345) denote respectively the P value, E value
and L value of the 2 × 2 table that is obtained by combining categories 1 and 2
into one category, and 3, 4 and 5 into another category. For the data in Table 1 we
have

P11 = P(1)(2345) = 0.924, E11 = E(1)(2345) = 0.652

P12 = P(12)(345) = 0.839, E12 = E(12)(345) = 0.520

P13 = P(123)(45) = 0.847, E13 = E(123)(45) = 0.718

P14 = P(1234)(5) = 0.975, E14 = E(1234)(5) = 0.926

L11 = L(1)(2345) = 0.781, w11 = 1 − E11 = 0.348

L12 = L(12)(345) = 0.664, w12 = 1 − E12 = 0.480

L13 = L(123)(45) = 0.459, w13 = 1 − E14 = 0.282

L14 = L(1234)(5) = 0.655, w14 = 1 − E14 = 0.074.

We have

1

4

14∑

�=11

P� = 0.896 = P and
1

4

14∑

�=11

E� = 0.704 = E,

and

∑14
�=11 w�L�

∑14
�=11 w�

= 0.649 = L .

Thus, the overall P value and E value are equivalent to the average P� value and E�

value of the four distinct 2 × 2 tables that can be obtained by combining adjacent
categories. Furthermore, the overall L value is equivalent to a weighted average of the
L values of the 3 × 3 tables.

Summarizing, in this section we considered three nontrivial ways of collapsing an
agreement table with five ordered categories into subtables. If we consider for a given
m ∈ {2, 3, 4} all collapsed m × m tables, then the average P� value and E� value
are equivalent to the P value and E value of the original 5 × 5 table. Furthermore, if
we calculate a weighted average of the linearly weighted kappas corresponding to the
m × m tables using the denominators of the individual kappas as weights, then this
mean value is identical to the L value of the original 5 × 5 table. Moreover, for the
data in Table 1 we have

1

14

14∑

�=1

P� = P,
1

14

14∑

�=1

E� = E, and

∑14
�=1 w�L�

∑14
�=1 w�

= L .

Thus, the overall P value and E value are equivalent to the average P� value and E�

value of all nontrivial subtables that can be obtained by combining adjacent categories.
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Cohen’s linearly weighted kappa is a weighted average 73

Furthermore, the overall L value is equivalent to a weighted average of the L values
of the subtables. These observations are formalized in the next section.

4 Main results

In this section we present the main results. An n × n agreement table can be collapsed
into n − 1 distinct (n − 1) × (n − 1) tables by combining two adjacent categories.
Theorem 1 shows that the overall P value and E value are equivalent to the average
P� value and E� value of the subtables.

Theorem 1 Consider an agreement table P with n ∈ N≥3 categories and consider
the n − 1 collapsed (n − 1) × (n − 1) tables that are obtained by combining two
adjacent categories. Let P� and E� for � ∈ {1, 2, . . . , n − 1} denote respectively the
observed and expected agreement of the (n − 1) × (n − 1) table in which categories
� and � + 1 are combined. Then

1

n − 1

n−1∑

�=1

P� = P (2)

and

1

n − 1

n−1∑

�=1

E� = E . (3)

Proof We first determine the average of the P�. Consider an arbitrary element pi j of
P. The weight of pi j in P is

1 − |i − j |
n − 1

.

Next we consider the weights of pi j in the P�. For elements on the main diagonal
the weight is always unity. Therefore, suppose that pi j is not on the main diagonal
(i �= j). We distinguish two situations. If i ≤ � < � + 1 ≤ j or j ≤ � < � + 1 ≤ i ,
then pi j is in the collapsed table one position closer to the main diagonal compared
to its position in P. Thus, in this case pi j has a weight

1 − |i − j | − 1

n − 2

in P�. If we consider all n −1 subtables, this is the case for |i − j | of the P�. If i, j < �

or � + 1 < i, j , then pi j is removed the same number of positions from the main
diagonal in both the (n − 1) × (n − 1) table and in P. Thus, in this case pi j has a
weight

1 − |i − j |
n − 2
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74 M. J. Warrens

in P�. If we consider all n − 1 subtables, this is the case for n − 1 − |i − j | of the P�.
Thus, on average an arbitrary element pi j has a weight

1

n − 1

[
|i − j |

(
1 − |i − j | − 1

n − 2

)
+ (n − 1 − |i − j |)

(
1 − |i − j |

n − 2

)]

= |i − j |(n − 2 − |i − j | + 1) + (n − 1 − |i − j |)(n − 2 − |i − j |)
(n − 1)(n − 2)

= (n − 1)(n − 2) − (n − 2)|i − j |
(n − 1)(n − 2)

= 1 − |i − j |
n − 1

.

This proves (2). Furthermore, using similar arguments with the n×n table E = {
pi q j

}

and the E�, we obtain (3). This completes the proof. ��
We have the following consequence of Theorem 1.

Corollary 1 Consider the situation in Theorem 1 and let L denote the L value of the
agreement table. We have

L =
∑n−1

�=1 w�L�
∑n−1

�=1 w�

,

where

L� = P� − E�

1 − E�

and w� = 1 − E�

for � ∈ {1, 2, . . . , n − 1}.
Proof Using (2) and (3) we have

∑n−1
�=1 w�L�

∑n−1
�=1 w�

=
∑n−1

�=1 (P� − E�)
∑n−1

�=1 (1 − E�)
= (n − 1)P − (n − 1)E

(n − 1) − (n − 1)E
= L .

��
In Theorem 1 we considered the case that, by combining two adjacent categories,

an n × n agreement table may be collapsed into subtables of size (n − 1) × (n − 1).
Vanbelle and Albert (2009c) and Warrens (2011b) considered the case where the agree-
ment table is collapsed into subtables of size 2 × 2. In Theorem 2 we consider, for
a fixed value of m ∈ {2, . . . , n − 1}, all distinct M(n, m) = (n−1

m−1

)
collapsed m × m

tables that can be obtained by combining adjacent categories. Theorem 2 shows that
the overall P value and E value are equivalent to the average P� value and E� value
of the M subtables.
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Theorem 2 Consider an agreement table with n ≥ 4 categories. Furthermore, con-
sider for a fixed value of m ∈ {2, . . . , n − 1} the M distinct m × m tables that can
be obtained by combining adjacent categories. Let P� and E� for � ∈ {1, 2, . . . , M}
denote, respectively, the observed and expected agreement of the m × m tables. Then

1

M

M∑

�=1

P� = P (4)

and

1

M

M∑

�=1

E� = E . (5)

Proof We only consider the proof of (4). Identity (5) follows from using similar argu-
ments.

Theorem 1 proves the case for m = n − 1. We use backward induction with
m = n − 1 as starting point. Suppose P is the average of the Ph corresponding to
all M(n, k) distinct k × k tables (2 < k < n − 1). It must be shown that P is the
average of the P� corresponding to all M(n, k − 1) distinct (k − 1) × (k − 1) tables.
By Theorem 1 each Ph is the average of k − 1 distinct P�. If we consider all Ph , then
each P� is the same number of times involved as an element of an average Ph . This
number is given by

(n−1
k−1

)
(k − 1)

(n−1
k−2

) = n + k − 1.

Thus, P is equal to the average of the P�. ��
Theorem 2 has several interesting corollaries. Similar to Corollary 1 we have the

following result.

Corollary 2 Consider the situation in Theorem 2 and let L denote the L value of the
agreement table. We have

L =
∑M

�=1 w�L�
∑M

�=1 w�

,

where

L� = P� − E�

1 − E�

and w� = 1 − E�

for � ∈ {1, 2, . . . , M}.
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Proof Using (4) and (5) we have

∑M
�=1 w�L�

∑M
�=1 w�

=
∑M

�=1 (P� − E�)
∑M

�=1 (1 − E�)
= M P − M E

M − M E
= L .

��
Instead of considering subtables of a particular size m×m, we may also consider all

nontrivial subtables of an agreement table that can be obtained by combining adjacent
categories, regardless of their size. For binomial coefficients we have the identity

n∑

k=0

(
n

k

)
= 2n

(Abramowitz and Stegun 1970, p. 10). For an agreement table with n ≥ 3 categories
the number of nontrivial subtables is thus given by

N (n) =
n−2∑

k=1

(
n − 1

k

)

=
n−1∑

k=0

(
n − 1

k

)
−

(
n − 1

0

)
−

(
n − 1

n − 1

)

= 2n−1 − 2.

We have the following consequence of Theorem 2.

Corollary 3 Consider an agreement table P with n ≥ 3 categories and consider all
N = 2n−1 − 2 nontrivial subtables P� with � ∈ {1, 2, . . . , N }. Furthermore, let L
denote the L value of the n×n table and let P� and E� denote respectively the observed
and expected agreement of P�. We have

1

N

N∑

�=1

P� = P, and
1

N

N∑

�=1

E� = E

and

L =
∑N

�=1 w�L�
∑N

�=1 w�

,

where

L� = P� − E�

1 − E�

and w� = 1 − E�

for � ∈ {1, 2, . . . , N }.
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5 Discussion

An important generalization of Cohen (1960) unweighted kappa is the weighted kappa
coefficient (Cohen 1968) for cross-classifications of two ordinal variables with iden-
tical categories. Weighted kappa allows the use of weights to describe the closeness
of agreement between categories. A general criticism formulated against the use of
weighted kappa is that the weights are arbitrarily defined (Vanbelle and Albert 2009c).
Several authors have presented results that support the use of weighted kappa with
quadratic weights (Fleiss and Cohen 1973; Schuster 2004). In this paper we presented
a strong basis for the use of weighted kappa with linear weights. The results presented
here generalize the results derived in Vanbelle and Albert (2009c) and Warrens (2011b).

An agreement table with n ≥ 3 ordered categories can for fixed m ∈
{2, 3, . . . , n − 1} be collapsed into

(n−1
m−1

)
distinct m ×m tables by combining adjacent

categories. In Section 4 it was proved that the components of weighted kappa with
linear weights can be obtained from the m ×m subtables (Theorem 2). A consequence
is that the weighted kappa with linear weights can be interpreted as a weighted aver-
age of the linearly weighted kappas corresponding to the m × m tables, where the
weights are the denominators of the kappas (Corollary 2). Moreover, weighted kappa
with linear weights can be interpreted as a weighted average of the linearly weighted
kappas corresponding to all nontrivial subtables (Corollary 3).

The results presented in this paper extend in some sense a ‘weighted average’ prop-
erty of Cohen’s unweighted kappa for nominal categories to Cohen’s linearly weighted
kappa for ordinal categories. Since the order in which nominal categories are listed
is irrelevant, combining nominal categories is identical to partitioning the categories
in subsets. Warrens (2011d) showed that given a partition type of the categories, the
overall kappa-value of the original table is a weighted average of the kappa-values
of the collapsed tables corresponding to all partitions of that type. The weights are
the denominators of the kappas of the subtables. In this paper we proved a similar
property for the linearly weighted kappa with respect to ordinal categories. It is not
difficult to provide an example that shows that weighted kappa with quadratic weights
cannot be interpreted as a weighted average if the weights are the denominators of the
quadratically weighted kappas of the subtables.

The theorems presented in this paper can also be formulated for the linearly
weighted kappas for three or more raters presented in Mielke et al. (2007, 2008)
and Warrens (2011b). For example, for three raters the linear weight of the weighted
kappa in Mielke et al. (2007, 2008) is given by

1 − |i − j | + |i − k| + | j − k|
2(n − 1)

.

Lemma 1 in Warrens (2011b) shows that

1 − |i − j | + |i − k| + | j − k|
2(n − 1)

= 1 − max(i, j, k) − min(i, j, k)

n − 1
.
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78 M. J. Warrens

If we replace |i − j | = max(i, j) − min(i, j) by max(i, j, k) − min(i, j, k) in the
proof of Theorem 1, then a result analogous to Theorem 1 for the linearly weighted
kappa in Mielke et al. (2007, 2008) follows almost immediately from using the same
arguments. Using this analogous result for the linearly weighted kappa in Mielke et al.
(2007, 2008), one can formulate analogous versions of Theorem 2 and Corollaries 2
and 3.
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