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Abstract Validity of the triangle inequality and minimality, both axioms for two-
way dissimilarities, ensures that a two-way dissimilarity is nonnegative and symmetric.
Three-way generalizations of the triangle inequality and minimality from the literature
are reviewed and it is investigated what forms of symmetry and nonnegativity are
implied by the three-way axioms. A special form of three-way symmetry that can be
deduced is equality of the diagonal planes of the three-dimensional cube. Furthermore,
it is studied what diagonal plane equalities hold for the four-dimensional tesseract.

Keywords Diagonal plane equality · Tetrahedron inequality · Multi-way symmetry ·
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1 Introduction

A basic concept in data analysis is dissimilarity. Let E be a finite set that represents
objects, individuals or variables. A dissimilarity d on the set E is a function from E2

to R, the set of reals, that satisfies for all i, j ∈ E :

(a1) di j ≥ 0 (nonnegativity)
(a2) dii = 0 (minimality)
(a3) di j = d ji (symmetry).
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110 M. J. Warrens

All the dissimilarity functions occurring in this paper are defined on the set E . The
dissimilarity d may be constructed from the observed data.

A dissimilarity d is called a metric if it is definite, di j = 0 if and only if i = j , and
satisfies

(a4) di j ≤ d jk + dki (triangle inequality)

for all i, j, k ∈ E . Definiteness is not studied in this paper. An example of d that
satisfies (a1)–(a4), is the Euclidean distance between i and j , that is, the length of
the segment joining i and j .

It is well known that the axiom system formed by (a1)–(a4) is not a minimal system
of axioms, since some of the axioms are redundant.

Theorem 1 (a2) + (a4) ⇒ (a1), (a3).

Proof Supplying (a4) with triple (i, j, j) we obtain di j ≤ d ji . Supplying (a4) with
( j, i, j) we obtain d ji ≤ di j , and hence di j = d ji . This completes the proof of
symmetry.

If d is symmetric, then supplying (a4) with triple (i, i, j) proves nonnegativity. ��
Thus, the important axioms in system (a1)–(a4) are minimality and the triangle

inequality, since these two conditions imply nonnegativity and symmetry.
Dissimilarity models form the characteristic structure of multidimensional scaling

and hierarchical cluster analysis representations. Three-way generalizations of these
models have been studied by only a few authors (Heiser and Bennani 1997; Diatta
2004, 2006, 2007). Joly and Le Calvé (1995) and Bennani-Dosse (1993) consider
methods for three-way cluster analysis, and Diatta (2004) considers a relation between
the theory of formal concepts and multi-way clustering. Daws (1996) incorporated
three-way information in the analysis of free-sorting data. Methods for multi-way
multidimensional scaling can be found in Cox et al. (1991), Heiser and Bennani
(1997), Gower and De Rooij (2003) and Nakayama (2005). Cox et al. (1991), Diatta
(2006) and Daws (1996) convincingly showed that multi-way dissimilarities may be
used to detect possible higher-order relations between the objects. However, Gower
and De Rooij (2003) concluded that two-way and three-way multidimensional scaling
give very similar results.

One may be interested in knowing whether there is a result analogous to Theorem 1
for a three-way or multi-way axiomatization. Deza and Rosenberg (2000, 2005) poin-
ted to the fact that there is a vast literature on multi-way metrics that extend the usual
two-way metric. For the three-way case, the central axioms are three-way symmetry
and the tetrahedron inequality. Another axiom is the condition that the value of the
three-way dissimilarity is zero if two objects are the same. Although this requirement
makes perfect sense in geometry, it is too restrictive for three-way applications in sta-
tistics (Joly and Le Calvé 1995; Heiser and Bennani 1997). The weaker requirement
that the value of the three-way dissimilarity is zero if all three objects are the same,
is part of the three-way axiomatizations proposed in Joly and Le Calvé (1995) and
Heiser and Bennani (1997).

123



On multi-way metricity, minimality and diagonal planes 111

In this paper it is shown that different forms of nonnegativity and multi-way
symmetry may be deduced from generalizations of minimality and the classical two-
way triangle inequality. In the next section we consider the axioms that are central in
the literature on multi-way metrics discussed in Deza and Rosenberg (2000, 2005). It
is shown that three-way symmetry and nonnegativity may be deduced from the other
two axioms. In section three we review an axiom system that is discussed in Heiser and
Bennani (1997). For this system of three-way axioms we derive a result that is similar
to Theorem 1. More precisely, it is shown that a special form of three-way symmetry,
equality of the diagonal planes of the three-dimensional cube, may be deduced. In
section four it is studied what diagonal plane equalities hold for the four-dimensional
tesseract. Section five contains a discussion.

2 Three-way symmetry

A three-way dissimilarity t on the set E is a function from E3 to R. Deza and Rosenberg
(2000, 2005) consider the following three-way extensions of (a1)–(a4):

(b1) ti jk ≥ 0 (nonnegativity)
(b2) tii j = ti j i = t j i i = 0
(b3) ti jk = tik j = t j ik = t jki = tki j = tk ji (symmetry)
(b4) ti jk ≤ t jkl + tkli + tli j (tetrahedron inequality)

for all i, j, k, l ∈ E . The axiom (b3) captures the fact that the value of ti jk is inde-
pendent of the order of i , j and k. Interpreting ti jk as the area of the triangle with
vertices i , j and k, (b4) means that the area of each triangle face of the tetrahedron
formed by i , j , k and l does not exceed the sum of the areas of the remaining faces.

Example 1 The function

tS
i jk = di j + d jk + dki

2

is referred to as the semi-perimeter distance in Joly and Le Calvé (1995) and Bennani-
Dosse (1993). The function 2tS is called the perimeter distance and is used in Heiser
and Bennani (1997) and Gower and De Rooij (2003). If di j , d jk and dki are the side
lengths of the triangle with vertices i , j and k, then function tS

i jk is the semi-perimeter
of the triangle.

Function tS satisfies (b1) if (a1) is valid, and (b3) and (b4), the tetrahedron inequa-
lity, if (a3) is valid. If (a2) is valid, then tS

i i j = tS
i j i = tS

j i i , but not (b2) in general.

Summarizing, tS satisfies (b1)–(b4) if d satisfies (a1)–(a3), that is, d must be a dis-
similarity, not necessarily a metric.

Example 2 Heron’s formula states that in Euclidean space the area of a triangle whose
sides have lengths di j , d jk and dki is

tA
i jk =

√
tS
i jk(t

S
i jk − di j )(tS

i jk − d jk)(tS
i jk − dki )
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112 M. J. Warrens

where tS
i jk is the semi-perimeter of the triangle. Since d is the Euclidean distance,

function tA
i jk satisfies (b1)–(b4).

Similar to the two-way case, some of the axioms of system (b1)−(b4) are redundant.

Theorem 2 (b2) + (b4) ⇒ (b1), (b3).

Proof Supplying (b4)with quadruples (i, j, k, i), ( j, k, i, j) and (k, i, j, k), we obtain,
respectively, ti jk ≤ t jki , t jki ≤ tki j and tki j ≤ ti jk , which leads to ti jk = t jki = tki j .
We also have t j ik = tik j = tk ji . Furthermore, supplying (b4) with (i, j, k, j) and
(k, j, i, j), we obtain, respectively, ti jk ≤ tk ji and tk ji ≤ ti jk . Hence, ti jk = tk ji . This
completes the proof of symmetry.

If t is symmetric, then supplying (b4) with quadruple (i, i, j, k) proves (b1). ��
Thus, Theorem 2 is a result that is analogous to Theorem 1. The important axioms in

system (b1)–(b4) are (b2) and (b4), the tetrahedron inequality, since these two condi-
tions imply nonnegativity and symmetry. Moreover, the formulation of a multi-way
axiomatization, for which a result analogous to Theorem 2 holds, is straightforward.

3 Diagonal planes of the cube

Joly and Le Calvé (1995) and Heiser and Bennani (1997) have proposed three-way
extensions of (a2) and (a4) that are different from (b2) and (b4). Deza and Rosenberg
(2000, 2005) found (b2) too restrictive and dropped the axiom entirely. We consider
the following three-way conditions:

(c1) tii j ≥ 0
(c2) tii i = 0 (minimality)
(c3) tii j = ti j i = t j i i (diagonal plane equality)
(c4) 2ti jk ≤ t jkl + tkli + tli j

for all i, j, k, l ∈ E . Condition (c1) is weaker than (b1). Instead of using (b2), both Joly
and Le Calvé (1995) and Heiser and Bennani (1997) proposed the weaker requirement
(c2) as the three-way generalization of minimality. Although (c2) is a more realistic
requirement in three-way data analysis, the condition is not strong enough to derive
symmetry, using either (b4) or even (c4), as in Theorem 2. Both Heiser and Bennani
(1997) and Joly and Le Calvé (1995) simply assume that the three-way distances
satisfy (b3). In addition, the latter authors require that ti jk ≥ tiik , which together with
(c2), implies (b1).

Condition (c3) is a weaker condition than three-way symmetry (b3). Let
{
tii j

}
,{

ti j i
}

and
{
t j i i

}
be the three matrices that are formed by cutting the cube diagonally,

starting at one of the three edges joining at the corner t111 (Fig. 1). Condition (c3)

requires that the three matrices are equal.
There are multiple ways for introducing three-way metricity. Deza and Rosenberg

(2000, 2005) consider (b4), the tetrahedron inequality. Joly and Le Calvé (1995)
proposed the inequality ti jk ≤ t jkl +tikl , whereas Heiser and Bennani (1997) proposed
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On multi-way metricity, minimality and diagonal planes 113

Fig. 1 Diagonal planes that are formed by cutting the cube diagonally, starting at one of the three edges
joining at the vertex t111

(c4) as a generalization of the triangle inequality (a4). Inequality (c4) is a variant of
(b4) which gives twice as much weight to the left-hand side of the inequality. We have
(c4) ⇒ (b4). It should be noted that (c4) is actually a variant of the inequality in
Heiser and Bennani (1997, p. 191), which is given by 2ti jk ≤ tikl + t jkl + ti jl . The
rearrangement of the indices in (c4) is required to obtain Theorem 3.

Example 3 Let i , j and k be three binary (0/1) vectors of length n. Let n111
i jk and n000

i jk
denote respectively the number of 1s and 0s that the three objects share in the same
positions. Cox et al. (1991, p. 200) and Heiser and Bennani (1997, p. 196) define the
three-way Jaccard dissimilarity as

t Jac
i jk = 1 − n111

i jk

n − n000
i jk

.

In words, t Jac
i jk is equal to one minus the number of 1s that i , j and k have in the same

positions, divided by the number of positions were at least one 1 occurs.

It is readily verified that t Jac satisfies (b1), (b3), (c1) and (c3). Heiser and Bennani
(1997, p. 196) showed that t Jac also satisfies (c4).

Conditions (c2) and (c4) do not imply (b1) and (b3). Instead we have the following
result.

Theorem 3 (c2) + (c4) ⇒ (c1), (c3).

In the proof of Theorem 3 we use the following lemma.

Lemma 1 Let a, b and c be real numbers. If 2a ≤ b + c, 2b ≤ a + c and 2c ≤ a + b,
then a = b = c.

Remark The following proof was provided by an anonymous referee. The proof is
more elegant than the proof originally provided by the author.

Proof Adding the first two inequalities we obtain 2a + 2b ≤ a + b + 2c, that is,
a + b ≤ 2c. The third inequality is 2c ≤ a + b, so we must have a + b = 2c and
a + b + c = 3c. Equality then follows from a + b + c = 3a = 3b = 3c. ��
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Proof of Theorem 3 Supplying (c4) with quadruples ( j, i, i, i), (i, j, i, i) and
(i, i, j, i), we obtain, respectively, 2t j i i ≤ tii j + ti j i , 2ti j i ≤ t j i i + tii j and 2tii j ≤
ti j i + t j i i . Condition (c3) then follows from application of Lemma 1.

If (c3) holds, then supplying (c4) with quadruple (i, i, i, j) proves (c1). ��
If (c3) is valid, then we have tii j = ti j i = t j i i and ti j j = t j i j = t j j i , but not

tii j = t j j i , that is, the diagonal planes are not necessarily symmetric. Heiser and
Bennani (1997) and Joly and Le Calvé (1995) therefore use the additional requirement
tii j = ti j j (which is referred to as the “diagonal-plane equality” in Heiser and Bennani
(1997)). Supplying (c4) with quadruple (i, j, i, j) we obtain ti j i ≤ 2t j i j . If (c2) and
(c4) are valid, tii j �= ti j j , but tii j is bounded from above by 2ti j j (and vice versa).

4 Diagonal planes of the tesseract

In this section we investigate the relationships between various forms of four-way
metricity and definitions of minimality, and diagonal planes of the four-dimensional
tesseract. We consider two axiom systems for four-way distances. The four-way dis-
similarity q on the set E is a function from E4 to R. The four-way generalizations of
(c1)–(c4) are given by:

(d1) qiii j ≥ 0
(d2) qiiii = 0 (minimality)
(d3) qiii j = qii ji = qi jii = q jiii

(d4) 3qi jkl ≤ q jklm + qklmi + qlmi j + qmi jk

for all i, j, k, l, m ∈ E . Up to three objects may be identical with regard to system
(d1)–(d4). Similar to (c3), condition (d3) requires that the four diagonal planes that
are formed by cutting the tesseract diagonally, starting at one of the four edges joining
at the vertex q1111, are equal. Figure 2 consists of four three-way projections of the
four-dimensional tesseract. The figure provides a visual impression of the four planes
considered in (c3). Condition (d4) is the four-way generalization of c4 and a4.

Example 4 Let i , j , k and l be four binary (0/1) vectors of length n. Let n1111
i jkl and

n0000
i jkl denote respectively the number of 1s and 0s that the four objects share in the

same positions. Cox et al. (1991, p. 200) define the four-way Jaccard dissimilarity as

qJac
i jkl = 1 − n1111

i jkl

n − n0000
i jkl

.

In words, qJac
i jkl is one minus the number of 1s that i , j , k and l share in the same

positions, divided by the number of positions were at least one 1 occurs. It is readily
verified that qJac satisfies (d1), (d2) and (d3). Theorem 4 is used to show that qJac

also satisfies (d4).

Theorem 4 The function qJac satisfies axiom (d4).
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Fig. 2 Diagonal planes that are formed by cutting the three-way projection of the four-dimensional tesseract
diagonally, starting at one of the four edges joining at the vertex q1111

Proof Let i , j , k, l and m be five binary vectors of length n. Let the n × 5 matrix X
consists of the five column vectors positioned next to each other. Each row of X is a
score pattern of 0s and 1s. The maximum number of different score patterns is equal
to 25 = 32. Let n11010

i jklm denotes the number of rows of X were a 1 occurs for vectors
(columns) i , j and l, and a 0 for vectors k and m. The total number of rows of X, n,
can be decomposed into n = n11111

i jklm + n11110
i jklm + n11101

i jklm + · · · + n00001
i jklm + n00000

i jklm . The
right-hand side of this equality has 32 components.

We have the inequality

n ≥ n11111
i jklm + n11110

i jklm + n11101
i jklm + n11011

i jklm + n10111
i jklm + n01111

i jklm

+ n10000
i jklm + n01000

i jklm + n00100
i jklm + n00010

i jklm + n00001
i jklm + n00000

i jklm . (1)

Adding 3
(

n11111
i jklm + n11110

i jklm + n00001
i jklm + n00000

i jklm

)
to both sides of (1), we obtain

n + 3n11111
i jklm + 3n11110

i jklm + 3n00001
i jklm + 3n00000

i jklm

≥ 4n11111
i jklm + 4n11110

i jklm + n11101
i jklm + n11011

i jklm + n10111
i jklm + n01111

i jklm

+ n10000
i jklm + n01000

i jklm + n00100
i jklm + n00010

i jklm + 4n00001
i jklm + 4n00000

i jklm . (2)
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Using the five identities

n1111
i jkl + n0000

i jkl = n11111
i jklm + n11110

i jklm + n00000
i jklm + n00001

i jklm ,

n1111
i jkm + n0000

i jkm = n11111
i jklm + n11101

i jklm + n00000
i jklm + n00010

i jklm ,

n1111
i jlm + n0000

i jlm = n11111
i jklm + n11011

i jklm + n00000
i jklm + n00100

i jklm ,

n1111
iklm + n0000

iklm = n11111
i jklm + n10111

i jklm + n00000
i jklm + n01000

i jklm ,

n1111
jklm + n0000

jklm = n11111
i jklm + n01111

i jklm + n00000
i jklm + n10000

i jklm ,

inequality (2) can be written as

(
n − n1111

i jkm − n0000
i jkm

)
+

(
n − n1111

i jlm − n0000
i jlm

)

+
(

n − n1111
iklm − n0000

iklm

)
+

(
n − n1111

jklm − n0000
jklm

)
− 3

(
n − n1111

i jkl − n0000
i jkl

)

≥ 4n11110
i jklm + 4n00001

i jklm . (3)

Using the five variants of identity

(
n − n1111

i jkl − n0000
i jkl

)
=

(
n − n0000

i jkl

)
qJac

i jkl

=
(

n − n00000
i jklm

)
qJac

i jkl − n00001
i jklm qJac

i jkl

in (3), we obtain

(
n − n00000

i jklm

) (
qJac

i jkm + qJac
i jlm + qJac

iklm + qJac
jklm − 3qJac

i jkl

)

≥ 4n11110
i jklm + n00001

i jklm

(
4 − 3qJac

i jkl

)

+ n00010
i jklm qJac

i jkm + n00100
i jklm qJac

i jlm + n01000
i jklm qJac

iklm + n10000
i jklm qJac

jklm .

Since
(

n − n00000
i jklm

)
≥ 0 and qJac

i jkl ≤ 1, we conclude that qJac satisfies (d4). ��
For conditions (d1)–(d4) we have the following result.

Theorem 5 (d2) + (d4) ⇒ (d1), (d3).

In the proof of Theorem 5 we use the following lemma.

Lemma 2 Let a, b, c and d be real numbers. If 3a ≤ b + c + d, 3b ≤ a + c + d,
3c ≤ a + b + d and 3d ≤ a + b + c, then a = b = c = d.

Proof Adding the first three inequalities we obtain 3a +3b+3c ≤ 2a +2b+2c+3d,
that is, a + b + c ≤ 3d. The third inequality is 3d ≤ a + b + c, so we must have
a + b + c = 3d and a + b + c + d = 4d. Equality then follows from a + b + c + d =
4a = 4b = 4c = 4d. ��
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Fig. 3 Three diagonal planes of the three-way projection of the four-dimensional tesseract. The diagonal
planes are different from the ones considered in Fig. 2

Proof of Theorem 5 Supplying (d4) with tuples ( j, i, i, i, i), (i, j, i, i, i), (i, i, j, i, i)
and (i, i, i, j, i), we obtain, respectively, 3q jiii ≤ qiii j +qii ji +qi jii , 3qi jii ≤ q jiii +
qiii j + qii ji , 3qii ji ≤ qi jii + q jiii + qiii j and 3qiii j ≤ qii ji + qi jii + q jiii . Condition
(d3) then follows from application of Lemma 2.

If (d3) holds, then supplying (d4) with tuple (i, i, i, i, j) proves (d1). ��
Note that validity of (d3) does not ensure that the diagonal planes in Fig. 2 are sym-

metric. Similar to the three-way case, symmetry of these planes requires an additional
requirement. Theorem 5 is a result analogous to Theorem 3 for four-way axioms
(d1)–(d4). Moreover, the formulation of a multi-way axiomatization, for which a
result analogous to Theorem 5 holds, is straightforward.

We consider an additional axiomatization for the four-way case:

(e1) qii j j ≥ 0
(e2) qiii j = qii ji = qi jii = q jiii = 0
(e3) qii j j = qi ji j = qi j j i = q jii j = q ji j i = q j jii

(e4) 2qi jkl ≤ q jklm + qklmi + qlmi j + qmi jk

for all i, j, k, l ∈ E . Condition (e2) is a stronger requirement than (d2) and (d3), but
(e4) ⇐ (d4). Unlike (d3), condition (e3) is a diagonal plane equality that does not
involve the elements of the edges joining at the corner q1111. Figure 3 consists of three
three-way projections of the four-dimensional tesseract. The figure provides, similar
to Fig. 2, a visual impression of the three diagonal planes that are considered in (e3):{
qii j j

}
,
{
qi ji j

}
and

{
qi j j i

}
. Condition (e3) does not only require the three matrices to

be equal, they must be symmetric as well.

Example 5 A function that extends Example 1, is the four-way perimeter model

qP
i jkl = di j + d jk + dkl + dli + dik + d jl .

Function qP is the sum of the six two-way dissimilarities that can be formed given a
group of four objects. Function qP satisfies (e1) if (a1) is valid, and (e3) and (e4) if
(a3) is valid. If (a2) and (a3) are valid, then qP satisfies (d3), but not (e2) in general.

We have the following result for system (e1)–(e4).
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118 M. J. Warrens

Theorem 6 (e2) + (e4) ⇒ (e1), (e3).

Proof Supplying (e4)with tuples ( j, j, i, i, i), (i, j, j, i, i) and (i, i, j, j, i), we obtain,
respectively, 2q j jii ≤ qii j j +qi j j i , 2qi j j i ≤ q j jii +qii j j and 2qii j j ≤ qi j j i +q j jii . By
Lemma 1, qii j j = qi j j i = q j jii . Supplying (e4) with tuples ( j, i, j, i, i), ( j, i, i, j, i),
and (i, j, i, j, i), we obtain, respectively, 2q ji j i ≤ q jii j + qi ji j , 2q jii j ≤ qi ji j + q ji j i

and 2qi ji j ≤ q ji j i + q jii j . By Lemma 1, qi ji j = q jii j = q ji j i . We also have
q ji j i = qi j j i = qi ji j . Condition (e3) then follows from combining the three results.

If (e3) holds, then supplying (e4) with tuple (i, i, i, j, j) proves (e1). ��

5 Discussion

A two-way function is a dissimilarity if it satisfies the axioms of nonnegativity, minima-
lity and symmetry. A dissimilarity is called a metric if it is definite and if it satisfies the
triangle inequality. A well-known result is that validity of both the triangle inequality
and minimality ensures that the two-way dissimilarity is nonnegative and symmetric.
In this paper we reviewed three-way generalizations and formulated four-way gene-
ralizations of the two-way axioms. We derived results for three-way and four-way
dissimilarities that are similar to the well-known result for two-way dissimilarities.

To deduce multi-way or total symmetry, it is required that the dissimilarity has zero
value in the case that two objects are identical. This is a rather strong requirement.
Using weaker versions of minimality, combined with different forms of metricity, we
derived various diagonal plane equalities for three-way and four-way dissimilarities.
There are multiple ways for introducing multi-way metricity. Examples 1 to 5 demons-
trate that for each multi-way metric inequality that is considered in this paper, there is
at least one function that satisfies the inequality.

Condition (c4) is a strong generalization of the triangle inequality proposed in
Heiser and Bennani (1997). Examples of functions that satisfy inequality (c4) can
be found in Joly and Le Calvé (1995), Bennani-Dosse (1993), Heiser and Bennani
(1997) and Nakayama (2005). However, it should be noted that, although there are
many cases in which this three-way metric inequality is valid, the three-way models can
be used regardless of the validity of the three-way axiom. For example, the three-way
multidimensional scaling proposed in Gower and De Rooij (2003) merely requires
that the underlying two-way dissimilarities satisfy the triangle inequality, since the
scaling method uses three-way dissimilarities that are linear transformations of the
two-way dissimilarities. The results on dependencies between various axioms derived
in this paper are therefore of theoretical interest only.

For the four-way, five-way and general multi-way polytope it should be possible
to deduce equality of not only planes, but also higher-dimensional manifolds like
cubes and tesseracts, under specific conditions. For example, using (e2) and supplying
(e4) with tuples ( j, k, i, i, i), (i, j, k, i, i) and (i, i, j, k, i), we obtain, respectively,
2q jkii ≤ qii jk + qi jki , 2qi jki ≤ q jkii + qii jk and 2qii jk ≤ qi jki + q jkii . By Lemma 1,
qii jk = qi jki = q jkii . Using similar arguments we may obtain qi jik = q jiki = qkii j .
Clearly, multi-way distances generate a lot of new possibilities and properties that may
be studied.
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