20(6), December 2023, 822-836
DOI: 10.1007/s11633-023-1466-0

Machine Intelligence Research
www.mi-research.net

Practical Blind Image Denoising via Swin-Conv-UNet

and Data Synthesis

Yawei Li!

Deng-Ping Fan!

Kai Zhang!
Hao Tang!

Jingyun Liang! Jiezhang Cao! Yulun Zhang!
Radu Timofte? Luc Van Gooll3

1Computer Vision Lab, ETH Ziirich, Ziirich 8092, Switzerland
2Computer Vision Lab, University of Wiirzburg, Wiirzburg 97074, Germany
3KU Leuven, Leuven 3000, Belgium

Abstract: While recent years have witnessed a dramatic upsurge of exploiting deep neural networks toward solving image denoising,
existing methods mostly rely on simple noise assumptions, such as additive white Gaussian noise (AWGN), JPEG compression noise
and camera sensor noise, and a general-purpose blind denoising method for real images remains unsolved. In this paper, we attempt to
solve this problem from the perspective of network architecture design and training data synthesis. Specifically, for the network architec-
ture design, we propose a swin-conv block to incorporate the local modeling ability of residual convolutional layer and non-local model-
ing ability of swin transformer block, and then plug it as the main building block into the widely-used image-to-image translation UNet
architecture. For the training data synthesis, we design a practical noise degradation model which takes into consideration different
kinds of noise (including Gaussian, Poisson, speckle, JPEG compression, and processed camera sensor noises) and resizing, and also in-
volves a random shuffle strategy and a double degradation strategy. Extensive experiments on AGWN removal and real image denois-
ing demonstrate that the new network architecture design achieves state-of-the-art performance and the new degradation model can
help to significantly improve the practicability. We believe our work can provide useful insights into current denoising research. The
source code is available at https://github.com/cszn/SCUNet.
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1 Introduction y=x+n (1)

Image denoising, which is the process of recovering a where n is the noise to be removed. Recently, deep neural

latent clean image x from its noisy observation y, is per-
haps the most fundamental image restoration problem.
The reason is at least three-fold. First, it can help to
evaluate the effectiveness of different image priors and
optimization algorithmslll. Second, it can be plugged into
variable splitting algorithms (e.g., half-quadratic splitt-
ingl? and alternating direction method of multipliersil) to
solve other problems (e.g., deblurring and super-resolu-
tion)M. Third, it could be the very first step for other vis-
ion tasks.

The degradation model of image denoising can be
mathematically formulated by
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networks have become the mainstream method for image
denoising. To improve deep image denoising performance,
researchers mainly focus on two research directions. The
first one is to improve the performance under the
assumption that n is additive white Gaussian noise
(AWGN). The second one largely focuses on training
data or noise modeling. Both directions can contribute to
the ultimate goal of improving the practicability for real
images.

The common assumptions of n are AWGN, JPEG
compression noise, Poisson noise, and camera sensor
noise, among which AWGN is the most widely-used one
due to its mathematical convenience. However, it is
known that deep image denoising model trained by
AWGN performs poorly for most of real images due to
noise assumption mismatchl® 6. Nevertheless, AWGN re-
moval is fair to test the effectiveness of different network
architecture designs. In recent years, various network ar-
chitecture designs have been proposed. Some representat-
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ive ones are DnCNNI7, N3Netl8, NLRNP, DRUNet[10],
and SwinIR['. Indeed, network architecture designs can
help to capture image prior for better image denoising
performance. For example, N3Netl8l and NLRNE! are spe-
cifically designed to capture non-local image prior. Al-
though the PSNR performance on benchmark datasets
has been largely improved, e.g., SwinIR! outperforms
DnCNNIT by an average PSNR, of 0.57dB on Set12 data-
set for noise level 25, it is still interesting to raise the first
question whether the PSNR performance can be further
improved by advanced network architecture design.

In order to facilitate the practicability of deep denois-
ing models, a flurry of work has been devoted to noise
modeling. The motivation behind this is to make the
noise assumption consistent with the degradation of real
images. Plotz and RothP! establish a realistic Darmstadt
Noise Dataset (DND) with consumer cameras which is
composed of different pairs of real noisy and almost noise-
less reference images in the RAW domain and sRGB do-
main. They further show that the model retrained with
accurate degradation can significantly outperform that
with AWGN on the sSRGB DND datasetl8l. By leveraging
the physics of digital sensors and the steps of an imaging
pipeline, Brooks et al.l[fl design a camera sensor noise syn-
thesis method and provide an effective deep raw image
denoising model. Although the above attempts have em-
phasized the importance of degradation models, they
mainly focus on camera sensor induced noise removal.
Yet, few work has been done on training a deep model for
general-purpose blind image denoising. It is interesting to
raise the second question of how to improve the training
data for blind denoising.

We attempt to answer the above two questions with
novel network architecture design and novel training data
synthesis. For the network architecture design, motiv-
ated by the facts that 1) different methods for image de-
noising have complementary image prior modeling ability
and can be incorporated to boost the performancell?;
2) DRUNet10 and SwinIR[' exploit very different net-
work architecture designs while achieving very promising
denoising performance, we propose a swin-conv block to
combine the local modeling ability of residual convolu-
tional layer(!3) and non-local modeling ability of swin
transformer block/!4, and then plug it as the main build-
ing block into the UNet architecture. In order to test its
effectiveness, we evaluate its PNSR performance on
benchmark datasets for AWGN removal. Since real im-
age noise could be introduced by other types of noise,
such as JPEG compression noise, processed camera sensor
noise, and be further affected by resizing, it is too com-
plex to model with a parametric probability distribution.
To resolve this problem, we propose a random shuffle of
different kinds of noise (including Gaussian, Poisson,
speckle, JPEG compression, and processed camera sensor
noises) and resizing operations (including the commonly
used bilinear and bicubic interpolations) to make a rough
approximation of real image noise.

Our contributions are listed as follows:

1) We propose a novel denoising network by plugging
novel swin-conv blocks into multiscale UNet to boost the
local and non-local modeling ability.

2) We propose a hand-designed noise synthesis model,
which can be used to train a general-purpose blind image
denoising model.

3) Our blind denoising model trained with the pro-
posed noise synthesis model can significantly improve the
practicability for real images.

4) Our work provides a strong baseline for both syn-
thetic Gaussian denoising and practical blind image de-
noising.

2 Related work

2.1 Deep blind image denoising

Compared to non-blind image denoising, where the
noise type and noise level are assumed to be known, blind
denoising tackles the case when the noise level of certain
noise type is unknown or even the noise type is unknown.
During past few years, several attempts have been made
to solve the problem of deep blind denoising. Zhang
et al.[l demonstrate that a single deep model can handle
Gaussian denoising with various noise levels and can even
handle JPEG compression with different quality factors
and single image super-resolution with different scale
factors. Chen et al.ll3l propose to adopt generative ad-
versarial networks (GAN) to generate noise from clean
images and then construct the paired training data for
subsequent training. Guo et al.l%l propose a convolution-
al blind denoising network (CBDNet) with a noise estim-
ation subnetwork and then propose to train the model
with realistic noise model and real-world noisy-clean im-
age pairs. Krull et al.ll”) propose a blind-spot network
which can be trained without noisy image pairs or clean
target images. Yue et al.ll8l propose a variational infer-
ence method for blind image denoising which incorpor-
ates both noise estimation and image denoising into a
unique Bayesian framework. While achieving promising
results, the above methods are mainly evaluated on the
synthetic Gaussian noise or the processed camera sensor
noise such as the DND datasetll. Since real noise is far
more complex, the above methods can not be readily ap-
plied for real applications. It is still unclear how to estab-
lish more practical noisy/clean image pairs for training a
deep blind model.

2.2 Deep architecture for non-local prior
State-of-the-art model-based image denoising meth-

ods mostly exploit non-local self-similarity (NLSS) prior

which refers to the fact that a local patch often has many

non-local similar patches across the imagel!9. Some rep-
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resentative methods include BM3DI[20, LSSCI2l and WN-
NMI[22]. Inspired by the effectiveness of NLSS prior, some
deep learning methods attempt to explicitly model the
correlation among non-local patches via the network
structure. Sun and Tappen!?3l propose a gradient-based
discriminative non-local range Markov random field
(MRF) method to exploit the advantages of BM3D and
non-local means. Inspired by non-local variational meth-
ods, Lefkimmiatis[?4 designs an unrolled network that can
perform non-local processing for better denoising perform-
ance. However, the above methods adopt the non-differ-
entiable KNN matching in fixed feature spaces. To re-
solve this, Plétz and Rothl8 propose a fully end-to-end
trainable neural nearest neighbor block to leverage the
principle of non-local self-similarity. Liu et al.l% propose a
non-local recurrent network (NLRN) to incorporate non-
local operations into a recurrent neural network. Chen
et al.?% propose image processing transformer (IPT) to
exploit the non-local modeling of transformer. However,
IPT works on fixed image patch size and tends to result
in border artifacts. Liang et al.llll address this issue by
adopting the swin transformer as the main building block.
It has been shown that transformer-based methods fa-
vors more on images with repetitive structures, which
verifies the effectiveness of the transformer for non-local
modeling ability.

3 Method

Since we focus on learning a deep blind model with
paired training data, it is necessary to revisit the Maxim-
um A Posteriori (MAP) inference to have a better under-
standing. Generally, for the problem of blind image de-
noising, the estimated clean image % can be obtained by
solving the following MAP problem with a certain optim-
ization algorithm,

% = argmin, D(x,y) + \P(x) (2)

where D(x,y) is the data fidelity term, P(x) is the prior
term and A is the trade-off parameter.

So far, one can see that the key of solving blind de-
noising lies in modeling the degradation process of noisy
image as well as designing the image prior of clean image.

By treating the deep model as a compact unrolled in-
ference of (2), the deep blind denoising generally aims to
solve the following bi-level optimization probleml(26: 27]

min Z L(Xi(yi, W), x;) (3a)
3
s.t. %X; =argmin, D(x,y;) + AP(x) (3b)
where W denotes the network parameters to be learned,
{yi,xi} represents the training noisy-clean image pairs,

L(-) is the loss function. In this sense, the deep blind
denoising model should capture the knowledge of degra-
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dation process and image prior.

On the other hand, the modeling ability of a deep
model generally depends on network architecture, model
size (or the number of parameters), and training data. It
is clear that the degradation process is implicitly defined
by the noisy images from the training data, which indic-
ates the noisy images of the training data is responsible
for deep blind denoising model to capture the knowledge
of degradation process. In order to improve the image pri-
or modeling ability of deep blind denoising model, one
should focus on improving the following three factors, in-
cluding network architecture, model size and clean im-
ages of the training data. While the later two factors are
easy to improve, how to improve the network architec-
ture remains further study.

From the above discussions and analyses, we can con-
clude that the network architecture and the training data
are two important factors to improve the performance of
deep blind denoising model. In the following, we will sep-
arately detail our attempts to improve these two factors.

3.1 Swin-Conv-UNet

Fig.1 illustrates the network architecture of our pro-
posed Swin-Conv-UNet (SCUNet). The main idea of
SCUNet is to integrate the complementary network archi-
tecture designs of DRUNet and SwinlR. To be specific,
SCUNet plugs novel swin-conv (SC) blocks into a
UNet28] backbone. Following DRUNet[!0], the UNet back-
bone of SCUNet has four scales, each of which has a re-
sidual connection between 2 x 2 strided convolution
(SConv) based downscaling and 2 x 2 transposed convolu-
tion (T'Conv) based upscaling. The number of channels in
each layer from the first scale to the fourth scale are 64,
128, 256 and 512, respectively. The main difference
between SCUNet and DRUNet is that SCUNet adopts
four SC blocks rather than four residual convolution
blocks in each scale of the downscaling and upscaling.

As shown in the dashed line of Fig.1, an SC block
fuses swin transformer (SwinT) block[' and residual con-
volutional (RConv) block!3 29] via two 1 x 1 convolutions,
split and concatenation operations, and a residual connec-
tion. To be specific, for an input feature tensor X, it is
first passed through a 1 x 1 convolution. Subsequently, it
is split evenly into two features map groups X; and Xo.
We formulate such a process as

X1, X2 = Split(Convl x 1(X)). (4)

Then, X; and X, are separately fed into a SwinT
block and a RConv block, giving rise to

Y1, Y2 = SwinT(X1), RConv(X>). (5)

Finally, Y7 and Y> are concatenated as the input of a
1 x 1 convolution which has a residual connection with
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Fig.1 The architecture of the proposed Swin-Conv-UNet (SCUNet) denoising network. SCUNet exploits the swin-conv (SC) block as
the main building block of a UNet backbone. In each SC block, the input is first passed through a 1 x 1 convolution, and subsequently is
split evenly into two feature map groups, each of which is then fed into a swin transformer (SwinT) block and residual 3 x 3
convolutional (RConv) block, respectively; after that, the outputs of SwinT block and RConv block are concatenated and then passed
through a 1 X 1 convolution to produce the residual of the input. “SConv” and “TConv” denote 2 X 2 strided convolution with stride 2

and 2 X 2 transposed convolution with stride 2, respectively.

the input X. As such, the final output of SC block is giv-
en by

Z = Convl x 1(Concat(Y1, Y2)) + X. (6)

It is worth pointing out that our proposed SCUNet
enjoys several merits due to some novel module designs.
First, the SC block fuses the local modeling ability of
RConv block and non-local modeling ability of SwinT
block. Second, the local and non-local modeling ability of
SCUNet is further enhanced via the multiscale UNet.
Third, the 1x 1 convolution can effectively and effi-
ciently facilitate information fusion between SwinT block
and RConv block. Fourth, the split and concatenation
operations can act as the group convolution with two
groups to reduce the computation complexity and the
number of parameters. We note that SCUNet essentially
functions as a hybrid convolutional neural networks
(CNNs)-Transformer network and there also exist several
other works that integrate CNNs and Transformer for ef-
fective network architecture design. Li et al.3% propose a
fabric-like hybrid CNN-transformer search space, in
which each layer can flexibly choose CNN building blocks
and transformer building blocks. Yuan et al.3! introduce
a novel Convolution-enhanced Image Transformer (CeiT)
that combines the advantages of CNNs in extracting low-
level features and strengthening locality with the benefits
of Transformers in establishing long-range dependencies.
Guo et al.l32l propose a new Transformer-based hybrid
network that leverages the strengths of Transformers to
capture long-range dependencies and the capabilities of
CNNs to extract local information.

It is also worth pointing out the difference between
our proposed SCUNet and two recently works including
Uformer33 and Swin-Unet34. First, the motivation is dif-
ferent. Our SCUNet is motivated by the fact that state-
of-the-art denoising methods DRUNetll% and SwinIR[!!
exploit very different network architecture designs, and
thus SCUNet aims to integrate the complementary net-
work architecture designs of DRUNet and SwinIR. By
contrast, Uformer and Swin-UNet aim to combine the

transformer variants and UNet. Second, the main build-
ing blocks are different. Our SCUNet adopts a novel
swin-conv block which integrates the local modeling abil-
ity of residual convolutional layer(!3] and non-local model-
ing ability of swin transformer block[!l via 1 x 1 convolu-
tion, split and concatenation operations. By contrast,
Uformer adopts a new transformer block by combining
depth-wise convolution layers®, while Swin-UNet util-
izes the swin transformer block as the main building
block.

3.2 Training data synthesis

Instead of establishing a large variety of real
noisy/clean image pairs, which is laborious and challen-
ging, we attempt to synthesize realistic noisy/clean im-
age pairs. The main idea is to add different kinds of noise
and also include the resizing, as well as incorporating a
double degradation strategy and a random shuffle
strategy which we will detail next.

Gaussian noise. Additive white Gaussian noise
(AWGN) is the most widely-used assumption for denois-
ing. While it can perfectly model read noise of an image
sensor, it usually does not match the real noise and would
deteriorate the practicability of trained deep denoising
models. Nevertheless, it has been shown that deep denois-
ing model (e.g., FFDNet!0l) trained with AWGN can re-
move non-Gaussian noise by setting a larger Gaussian
noise level, with the sacrifice of smoothing the textures
and edges. Instead of using the simplified AWGN, we ad-
opt the 3D generalized zero-mean Gaussian noise model3”]
with 3 X 3 covariance matrix to model the noise correla-
tion between R, G and B channels. One of the underly-
ing reasons is that the color image demosaicing step in
camera ISP pipeline can correlate the noise across chan-
nels. Depending on the cross-channel dependencies, such
a generalized Gaussian model has two extreme cases, in-
cluding the widely-used additive white Gaussian color
noise and grayscale Gaussian noise. We uniformly sample
their noise levels from {2/255,3/255,---,50/255}. Since
in-camera denoising algorithms generally remove the col-
or noise for better perceptual quality, grayscale Gaussian
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noise would be a good choice to model the remaining
noise. For this reason, we sample the two extreme cases
and general case with probabilities 0.4, 0.4 and 0.2, re-
spectively.

Poisson noise. Poisson noise generally refers to the
photon shot noise which originates from the discrete
nature of electric charge. It occurs severely in low-light
conditions, such as night time photography, medical ima-
ging, optical microscopy imaging and astronomy
imaging[8l. Different from Gaussian noise which is signal-
independent, Poisson noise is signal-dependent. Tradition-
al model-based methods mostly apply the variable-stabil-
izing transformation (VST) to transfer the noise into ap-
proximate signal-independent one, and then tackle the
problem with Gaussian denoising methods. However, such
methods need to know the noise type beforehand, which
is generally impossible for real images. Hence, removing
the Poisson noise directly via the deep model would be a
good choice. To sample different noise levels for an image,
we first multiply the clean image by 10“, where « is uni-
formly chosen from [2,4], and then divide back by 10¢
after adding the signal-dependent Poisson noise. Our
Poisson noise can be mathematically modeled as

n ~ P(10% x x)/10% —x; «a ~ U(2,4). (7)

Following the Gaussian noise, we also consider gray-
scale Poisson noise by converting the clean color image
into grayscale image. After that, we add the same gray-
scale noise to each channel of the given image.

Speckle noise. Speckle noise is multiplicative noise
which usually appears in coherent imaging systems, such
as synthetic aperture radar (SAR) imaging and medical
ultrasonic imaging3% 40, It can be modeled by the multi-
plication between latent clean image and Gaussian noise.
We thus simply modify the above Gaussian noise synthes-
is strategy by multiplying the clean image to generate
speckle noise.

JPEG compression noise. Image compression can
help to reduce the storage and bandwidth requirements
for digital images. Among various image compression
standards and formats, JPEG has been the most widely-
used one since it is simple and allows for fast encoding
and decoding. However, it will reduce the image quality
by introducing severe 8 x 8 blocking artifacts with the in-
crease of compression degree. Such a trade-off is con-
trolled by the quality factor which ranges from 0 to 100.
Due to its pervasiveness in Internet and social media us-
age, we add this kind of noise by uniformly sampling the
quality factor from [20, 95].

Processed camera sensor noise. The noise in out-
put RGB image of modern digital cameras is mainly
caused by passing the read and shot noise in raw sensor
data through an image signal processing (ISP) pipeline.
Hence, the distribution of the processed camera sensor
noise varies with the read and shot noise model and ISP
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model. Inspired by [6], we synthesize this kind of noise by
generating raw image from clean image via the reverse
ISP pipeline, and then processing the noisy raw image via
the forward ISP pipeline after adding read and shot noise
to raw image. For the read and shot noise model, we ex-
actly borrow the one proposed in [6]. For the ISP model,
we adopt the one proposed in [41] which consists of
demosaicing, exposure compensation, white balance, cam-
era to XYZ (D50) color space conversion, XYZ (D50) to
linear RGB color space conversion, tone mapping and
gamma correction. It is still worth pointing out the fol-
lowing details about the adopted ISP model. First, the or-
ders of gamma correction and tone mapping, and and the
tone mapping curves are different from these in [6]. Our
ISP adopts gamma correction as the final step, whereas
[6] uses tone mapping as the final step. While it has been
known that the tone mapping curves for different camer-
as are usually different, Brooks et al.lfl use a fixed tone
curve. By contrast, our ISP selects the best fitted tone
curves from [42] for each camera based on the error
between reconstructed output and the camera ground-
truth RGB output. Second, the forward-reverse tone
mapping may cause color shift issue with respect to the
original image due to the irreversibility, we resolve this
by also applying the reverse-forward tone mapping for
the clean image.

Resizing. Image resizing is one of the basic digital
image editing tools. It can be used to fit the image into a
certain space on a screen or be used to downscale the im-
age to reduce the storage size. While resizing does not in-
troduce noise to the clean images, it would affect the
noise distribution of the noisy images. For example, up-
scaling would lead AWGN to be spatially correlated while
downscaling would change processed camera sensor noise
to be less signal-dependent. To model such resizing in-
duced noise, we uniformly apply the widely-used bilinear
and bicubic resizing operations. The scaling factor is uni-
formly chosen from [0.5,2]. Especially noteworthy is that
we apply the same resizing on both noisy image and its
clean counterpart since resizing will change the spatial
resolution of latent clean image of the noisy image.
Hence, it is essentially different from the super-resolution
degradation proposed in [41, 43].

In practice, real images might be resized or JPEG
compressed several timesl4, and JPEG compression
might be performed before or after resizing. Inspired by
this, our final degradation sequence employs a double de-
gradation strategy and a random shuffle strategy. By do-
ing this, the degradation space is expected to be largely
expanded, which can facilitate the generalization ability
of the trained deep blind model. Specifically, we perform
the above noises and resizing twice. We add Gaussian
noise and JPEG compression noise with the probabilities
of 1. For the resizing and other noise addition, we set the
probabilities to 0.5. Before applying the degradation se-
quence to a clean image, we first perform a random
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shuffle on the degradations. To prevent out-of-range val-
ues after each degradation process, we always make sure
the image is clipped into the range of 0—1. Due to the in-
troduction of resizing, a large high quality image should
be used for the paired training data synthesis. Fig.2
provides a schematic illustration of the proposed training
data synthesis pipeline.

4 Discussions

4.1 Our denoising data synthesis pipeline
VS. super-resolution data synthesis
pipelinel41; 43]

Our training data synthesis pipeline differs from the
ones proposed in [41, 43] in at least three main aspects.
First, the applications are different. Our pipeline is used
for deep blind image denoising, whereas the ones pro-
posed in [41, 43] are designed for deep blind super-resolu-
tion. Second, our pipeline also performs the resizing on
the high-quality image to produce the corresponding
clean image of the noisy images, whereas the degradation

models in [41, 43] do not perform such a procedure. The
reason is that denoising does not necessitate removing im-
age blur and enlarging the resolution, which is different
from super-resolution. Third, our pipeline adopts more
kinds of noise, such as speckle noise. Fig.3 shows some
synthesized noisy/clean patch pairs via our proposed
training data synthesis pipeline. It can be seen that our
data synthesis pipeline can produce very realistic noisy
images. It is worth noting that the noisy/clean patch
pairs are from the same high quality image with size
544 x 544. Since we also perform the resizing operations
for clean image patches, we can observe some blurriness
from some of the clean image patches.

4.2 Practical blind denoising VS. blind
Gaussian denoising and blind camera
sensor noise removal for DND and
SIDD

Our practical blind denoising is much more difficult
than blind Gaussian denoising and blind camera sensor
noise removal for DND and SIDD, and is the “true” blind
image denoising for practical application. It is widely-

Gaussian

Resizing

Noisy patch

N

Gaussian
Resizing
Cropping

i

A |

High quality image

9
Clean patch

Fig.2 Schematic illustration of the proposed paired training patches synthesis pipeline. For a high quality image, a randomly shuffled
degradation sequence is performed to produce a noisy image. Meanwhile, the resizing and reverse-forward tone mapping are performed
to produce a corresponding clean image. Paired noisy/clean training patches are then cropped for training deep blind denoising model.
Note that, since Poisson noise is signal-dependent, the dashed arrow for “Poisson” means the clean image is used to generate the Poisson
noise. To tackle the color shift issue, the dashed arrow for “Camera Sensor” means the reverse-forward tone mapping is performed on the

clean image.

Fig.3 Synthesized noisy/clean patch pairs via our proposed training data synthesis pipeline. The size of the high quality image patch

is 544 x 544. The size of the noisy/clean patches is 128 x 128.

@ Springer



828

known that the deep model trained for blind Gaussian de-
noising does not perform well for real images due to noise
assumption mismatch. For this reason, DND and SIDD
are established by capturing noisy and clean images pairs
from different cameras. Although these two datasets help
researchers shift to real image denoising, however, they
focus on camera sensor noise which also deviates signific-
antly from the noise from the Internet in our daily life.
Moreover, as shown in Fig.4, the state-of-the-art Deam-
Net for these datasets even has a worse result than Noise
Clinic for noisy images from a different kind of camera,
which indicates that deep models trained for these two
datasets do not generalize well for unseen noise, thus hav-
ing very limited applications. In contrast, our model is
trained on a much more complex degradation model
whose the degradation space is large enough to cover a
large variety of different noise combinations, and thus
can significantly improve the practicability. As far as we
know, the existing “true” blind denoising is the work en-
titled “The noise clinic: a blind image denoising al-
gorithm”. Our model can significantly outperform Noise
Clinic and is the first deep model that can be readily ap-
plied for real applications.

5 Experiments

As discussed in Section 3, the network architecture
and the training data are two important factors to im-
prove the performance of deep blind denoising model. For

28.68/0.779 4
(b) DnCNN

PSNR(dB)/SSIM
(a) Noisy

29.06/0.797 4
(¢) RNAN
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the sake of fairness, we first evaluate our SCUNet on syn-
thetic Gaussian denoising. We then evaluate our training
data synthesis pipeline with our SCUNet on practical
blind image denoising.

5.1 Synthetic Gaussian denoising

Implementation details.

For the high quality image dataset, we use the same
training dataset consisting of Waterloo Exploration Data-
basel4, DIV2KH16l and Flick2K[29 for training. The set-
tings of SwinT and Rconv blocks are the same to those in
SwinlR and DRUNet, respectively. Following the com-
mon setting, we generate the noisy image by adding
AWGN with a certain noise level and separately learn a
denoising model for each noise level. The parameters are
optimized by minimizing the L1 loss with Adam optim-
izer[?”l. The learning rate starts from 1x104 and and de-
cays by a factor of 0.5 every 200 000 iterations and fi-
nally ends with 3.125x1076. The patch size and batch size
are set to 128 x 128 and 24, respectively. We first train
the model with noise level 25 and then finetune the mod-
el for other noise levels. All experiments are implemented
by PyTorch 1.7.1. It takes about three days to train a de-
noising model on four NVIDIA RTX 2 080 Ti GPUs.

Grayscale Gaussian denoising. Table 1 reports the
PSNR results of different methods on the widely-used
Set127, BSD6848; 491 Urbanl000Y datasets for mnoise

29.28/0.809 5 29.37/0.813 5
(e) SwinIR (f) SCUNet

29.28/0.810 3

(d) DRUNet

Fig.4 Color image denoising results of different methods on image “163 085” from CBSD68 dataset. The noisy image is corrupted by

AWGN with noise level 50.

Table1 Average PSNR(dB) results of different methods for grayscale image denoising with noise levels 15, 25 and 50 on the widely-
used Set12, BSD68 and Urban100 datasets. The best and second best results are highlighted in red and blue colors, respectively.

Datasets Noiselevel DnCNN FFDNet n3Net NLRN RNAN FOCNet DAGL DRUNet SwinIR Restormer SCUNet
15 32.86 32.75 - 33.16 - 33.07 33.28 33.25 33.36 33.42 33.43
Set12 25 30.44 30.43 30.55  30.80 - 30.73 30.93 30.94 31.01 31.08 31.09
50 27.18 27.32 27.43  27.64 27.70 27.68 27.81 27.90 27.91 28.00 28.04
15 31.73 31.63 - 31.88 - 31.83 31.93 31.91 31.97 31.96 31.99
BSD68 25 29.23 29.19 29.30 29.41 - 29.38 29.46 29.48 29.50 29.52 29.55
50 26.23 26.29 26.39  26.47 26.48 26.50 26.51 26.59 26.58 26.62 26.67
15 32.64 32.40 - 33.45 - 33.15 33.79 33.44 33.70 33.79 33.88
Urban100 25 29.95 29.90 30.19  30.94 - 30.64 31.39 31.11 31.30 31.46 31.58
50 26.23 26.50 26.26  27.49 27.65 27.40 27.97 27.96 27.98 28.29 28.56
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levels 15, 25 and 50. The compared methods include
DnCNNU, FFDNetB36], N3Netl8], NLRNF, RNANBU, FO-
CNetl52l, DAGLP3], DRUNetl9, SwinIR[! and Restor-
mer54. We note that N*Net, NLRN, RNAN and SwinIR
explicitly employ non-local module design in order to cap-
ture non-local image prior for better denoising perform-
ance. It can be seen that our SCUNet achieves signific-
antly better PSNR results than other methods for all the
noise levels on the three datasets. Specifically, SCUNet
surpasses DnCNN and FFDNet by an average PSNR of
0.6dB on Setl2, 0.3dB on BSD68 and 1.6dB on
Urban100, and produces a substantial PSNR gain over
state-of-the-art DAGL, DRUNet, SwinIR and Restormer.
Since images from Urbanl00 are rich in repetitive struc-
tures, such a large improvement on Urbanl00 over
BSD68 indicates that SCUNet has an advantage of mod-
eling non-local image prior.

To qualitatively evaluate the proposed SCUNet, we
provide the denoising results of different methods on clas-
sical image “Barbara” from Set12 dataset with noise level
50 in Fig.5. Note that we also include the traditional
model-based methods BM3D[20 and WNNMI[22 for com-
parison since they are based on non-local priors. We have
the following observations. First, WNNM produces much
better visual results than some of the deep denoising
methods such as DnCNN, FFDNet, RNAN and FOCNet.
Second, while DAGL, DRUNet and SwinIR have better
PSNR results than WNNM, they fail to recover some of
the repetitive lines which indicates they still have limits
in non-local prior modeling. Third, our SCUNet produces
more visually pleasant results than others which further
verifies the effectiveness of SCUNet for modeling image
non-locality.

Color Gaussian denoising. Table 2 reports the col-
or image denoising results of different methods on
CBSD68I48; 491, Kodak24[5], McMaster®S] and Urban100[5]

datasets. The compared methods include DnCNN, FFD-
Net, DSNetl57, BRDNetl’8, RNAN, RDNDBY, IPT, DRU-
Net, SwinlR and Restormer. As one can see, our SCUNet
produces the best overall performance. Specifically,
SCUNet surpasses DnCNN, FFDNet and DSNet by an
average PSNR of 0.5dB on CBSDG68, 0.7dB on Kodak24,
1.1dB on McMaster and 1.6dB on Urbanl00. Interest-
ingly, while SCUNet has a similar PSNR gain over DRU-
Net for different noise levels, it achieves a larger PSNR
gain than SwinIR with the increase of noise level. The
possible reason is that SwinlR tends to lack the ability to
model the long range dependency for heavy noise remov-
al.

Results. Fig.6 provides the visual results of different
blind denoising methods for real image denoising. The
testing images includes “Palace” from [60], “Building”
form Internet, and “Stars” from [7]. The compared meth-
ods include CBDNetl[16], DeamNet®!] and Noise Clinicl60].
We also report the results of no-reference image quality
assessment (IQA) metrics NIQEB2, NRQM®! and
PIQEI(64],

Fig.4 provides the visual results of different methods
on image “163 085” from CBSD68 with noise level 50. It
can be seen that SwinIR fails to recover the yellow struc-
ture along the beak of the bird while DnCNN, RNAN and
DRUNet introduce some smoothness. By contrast,
SCUNet recovers fine structures and preserves image
sharpness.

FLOPs, runtime and #Params. We report
FLOPs, runtime and #Params comparisons among DRU-
Net, SwinlR and SCUNet in Table 3. We can see that
our SCUNet achieves the lowest FLOPs due to the com-
bination of UNet and SC block. Since SwinIR does not
use any downscaling operations, it suffers from high
FLOPs and long runtime. In comparison, SCUNet achie-
ves the best trade-off between FLOPs, runtime and

PSNR(dB)/SSIM 27.22/0.794 2

(b) BM3D

27.79/0.819 6

(a) Noisy (c) WNNM

26.15/0.768 2
(d) DnCNN

26.41/0.779 2
(e) FFDNet

26.67/0.822 0
(f) RNAN

27.76/0.822 2

27.60/0.824 3
(h) FOCNet

28.29/0.842 0

(g) NLRN (i) DAGL

28.16/0.842 3
(j) DRUNet

28.41/0.848 0
(k) SwinIR

28.62/0.856 0
(1) SCUNet

Fig. 5 Grayscale image denoising results of different methods “Barbara” from Set12 dataset. The noisy image is corrupted by AWGN

with noise level 50.
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Table 2 Average PSNR(dB) results of different methods for color image denoising with noise levels 15, 25 and 50 on the CBSD68,
Kodak24, McMaster and Urban100 datasets. The best and second best results are highlighted in red and blue colors, respectively

Dataset Noise Level DnCNN FFDNet DSNet BRDNet RNAN RDN IPT DRUNet SwinlR Restormer SCUNet
15 33.90 33.87 33.91 34.10 - - - 34.30 34.42 34.40 34.40
CBSD68 25 31.24 31.21 31.28 31.43 - - - 31.69 31.78 31.79 31.79
50 27.95 27.96 28.05 28.16 28.27 28.31 28.39 28.51 28.56 28.60 28.61
15 34.60 34.63 34.63 34.88 - - - 35.31 35.34 35.47 35.34
Kodak24 25 32.14 32.13 32.16 32.41 - - - 32.89 32.89 33.04 32.92
50 28.95 28.98 29.05 29.22 29.58 29.66 29.64 29.86 29.79 30.01 29.87
15 33.45 34.66 34.67 35.08 - - - 35.40 35.61 35.61 35.60
McMaster 25 31.52 32.35 32.40 32.75 - - - 33.14 33.20 33.34 33.34
50 28.62 29.18 29.28 29.52 29.72 - 29.98 30.08 30.22 30.30 30.29
15 32.98 33.83 - 34.42 - - - 34.81 35.13 35.13 35.18
Urban100 25 30.81 31.40 - 31.99 - - - 32.60 32.90 32.96 33.03
50 27.59 28.05 - 28.56 29.08 29.38 29.71 29.61 29.82 30.02 30.14

5.53/8.40/4.16 6.64/3.89/58.75 6.63/3.69/55.85

4.06/8.80/11.09

4.60/8.78/11.69

4.92/6.91/20.49

4.50/8.99/7.08

3.93/9.02/6.99
(b) CBDNet

5.51/7.85/28.78

(a) Noisy (c) DeamNet

4.61/8.78/12.94 5.07/8.67/11.18 4.62/8.74/8.45

4.50/9.00/4.51
(d) Noise clinic

6.08/8.30/47.92
(e) SCUNet

7.21/8.63/24.35
(f) SCUNetG

Fig.6 Visual results and no-reference image quality assessment metrics (NIQE] /NRQM? /PIQE]) results of different methods for
real image denoising. The images in each row from top to bottom are “Palace”, “Building” and “Stars”, respectively.

#Params. Note that the runtime of SCUNet can be re-

duced by efficient implementation.
5.2 Practical blind image denoising

Implementation details.

We use the same training implementations as in syn-
thetic Gaussian denoising except the following: First,
each high quality image is first cropped into a size of

@ Springer

544 x 544 before processing it into a pair of noisy/clean
images. Second, the learning rate is fixed to 1x104 as it
tends to enhance the generalization ability. Third, we also
train a perceptual quality-oriented blind model, namely
SCUNetG, by minimizing a weighted combination of L1
loss, VGG perceptual loss on five convolution layers and
UNetGAN loss!43l with weights 1, 1 and 1, respectively.

Results.

From Fig.6, we can observe that our SCUNet and
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Table 3 FLOPs, runtime and #Params comparisons on images
of size 256 X 256 on a PC with an Nvidia Titan Xp GPU

Metrics DRUNet SwinIR SCUNet

FLOPs 143.5 G 787.9 G 67.1G
Runtime 0.020 s 0.525 s 0.072s
#Params 32.64 M 11.49 M 17.94 M

SCUNetG achieve the best visual results for noise remov-
al and details preserving. For example, both CBDNet and
DeamNet fail to removal the processed camera sensor
noise for “Palace” while ours can remove such low-fre-
quency noise and recover the underlying edges. However,
our results do not show promising no-reference IQA res-
ults. As pointed out in [41], such a phenomenon further
indicates that no-reference IQA methods should update
with degradation types. Fig.7 provides more blind denois-
ing results of our SCUNet and SCUNetG on real images
from RNI15 datasetl3l. Note that we do not know the
ground-truth noise type and noise levels of these real im-
ages. For example, the “Boy”, “Dog” and “Glass” are
likely to be corrupted by processed camera sensor noise
with unknown camera type and the “Flowers” is corrup-
ted by Gaussian-like noise. Surprisingly, our models ef-
fectively handle these images, which could be due to the
fact that they have been trained to manage a wide range
of degradation scenarios created by various types of noise,
resizing, and a random shuffle strategy. According to the
above results, we can conclude that the proposed train-
ing data synthesis pipeline is suitable for training deep
blind denoising model for real applications.

Impact of the resizing for data synthesis.

Since one of the main differences between our pro-

(a) Boy (b) Dog (c) Movie

(d) Window

posed noisy image synthesis from others is that we adopt
resizing to diversify the noise distribution, it is interest-
ing to investigate the performance of the trained model
without using resizing in the training data synthesis.
Fig.8 provides the visual comparisons on two upsampled
noisy image by bicubic resizing with a scale factor of 2.
The first noisy image is corrupted by Gaussian noise with
noise level 50 while the second one is corrupted by un-
known processed camera sensor noise. It can be seen that
the trained model without using resizing in the training
data synthesis fails to completely remove the noise. Thus,
we can conclude that the resizing can help to improve the
generalization ability.

6 Conclusions

In this paper, we focus on the problem of practical
blind image denoising. Inspired by the Maximum A Pos-
teriori (MAP) inference which indicates prior modeling
and degradation modeling are essential for the success of
deep blind denoising, we propose a new network architec-
ture for better prior modeling and a novel data synthesis
method for better practical usage. Specifically, we design
a new swin-conv block which incorporates the local mod-
eling ability of residual convolution block and non-local
modeling ability of swin transformer block, and plug it as
the main building block into a UNet to further enhance
the local and non-local modeling ability. Moreover, we
design a data synthesis pipeline which considers different
kinds of noise and also involves a random shuffle strategy
and a double degradation strategy. Extensive experiment-
al results demonstrated the effectiveness of the new archi-
tecture design for Gaussian denoising and practicability

of the trained deep blind model for real noisy images.

(e) Glass (f) Flowers

Fig. 7 More blind denoising results of our SCUNet and SCUNetG on real images from RNI15 dataset. From top row to bottom row:
noisy images, results of SCUNet, results of SCUNetG. Please zoom in for better view.
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(2) (b)

Fig. 8 Comparison between SCUNet and its variant without
using resizing in the training data synthesis for denoising a
resized noisy image: (a) Upsampled noisy image by bicubic
resizing with a scale factor of 2; (b) Denoising result of SCUNet;
(c) Denoising results of SCUNet with using resizing in the
training data synthesis.
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