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Abstract: Zero trust architecture (ZTA) is a paradigm shift in how we protect data, stay connected and access resources. ZTA is non-
perimeter-based defence, which has been emerging as a promising revolution in the cyber security field. It can be used to continuously
maintain security by safeguarding against attacks both from inside and outside of the network system. However, ZT A automation and
orchestration, towards seamless deployment on real-world networks, has been limited to be reviewed in the existing literature. In this pa-
per, we first identify the bottlenecks, discuss the background of ZTA and compare it with traditional perimeter-based security architec-
tures. More importantly, we provide an in-depth analysis of state-of-the-art AI techniques that have the potential in the automation and
orchestration of ZTA. Overall, in this review paper, we develop a foundational view on the challenges and potential enablers for the

automation and orchestration of ZTA.
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1 Introduction

To date, most network security architectures have
used perimeter-based defence to isolate internal networks
from external networks. Firewalls, virtual private net-
works (VPN), and demilitarized zone (DMZ) networks
prevent external attacks by creating a network security peri-
meter(l]. This can effectively prevent external attacks, but
it is difficult to prevent internal attacks because once an
intruder breaches the security perimeter, further illegal
actions will not be hindered?. In addition, with the rap-
id development of digital technologies such as 5G, the in-
ternet of things and cloud computing, the number of net-
work users and devicesl3l and their security concerns(¥ are
growing exponentially, as the perimeter of the network is
becoming increasingly blurred® ¢l. This makes it more dif-
ficult to protect organizational resources, especially as
more data access points, information inputs and outputs
are createdl’). Therefore, preventing internal attacks re-
quires a security architecture that does not trust any net-
workl8, 91,

Zero trust architecture (ZTA)2 is a new concept of
network security architecture based on the principle of
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least privilege, which aims to solve the above problems by
restricting the behaviour of subjects inside the network.
Based on the core idea of “never trust, always verify”[10],
ZTA follows a resource-based security policy: no users,
devices or applications (services) can access the data
without authentication and authorization. However, while
ZTA provides more robust cyber protection measures, it
still faces significant implementation challenges!ll. The
implementation of ZTA requires multiple security tools
(e.g., firewalls) and policies to work together, and tradi-
tional stand-alone security detection approaches may not
be applicable. In addition, the large amount of data col-
lected and produced by these security tools can be used
for risk analysis, prediction and evaluation within the
framework. Thus, to maximize the security protection
performance of ZTA, the components of existing frame-
works need to be automated and orchestrated. In this
context, artificial intelligence (AI) algorithms are con-
sidered as one of the most suitable technologies to auto-
mate and orchestrate ZTA[2],

AT technologies are considered as enablers for the se-
curity orchestration, automation and response (SOAR)
solutions designed to automate and integrate different se-
curity tasks and processes in response to incidentsl!3l.
SOAR is also one of the functions to be considered in the
execution of ZT A4, which provides a reference for Al to
perform automation and orchestration across components.

Security teams consider ZT'A as an enabler to uphold
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security in their organization’s networks. In particular,
ZTA needs to develop capabilities that orchestrate and
learn continuously to secure an environment based on hy-
per-granular access privileges. ZTA automation and or-
chestration can relieve security personnel from manually
assigning and reassigning access credentials throughout
the organization’s network. Moreover, permission changes
over ZTA should be orchestrated in minutes, eliminating
the friction and annoyance of security procedures for em-
ployees and devices. In this paper, we focus on the poten-
tial of AI algorithms in the automation and orchestration
for ZTA components.

1.1 Principles of zero trust

The concept of zero trust was first introduced in 2010
by John Kindwig, an analyst at consulting firm Forrester,
who proposed the core idea of ZTA: “there are no longer
trusted or untrusted networks, users and interface on se-
curity devices”[15 161, The ZTA automation and orchestra-
tion that our research paper focuses on was proposed by
another Forrester researcher, Chase Cunningham. His
zero trust extended (ZTX) research report published in
2018017 extends ZTA capabilities from micro-isolation to
visibility, analytics, automation and orchestration.

With the growing trend of Internet security issues,
many research institutes and organizations are beginning
to pay attention to ZTA and offer different insights.
Google began building the zero-trust-based BeyondCorp
system in 2011 and published a series of papers for a
comprehensive introduction to BeyondCorpl/!8-23l. Beyond-
Corp always follows that access to services which de-
pends on the contextual factors of authenticated, author-
ized, encrypted users and their devices rather than the
network to which connected. In 2019, Gartner extended
adaptive security architecture (ASA) and continuous ad-
aptive risk and trust evaluation (CARTA) to zero trust
network access (ZTNA), which is used to phase out the
VPN-based service accessl!]. In 2020, the national insti-
tute of standards and technologies (NIST) released the
version 2 of SP-800-207: zero trust architecturel?, which

provides detailed guidance on the design of zero-trust ar-
chitectures based on a document format.

The main purpose of ZTA is to enhance security. Al-
though enterprises or organizations propose different
strategies to understand and implement ZTA depending
on their application environments, they are all based on
the following three principles:

1) Access control should be resource-centric and con-
text-aware.

2) All users and devices must be authenticated and
authorized based on dynamic policies before accessing the
resources, following the least privilege policy.

3) Improve security by continuously monitoring the
integrity and security of owned or associated assets.

1.2 Existing surveys

Although a large number of studies on ZTA have been
published, there are a few literature reviews on ZTA. A
brief summary of the existing surveys on ZTA is provided
in Table 1. In particular, we classify the existing review
works based on the following five categories:

Q1: Details of ZTA principles.

Q2: Comparison of security technologies based on
perimeter and non-perimeter.

Q3: Categorization and revision of ZT'A components.

Q4: Challenges of ZTA migration, automation and or-
chestration.

Q5: Future research directions of ZTA.

Evan Gilman's book “Zero Trust Networks”[ll begins
with an introduction to the basic concepts of zero trust
and describes step-by-step methods and techniques for
implementing zero trust networks. It also examines the
problems that zero trust may face from an attacker’s
view. Similarly, Jason Garbis, in the book “Zero Trust
Security”[32] looks at enterprise security and IT infra-
structure from a zero-trust perspective. He also explains
how zero-trust security can have an impact on network
and security system integration. The existing surveys fo-
cus on basic concepts of ZTAl2l migration strategies/24,
economic analysis/2%], intrusion detection26] and authentic-

Table 1 Existing surveys on ZTA

Ref Scope Q1 Q2 Q3 Q4 Q5
Yan and Wangl!?] ZTA technological framework and application scenarios y - y X Y
Teerakanok et al. [24] ZTA migration and deployment 3 X y - y
Buck et al. [29] ZTA research framework and research direction v X - X V
Alevizos et al. [26] ZTA model and blockchain-based intrusion detection 3 V y X -
Syed et al. [27] ZTA authentication and access control v X v - N
He et al. [28] ZTA core technologies 3 X y X y
Pittman et al. [29] Zero trust tenets on data object y X X X
Sarkar et al. [30] Zero trust cloud networks 3 X y X y
This work Al-based automation and orchestration of ZTA v v N v V

@ Springer



296

ation?. Yan and Wang['?l review the key technologies in
the components of ZTA, and their application in real-
world scenarios. The advantages of ZTA and the existing
challenges are also presented. Teerakanok et al.?4 invest-
igate the challenges, steps and matters to be considered
in migrating from a legacy architecture to ZTA. Buck et
al.% analyze the disadvantages and costs of ZTA from
an economics and user perspective based on blockchain.
Alevizos et al.26l also use blockchain to enhance the zero-
trust architecture of the endpoint and review state-of-the-
art blockchain-based intrusion detection systems. Syed et
al.27 survey the latest technologies available for authen-
tication and access control in ZTA different scenarios and
discuss ZTA encryption, micro-segmentation and secur-
ity automation methods.

Existing surveys provide a careful review and analysis
of different ZTA theoretical frameworks and application
scenarios. However, none of them elaborates on the po-
tential benefits of the automation and orchestration of
ZTA using Al techniques. In the wide range of ZTA ap-
plication scenarios, where ZTA needs to process and ana-
lyze huge amounts of data from different sources, re-
searchers have shown increasing interest in Al-driven
automation and orchestration, which can provide assist-

Machine Intelligence Research 21(2), April 2024

ance to ZTA in data classification, authentication and ac-
cess controll!2l. Therefore, our main focus in this survey is
to fill the gap by developing a systematic review of Al-fo-
cused approaches important for ZTA automation techno-
logies from a technical perspective in conjunction with ex-
isting surveys.

1.3 Scope and contribution

The scope and organization of this survey are shown
in Fig.1. We first discuss the motivation for using AI
technologies in ZTA automation and orchestration and
compare deperimetrized-based and perimetrized-based
trust architectures. We then discuss the categorization
and role of AI algorithms, and how they can be applied
to ZTA automation and orchestration. Section 2 reviews
traditional perimetrized architecture and provides a fine-
grained delineation of ZTA logical components and data
sources. Afterwards, we delve into Al-based solutions in
ZTA automation and orchestration. We also discuss pos-
sible challenges and future research directions for the use
of AI technologies in ZTA. Section 3 identifies problems
in the implementation of ZTA component automation
and describes the role of AI technologies in automating

Section 1 Section 2 Section 3
Introduction Understanding trust architecture Al algorithms for ZTA
Background Deperimetrized Perimetrized Trans.fer
L trust trust learning
' S—
Motivation Data plane Rellnforc.:ement
g earnin;
Control plane Quantum
Scope orchestration Deep leaming learning
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Al driven ZTA Challenge and future
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Monitoring,
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the implementation of different ZTA components. Our
goal is to use Al technologies to facilitate ZTA automa-
tion and orchestration, which will help further improve
its efficiency and performance. Section 4 provides an over-
view of existing Al-based solutions. Section 5 describes
limitations and challenges, and points to future research
development. Section 6 summarizes the survey paper.

1.4 Contributions

The main contributions of this paper are summarized
as follows:

1) We comprehensively review and compare existing
perimetrized-based and deperimetrized-based trust archi-
tectures.

2) We provide an in-depth analysis of existing Al
technologies for ZTA automation and orchestration.

3) We discuss the challenges of implementing AI-
based solutions in ZTA automation and future develop-
ments.

2 Understanding trust architecture

In this section, we provide a fine-grained categoriza-
tion of the logical components, data sources of ZTA, and
discuss the ZTA automation workflow. We also compare
the difference between perimetrized and deperimetrized
architecture in Table 2.

2.1 Perimetrized architecture

Information security gained widespread attention after
World War II, researchers defended against external at-
tacks by building physical perimeters around computer
systems and stored informationl!l. The core concept of
perimeter-based protection is allowing trusted users to ac-
cess the internal network and blocking untrusted users.

All users, services, infrastructure and assets exist only
within the internal network. The architecture considers
all internal users to be trusted with unrestricted access to
internal resources; Any external users are untrusted and
cannot access any services or devices inside the network.
The perimeter-based security architecture effectively de-
fends against incidents such as malware, phishing, denial

of service and zero-day attacks[33l.

Recently, large amounts of data resources are migrat-
ing to the cloud, and users are expanding from human
users to IoT devices. The traditional sense of network
perimeter is being disrupted, which leads to attacks from
the outside becoming more penetrating and dynamic. The
attack surface has been expanded, many attacks are
launched from the inside, and perimeter-based defences
are no longer effective against attacks from the inside.

Firewalls protect assets by isolating private networks
from public networks by filtering traffic and blocking ac-
cess to untrusted sources or IP addresses4. But the dis-
advantages of firewalls are also obvious, once an attacker
breaches the network’s defensive perimeter, the firewall
cannot stop him from acting illegally on the internal net-
work.

VPN is often used for access to remote networks,
where a secure connection is established between the loc-
al network and the remote network by encrypting the
communication data. While this strategy is effective in
securing communications, it poses a threat to corporate
assets because it requires traversal of the corporate infra-
structure. VPN is effective in securing communication
connections, but it has obvious drawbacks as well. VPN
uses static authentication and cannot continuously verify
user identity and endpoint trust during user access. VPN
is also unable to define and restrict user privilege, users
can access and steal intranet resources with impunity
once they connect to VPN.

The DMZ network provides security for the internal
network with an additional layer of security. The DMZ is
generally located between the two firewalls, external net-
work traffic will enter the DMZ after passing through the
first firewall and will be sent to the second firewall after a
security review by the DMZB%. The DMZ’'s policy of se-
curity defence by using multiple firewalls in the system is
called defence-in-depth security policy. The advantage of
DMZ is that dual firewalls make attacks more difficult,
and attackers need to break through two layers of fire-
walls to bring down the network. In addition, even if one
firewall fails, network traffic can be switched to a backup
firewall to avoid a potential attack(3¢l. Although the DMZ
defence policy deepens the depth of defence, it relies too

Table 2 Comparison between perimetrized and deperimetrized architectures

Features Perimetrized architecture Deperimetrized architecture
Principle Trust and verify Never trust, always verify
Privilege Unlimited privilege (Internal) Least privilege
Boundary Always trust (Internal) Micro segmentation

Authentication Single and static
Authorization Static
Access control Policy-based

Security Network traffic monitoring

Continuous, multimodal and dynamic
Dynamic and fine-grained
Resource-centric and context-based

Continuous monitoring, diagnosis, mitigation
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much on the firewall. If an attacker uses some methods to
bypass the firewall, for example, using malicious emails to
gain direct access to the internal network, the DMZ will
fail. Moreover, DMZ cannot identify attacks by trusted
devices on other trusted devices.

In comparison, the perimeter-based protection ap-
proach effectively protects against external attacks, but it
ignores the internal attacks. Perimeter-based defence ar-
chitecture is no longer suitable for today’s cyber attacks,
privileged access paths become riskier and make perimet-
er-based defence difficult to defend against illegal attacks
from legitimate internal users. ZTA's principle of least
privilege and micro-segmentation effectively limits the
privileges of internal users and avoids the risk of unres-
tricted lateral movement of users within the network.

2.2 Deperimetrized architecture

The national institute of standards and technologies
(NIST) divides the zero-trust model into a control plane,
a data plane and a data sourcel. Among them, the con-
trol plane is primarily responsible for decision making,
the data plane is responsible for executing the decisions
made by the control plane, and the data source is pre-
dominantly responsible for providing data and policy
rules to the control plane. We provide a more refined di-
vision of logical components and data sources on this
basis and illustrate the process of their automated applic-
ation.

Fig.2 shows the automation process of ZTA. The ac-
cessing subject receives session-based authentication gen-
erated by the PA before accessing the resource. Then

Machine Intelligence Research 21(2), April 2024

identity information is sent to the PE to decide whether
to grant permission. After PE decides to grant permis-
sion, PA configures the policy enforcement point (PEP)
to allow the session to start, otherwise, it closes the ses-
sion. The access subject still accepts continuous tracking
and verification of access behaviour and identity by the
security system during access to resources. Once illegal
behaviour is detected, the security system will inform PE
to stop authorizing the session and the PE will close the
session.
2.2.1 Intelligent control plane

In the traditional ZTA control plane, the policy de-
cision point (PDP) is divided into policy engine (PE) and
policy administrator (PA) for making and executing de-
cisions?. Trust evaluation is the core algorithm of PE,
which evaluates the trustworthiness of the subject based
on data from different sources. The PE decides whether
to grant the subject access to resources based on the trust
evaluations via the supplied credentials. PE is essentially
access control to user identity and devices. Therefore, in
order to achieve the accuracy and timeliness of access
control, authentication and authorization, it is necessary
to automate the trust evaluation process and dynamic-
ally adjust the decision through trust value updates in
real-time based on the continuously collected information.
2.2.2 Authentication and ID management

In ZTA, the PA is primarily responsible for establish-
ing the communication path between the accessing sub-
ject and the resource, and then generating session-specif-
ic authentication credentials. Due to the wide range of
ZTA application scenarios, authentication no longer refers
to verifying user identity alone, but also includes authen-

Security systems
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tication of IoT devices and cloud services. Accurate au-
thentication can directly reduce the risk of being at-
tacked by falsified identity, so we divide authentication
into user authentication and device authentication. Bio-
metrics and physical layer authentication (PLA) are con-
sidered effective authentication solutions, with biomet-
rics identifying users based on their unique biometric fea-
tures and physical layer identification identifying them by
verifying device channel state information (CSI) or radio
frequency fingerprint (RFF).

ID management is responsible for creating, storing and
managing user identity information, such as access rights,
biometrics, etc. The enterprise public key infrastructure
(PKI) is responsible for generating authentication and
communication encryption certificates issued by the sys-
tem for devices, services and users. Therefore, even
though biometric authentication and PLA can dynamic-
ally verify the identity of the access subject, the gener-
ated authentication information still needs PKI for com-
munication transmission.

2.2.3 Attack detection

Automated attack detection can help ZTA defend
against internal and external attacks. Nevertheless, at-
tack detection is not a single technique or algorithm, but
a combination and coordination of multiple techniques.
We divide them into three categories based on different
attack phases: Automated threat intelligence collects in-
formation about potential attacks before they occur;
Automated intrusion detection detects ongoing attacks
promptly; And automated log-based anomaly detection
continuously monitors the internal operation of the net-
work to identify and locate anomalous locations even if
an attack breaks through the first two layers of detection.
The coordination of multiple automation technologies can
secure the ZTA to a large extent.

2.2.4 Connection monitoring

The data plane is used for the actual communication
between applications and its main role is to monitor the
connection between the subject and the resource. All ac-
tions taken by the subject while accessing the resource
are recorded by the logs, so it is possible to stop possible
illegal actions by legitimate users by checking for abnor-

mal log records. The continuous diagnostics and mitiga-
tion (CDM) system and the security information and
event management (SIEM) system are also used to col-
lect information and provide response strategies.

CDM mainly collects information about assets and up-
dates configurations, and its capabilities include asset
management, identity and access management, network
security management and data protection management.
SIEM systems analyze relevant security information with-
in a system and provide response strategies, and are com-
posed of multiple monitoring and analysis components
such as log managements (LMS), security information
management (SIM) and security event management
(SEM). LMS is used as a traditional log collection and
storage tool; SIM collects data from multiple security-re-
lated tools or systems; SEM is based on a proactive mon-
itoring and analysis system that includes data visualiza-
tion, event correlation and alerts.

3 Al algorithms for ZTA

In light of the increasing demand for AI technologies
in zero-trustB37: 38, we focus on, but are not limited to AI
technologies that can be applied to the automation and
orchestration of ZTA. Fig.3 shows the categories of ZTA
components which can use Al algorithms. We divide ZTA
components into four parts: control plane, authentication,
attack detection and resources monitoring.

3.1 Control plane

The control plane is the brain of the ZTA, and it eval-
uates and analyzes the data from other components for
decision-making. The control plane is divided into two
main parts: trust evaluation and access control.

3.1.1 Trust evaluation

As mentioned in Section 2, the trust algorithm evalu-
ates the trustworthiness of the subject based on different
data sources to decide whether to grant accessl?. It can
support the automation of the modules inside the policy
engine, which handles decision-making and flexible con-
trol over the tenets of ZTA by constantly assessing the

Control
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Attack o

Trust Access Threat . User
. . . Log analysis L SIEM
evaluation control intelligence monitoring
l l
T“?St Authorization Biometrics RFFI CSI
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Fig.3 Al classes and applications in ZTA
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trustworthiness of several network devices and enterprise
systems. However, automating the modules of ZTA's PE
is highly challenging and non-trivial, because the access
grant to network resources is often governed by the un-
derlying trust evaluation algorithm(. To this end, ad-
vanced machine learning techniques can be applied to
handle effective trust evaluation; Wang et al.39 have ana-
lyzed several conditions where machine learning-based
trust evaluation methods enable improving the trustwor-
thiness of the underlying devices in a distributed system.

The clustering algorithm performs binary clustering on
the information features collected by different ZTA com-
ponents, labelled as trustworthy or untrustworthy in the
trust evaluation. This method can be applied to ZTA's
access control decision-making to decide whether to grant
or deny access. Similarly, deep reinforcement learning can
enhance the performance of the access control model by
strengthening the trust evaluation policy by rewarding
and punishing each evaluation action in an active trial-
and-error manner(40 41, Moreover, transfer learning can
be used to reduce the training time for the models be-
cause of its inherent knowledge-sharing approach.

3.1.2 Access control

In ZTA, access control is a vital security protection
method, trust evaluation can be considered as an import
access control policy. Traditional access control refers to
restricting what a user and a program are capable of act-
ing on his behalf can perform directlyl®2l. With the ad-
vent of the era of 5G and IoT, more and more intelligent
devices have joined the network, and access control is no
longer limited to restricting users’ and programs’ access to
data. Access control in ZTA is redefined as only authen-
ticated and authorized subjects can access resources, oth-
er subjects will be denied access. Subjects can be under-
stood as users, applications (or services), or combinations
of devices; resources can be interpreted as any objects
connected to the network, such as printers, or computing
resourcesl?. In addition, dynamic grants or revocation is
also the primary function of the ZTA PE.

Before we discuss Al-based automated access control
that can be applied to ZTA, it is also essential to focus
on the different application scenarios of access control.
Ravidas et al.43] investigated the development trend of
access control in IoT and analyzed the existing IoT au-
thorization framework. Similarly, Ouaddah et al.[*4 re-
viewed the goals, models and mechanisms of different ac-
cess control schemes in IoT and analyzed their security
and privacy requirements. In order to solve the lack of
flexibility and scalability of access control based on sym-
metric encryption and public-key encryption, Zhang et
al.4% reviewed access control attribute-based encryption
(ABE) in cloud computing, and proposed the classifica-
tion and evaluation criteria of ABE.

There are three main types of access control tech-
niques: role-based access control (RBAC), attribute-based
access control (ABAC), and fine-grained access control

@ Springer
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(FGAC)H6l. The access control policy in ZTA is a com-
bination of these three techniques, which automatically
assign roles or permissions to users based on their static
and dynamic attributes for fine-grained access control.
Static attributes can be understood as user identity, while
dynamic attributes include user access request time and
location. Different roles within an organization have dif-
ferent permissions. Due to powerful classification capabil-
ity, supervised learning can be used to automatically as-
sign role permissions based on user attributes, or even
directly assign user permissions. Those AI approaches can
significantly reduce the time and improve the accuracy of
privilege assignments compared to manual privilege as-
signments.

3.2 Identity verification

Authentication is the primary factor in the control
panel’s decision to grant or deny access. Existing authen-
tication technologies can be divided into biometric identi-
fication and physical layer authentication, which are used
to authenticate human users and devices, respectively.
3.2.1 Biometric authentication

Many biometric features of the human body are
unique, such as the iris and fingerprintsl4’. However,
these traditional surface biometrics of the human body
are no longer reliable because they can be easily lost and
copied, such as fingerprints left on a glass. With the de-
velopment of wearable devices, features of internal hu-
man organs can also be effectively captured. However,
how to classify and identify the collected biometric fea-
tures is the main challenge that biometrics currently en-
counters. The application of artificial intelligence can ex-
tract and classify the features obtained from wearable
devices to verify the user’s identity.

A detailed investigation of the application scheme of
machine learning classification methods in continuous
multimodal biometric authentication is presented by Ryu
et al.[48 In automated user identification, the user biomet-
ric features stored in the ID management system are first
quantified, and then the features are classified by ma-
chine learning supervised algorithms such as K-nearest
neighbors (KNN) and decision tree (DT) for model train-
ing to perform authentication. Deep learning algorithms
such as convolutional neural network (CNN) can auto-
matically extract and learn the user’s biometric vector
features directly from the information collected by bio-
metric monitoring devices to confirm the user’s identity.
Deep transfer learning has also been used to address the
problem of poor authentication performance due to insuf-
ficient user biometric data.

3.2.2 Physical layer authentication

Continuous authentication aims to continuously veri-
fy the identity of the endpoint during a communication
session. Al-based PLA is considered as a potential solu-
tion, where AI algorithms can effectively extract device
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features from the communication channel and continu-
ously verify the identity of users and devicesl*. Xie et
al.b% conducted a detailed survey on existing PLA tech-
nologies, and they classified IoT device features into de-
tecting device-based and channel-based features.

Compared to device-based features, channel-based fea-
tures are more difficult to copy or imitate, which provides
improved security for device authentication. However,
channel-based features are extracted from device commu-
nications, and manually distinguishing the communica-
tion features of different devices is impractical. Therefore,
in ZTA automated device identification, deep learning
can be used to automatically learn device channel fea-
tures to distinguish device identity, thereby improving
device authentication performance.

3.3 Attack detection automation

Automated attack detection was the main means for
ZTA to prevent attacks from internal and external. At-
tack detection techniques can be divided into threat intel-
ligence collection and log-based anomaly detection.

3.3.1 Threat intelligence collection

Automated threat intelligence collection requires Al
algorithms to sense, reason and detect advanced cyber at-
tacks(l. Currently, most cyber threat intelligence comes
from open-source communities such as different hacker
forums, blogs and tweets(52-54. Therefore, using Al tech-
nologies to extract useful information automatically is
currently an immediate and effective way of extracting
threat intelligence. Cascavilla et al.[55] reviewed existing
cyber criminal activities and supplemented their classific-
ation for risk assessment. Cyber threat intelligence shar-
ing is considered as an effective means to address the in-
creasing number of cyberattacks, and Wagner et al.l56 in-
vestigated existing automated cyber threat intelligence
sharing techniques.

In ZTA, we believe that AI technologies are the
primary solution for automating cyber threat intelligence
collection. The clustering algorithms of unsupervised
learning can group different patterns of threat intelli-
gence according to their similarityl5” 58, The log-based
anomaly detection method uses Al technologies to realize
automatic log monitoring and anomaly identification. Be-
cause the log data is often in billions, unsupervised learn-
ing such as dimensionality reduction algorithms can ef-
fectively reduce the computational cost and improve the
efficiency of anomaly identification®%. Furthermore, deep
reinforcement learning is also used to collect threat intel-
ligence, reinforcement learning subjects actively learn to
extract more accurate threat intelligence through trial
and error, which improves the identification performance
of threat intelligencel60; 61],

3.3.2 Log anomaly detection

Automated anomaly detection of log files can detect

abnormal or illegal behaviours of ZTA internal resources

in time. Soldani and Brogil®? reviewed anomaly detection
methods and anomalies cause analysis methods in cloud
services. Landauer et al.l%3 investigated clustering meth-
ods for analyzing large volumes of log data. Likewise,
Chalapathy and Chawlal64 provided an overview of deep
learning-based anomaly detection methods and evaluated
the effectiveness of these methods.

According to our survey, semi-supervised learning is
mainly used to detect logs with abnormal conditions in
ZTA. Although log anomaly detection can effectively de-
tect known attack behaviours, the detection performance
will drop sharply in the case of unknown attacks. Semi-
supervised learning uses large amounts of unlabelled data,
as well as simultaneous use of labelled data, to perform
pattern recognition work. It avoids the waste of data and
resources, and solves the problems of weak generalization
ability of supervised learning models and inaccuracy of
unsupervised learning models.

3.4 Automated resources monitoring

Automated resource monitoring is an organization re-
source-centric security approach that continuously monit-
ors the behaviour of accessing subjects on resources. The
main purpose of automated resource monitoring is to
avoid illegal actions from legitimate users or devices.
3.4.1 SIEM orchestration

Although the attack detection methods mentioned
above can help ZTA effectively detect internal and ex-
ternal threats, they are unable to effectively classify and
manage these security events. Attack detection methods
also cannot automatically alert the security administrat-
or or take countermeasures automatically. Automated
SIEM orchestration is an effective solution to this prob-
lem. It can automatically collect and analyze information
from the attack detection system, and automatically trig-
ger security alerts to provide repair or mitigation solu-
tions. Supervised learning classification algorithms are
used to automatically classify various security events,
solving the problem of inefficient manual classification(6].,
3.4.2 Automated user behaviour monitoring

Although users and devices in the ZTA architecture
have been continuously authenticated and authorized, it
doesn't mean that they are always credible, incidents such
as fraudulent use of identity may occurl? 66, Continuous
monitoring of internal users and equipment is an effect-
ive solution. Modelling user behaviour extracted from logs
using artificial intelligence techniques is the main solu-
tion to automate abnormal user identification. Since there
are few papers reviewing Al-based user abnormal beha-
viour monitoring, we provide potential Al-based ap-
proaches to user behaviour detection in Section 4.4.1.

Cluster algorithms detect legitimate users’ illegal be-
haviours by clustering normal user behaviours into a
cluster, while users away from the clustering are labelled
as abnormal users. Similarly, the deep learning algorithm
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learns the daily access habits of users, and classifies them
into normal and abnormal according to their behaviours.
In addition, deep learning can also predict the possible
behaviours of users based on their context and historical
behaviours, and detect or prevent threats from them in
time.

4 Al-driven ZTA

ZTA automation and orchestration can be considered
as the process of reducing frequent mediation by security
personnel via automating the detection and prevention of
cyber threats. In this section, we review the AI ap-
proaches for ZTA components to ZTA automation and
orchestration. Tables 3 and 4 surveyed the recent Al-
based approaches to trust evaluation, authentication, at-
tack detection and system monitoring, respectively.

4.1 Experience-driven trust evaluation

Traditional trust evaluation is performed by quantify-
ing trust-related attributes such as historical interaction
information by using Bayesian inferencel!36], weighted av-
erage models’37], and other methods. Although these
methods can assess trust to a certain extent, with the ad-
vent of the era of big data, traditional trust evaluation
methods have become difficult to carry exponential trust-
related attribute data, which greatly affects the accuracy
of trust evaluationB9. Moreover, traditional methods
must rely on known trust-related attributes for trust eval-
uation and cannot be applied in the absence of a priori
knowledge.

The rapid processing of big data by AI makes Al-
based trust evaluation methods suitable for existing com-
plex network application scenarios. Online social net-
works (OSN) is one direct way to obtain user features,
supervised learning classifies users into trustworthy and
untrustworthy by treating trust evaluation as a classifica-
tion probleml67-69 or quantifies trust values directly us-
ing continuous values’0-72 based on OSN users’ features.

However, supervised learning must have labelled data
to train the model, in most ZTA practical application
scenarios, users and device features lack clear labels, and
unsupervised learning such as K-means[™ 76 can solve
this problem by clustering trust objects without label in-
to a different level of trust groups. To further improve
unsupervised learning performance, semi-supervised learn-
ing, which combines supervised and unsupervised learn-
ing, can be used to optimize the clustering boundaries.
Multi-class supervised learning algorithms such as sup-
port vector machine (SVM) and random forest!"- are
used to find the optimal decision boundary between trus-
ted and untrusted clusters. Moreover, reinforcement
learning(80-84 can be used to find the optimal trust evalu-
ation policy and improve trust evaluation models by con-
tinuously interacting with the surrounding environment
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by trial and error(138].

Since Al-based trust evaluation methods have high
time complexity which requires significant computational
and time resources for model training, improving the per-
formance while reducing the computation time of trust
values is important for automating trust evaluation. To
achieve this, distributed learning(® 86, 139-141] and transfer
learningl®®l can be used to improve trust evaluation mod-
el performance and reduce model training time costs, re-
spectively. Similarly, the quantum learning-based trust
evaluation modell!42 143] can further optimize the trust
model and reduce the computational complexity of the
model with the high parallelism of quantum compu-
tingl144, 145],

4.2 Contextual continuous access control

Access control restricts the subject’s access to objects
through authentication and authorization. Since it is im-
portant to determine whether the subject requesting ac-
cess is legitimate, authentication and authorization are
fundamental considerations when trying to implement
zero trust?7l. In this section, we provide an overview of

Al-based techniques for access control.
4.2.1 Automated user authentication

Existing user authentication technique has shortcom-
ings, knowledge-based (password, token, etc.) authentica-
tion methods are only established when the subject re-
quests access and the user is not verified and tracked
after passing the authentication(146l. Biometric authentica-
tion methods also require specific specialized equipment
to monitor which elevated the difficulty of continuous au-
thentication. Therefore, continuous, multimodal and con-
textual biometric authentication techniques are import-
ant for ZTA to verify user identity.

Because traditional physiological features such as fin-
gerprints and irises are easy to obtain or copy, continu-
ous authentication87-90. 147 requires uninterrupted con-
firmation of user identity based on different features
which should meet the conditions of universality, unique-
ness and uninterruptednessi!48l, such as electrocardio-
gram (ECG). Contextual authentication92-9 is similar to
continuous authentication, but contextual authentication
focuses on changes in the user's physiological and behavi-
oural features over time, including pre-authentication be-
haviour. To further improve the security and accuracy of
identity verification, multimodal biometric authentica-
tion [96-99, 149, 150] combined different biometric authentica-
tion methods to avoid the uncertainty of a single authen-
tication method, which is similar to multi-factor authen-
tication (MFA )51,

4.2.2 Automated device authentication

ZTX07 considers IoT devices in a zero-trust network
as a threat to network security, therefore allowing enter-
prises to segment, protect and restrict devices connected
to the network and treat them as zero-trust devices (ZTD).
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Shah et al.[1%2] specially designed a lightweight device-
to-device authentication protocol for ZTA called light-
weight  continuous  device-to-device  authentication
(LCDA), which uses mathematical functions to dynamic-
ally generate a session key to verify the identity of the
device. Because traditional methods of device authentica-
tion that rely on IP addresses are susceptible to tamper-
ing or forgery[19l, physical layer authentication (PLA) is
used to verify the device identity in wireless communica-
tion, and existing PLA techniques mainly identify the
device identity through radio frequency fingerprint (RFF)
and channel state information (CSI).

RFF is similar to human biometric fingerprints, the
difference is that RFF is extracted from a wireless device
communication signal. The main stages of an RF finger-
print-based wireless device identification system are sig-
nal capture, feature extraction and classification. After
capturing the signal, unique features need to be extrac-
ted from different parts of the signall!53l. Therefore, radio
frequency fingerprint identification (RFFI)[100-102, 154] jg
more secure and reliable than using IP for wireless device
authentication.

CSI describes the channel state of wireless communic-
ation, and CSI variation is unique from device to device
which can prevent spoofing attacks in PLA. AI tech-
niques can perform dimensionality reduction, denoising
and feature extraction on CSI datall®5. Therefore, the
identity of wireless devices can be verified by using AI to
classify CSI in ZTA[103-106],

4.2.3 Automated authorization

Cloud is also a major application scenario for ZTA be-
cause many applications store their data in the cloud.
Therefore, a dynamic access control model is needed to
handle access requests from a large number of dynamic
users. Riad et al.[!56] proposed a hierarchical access con-
trol scheme with dynamic revocation threshold vectors
based on multi-dimensional access control to dynamically
authorize or revoke users with multiple rights in the
cloud. This scheme revokes user rights based on the legal
vector in the authorization process, and the revoked users
can no longer encrypt the ciphertext, which effectively re-
duces the computational cost. And only non-revoked
users have the right to generate a decryption token to de-
crypt the ciphertext. The authors also report that the
proposed scheme is faster than other schemes in encryp-
tion and decryption time.

However, continuous user interaction with the cloud
can lead to data breaches. Espositol!57 addressed these is-
sues by orchestrating different access control models. In
addition, Esposito also proposed a pseudonym-based pri-
vacy protection method to protect users’ personal inform-
ation. To enhance the privacy of users and the security of
encryption schemes, Li et al.l!58] proposed a multi-author-
ity ciphertext-based access control method with account-
ability. This method hides the access policy in the cipher-
text from the encrypted file, and only the user policy that
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matches the access policy in the ciphertext can decrypt
the ciphertext. In addition, the authors proposed a track-
ing protocol to track the identities of file visitors.

4.3 Orchestrating attack detection

Threat intelligence (TI) and system activity logs are
important data sources of ZTA, as they provide near real-
time feedback to the policy engine for decision-making
through the collection or recording of internal and extern-
al data.

4.3.1 Automated threat intelligence identification

Threat intelligence is information about threats and
guides organizations to improve security to counter
threats by mining publicly available resources for vulner-
abilities, cyber-attacks and other information. Due to the
numerous sources of threat intelligence, an automated
system is needed to enable the collection of threat intelli-
gence and to discriminate the authenticity of the collec-
ted intelligence. Sentuna et al.[!59 discussed the emerging
technologies of cyber threat intelligence, they combined
the naive Bayes posterior probability function and risk
assessment function to propose a threat prediction model.

Hacker forums are an important source of data for cy-
ber threat intelligence, in order to collect cyber threat in-
telligence from hacker forums, Deliu et al.107111] ysed a
supervised learning model as the classifier to classify the
data based on security topics. Threat intelligence identi-
fication methods based on deep learning(l'2l and transfer
learning(!13: 114 have also been used for improving threat
intelligence identification performance and reducing mod-
el training time.

4.3.2 Automated log-based anomaly detection

System logs provide near real-time feedback on the
operation of components within the system and auto-
mated anomaly detection of system log files can identify
abnormal access activities to resources in a timely man-
ner[115l. System logs often record system operation in a
time-series fashion, and supervised learning-based log
analysis methods[!!7. 118 have advantages in automating
the extraction of time-series anomaly features. Deeplog(113]
focused on building a workflow from the underlying logs
and analyzing the detected anomalies. Wang and Jill16l
argued that the performance of Deeplog is unsatisfactory,
and they deeply optimized Deeplog and combined the
first-order outlier detection algorithm of parameters to
propose a semi-supervised anomaly detection model.

However, supervised machine learning strategies that
rely on labels are not suitable for real-time anomaly de-
tection systems because data labeling is time and cost ex-
pensive. To solve this problem, unsupervised log analysis
methods[11% 120 are used to effectively detect anomalies in
a log without features. The output anomaly score repres-
ents the degree to which a log event is anomalous in
terms of its content and temporal context. Semi-super-
vised learning-based log analysis methods[!16: 121, 122] fyr-
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ther improve the performance of unsupervised learning.
Transfer learning-based log analysis methods[!23: 160 can
effectively reduce training time and improve training effi-
ciency.

4.4 Continuous monitoring, diagnosis and
mitigation

Automated anomaly detection can effectively collect
information about attacks from both internal and extern-
al sources of a system, but it is difficult to effectively dia-
gnose and mitigate the attack. Therefore, the collected in-
formation needs to be further tracked and analyzed to
make diagnostic decisions and policy updates.

4.4.1 Automated user and device monitoring

Continuous authentication and authorization can only
identify the legitimacy of a user or device, but cannot ef-
fectively identify the illegal behaviour of a legitimate
user. Continuous monitoring of internal users and devices
access behaviour to resources is an effective solution to
identity masquerading.

The clustering algorithm(124126, 161, 162] can effectively
divide wusers into groups based on their behaviour.
However, user behaviour may change in different scenari-
os, and this may generate much unknown data. There-
fore, Tang et al.l'63] proposed a clustering method based
on user behaviour trajectory for software system user be-
haviour analysis. Tang et al.l!63] converted the user's ac-
cess data and operation data to the software into a tra-
jectory matrix and normalize, then calculate the similar-
ity of user behaviours and cluster the user visits and op-
erating habits based on similarity.

Deep learning, such as long short-term memory
(LSTM), algorithms['27129 are used to automatically se-
lect user and device behaviour features due to its ability
to efficiently capture time series features. Singh et al.[l27]
proposed an anomaly detection method for network in-
ternal user behaviour based on a hybrid machine learn-
ing algorithm. Singh et al.1?7 focused on analyzing user
behaviour sequence to monitor users and detect potential
internal threats. However, Singh et al.}27 also believed
that existing internal detection methods had problems
such as a high false alarm rate and insufficient feature se-
lection. Therefore, Singh et al.[128] continued to propose
an internal threat detection method based on user beha-
viour for key infrastructure to improve feature extraction
performance. Compared with the [127], Singh et al.[128l
used bi-directional long short-term memory (Bi-LSTM)
for efficient feature extraction and used SVM as a classifi-
er to classify user behaviours into normal and malicious.
Singh et al.l!28 achieved an accuracy of 87.5%, which is
higher than LSTM+CNN (75.3%). Similarly, Sharma et
al.l'29 proposed an abnormal user behaviour detection
model, which can use LSTM to model user behaviour in
conversation activities.

4.4.2 SIEM orchestration

Although anomaly detection methods mentioned
above can help ZTA effectively detect internal and ex-
ternal threats, they are unable to effectively classify and
manage these security events. Anomaly detection also
cannot automatically alert the security administrator or
take countermeasures automatically. Automated SIEM
orchestration is an effective solution to this problem.
SIEM can automatically collect and analyze information
from the anomaly detection system and automatically
trigger security alerts to provide diagnosis or mitigation
solutions.

However, the existing SIEM system may have defects
because the existing data packet analysis scheme cannot
adapt to massive datall64. Therefore, Li and Yan[!30 ap-
plied machine learning technologies to the SIEM system
and proved the feasibility of machine learning to analyze
data in the SIEM system. Li and Yan[13% used Logstash
to collect system logs from different sources, used K-
means to cluster the connection information, and then
used the spark or flink framework for real-time calcula-
tions. Lee et al.13l] proposed an AI-SIEM system based
on a combination of neural network algorithms FCNN,
CNN and LSTM. Lee et al.l'3! focused on using deep
learning techniques to learn normal and threat patterns
from the collected information. The main purpose is to
improve the accuracy of real alarm classification and re-
duce the number of irrelevant alarms.

El Hajji et al.132 focused on data combination tech-
niques from different sources to enhance SIEM systems
and used intrusion detector models based on neural net-
works. The first layer of the model used neural networks
to classify system events into malignant and benign; The
second layer used SVM to improve classification perform-
ance. The experimental results showed that the proposed
model has improved classification performance and con-
vergence speed. On the other hand, Hossain et al.[133] be-
lieved that manually classifying the events collected by
SIEM is a difficult task, so they developed a set of auto-
matic classification tools based on machine learning to
solve this problem. In addition, Hossain et al.[!33] also ex-
perimented with various machine learning algorithms on
multiple datasets to find the best text classification mod-
el, such as DT and SVM. The test results show that SVM
has achieved the best performance on dataset Tipping-
Point and NetScreen, which are 95.08% and 94.05% re-
spectively.

Automated SIEM systems are also widely used in
practical scenarios. Hindy et al.[134 proposed a SIEM sys-
tem to detect abnormal events in a water supply system
controlled by SCADA. Hindy et al.l!3 used machine
learning to divide the attack data into fourteen different
scenarios and reported the scenarios to the security oper-
ator. The proposed SIEM model can help operators accel-
erate the process of mitigating network attacks, but they
also point out that the system cannot provide operators
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with information on new attack scenarios. Feng et al.[13%]
believed that the false alarm rate issued by existing SIEM
is too high, which is far beyond the processing range of
the security operation center (SOC). To solve this prob-
lem, Feng et al.[3% proposed a user-centric framework
that uses machine learning algorithms to reduce the false
alarm rate of security threats.

5 Challenges and future development

5.1 Challenges

Harmonization policy

Although each data source of ZTA has its own opera-
tional policies and standards, there is still a lack of a uni-
fied policy that governs the automation of ZTA compon-
ents, including encryption policies, code specifications,
etc. The most immediate consequence of the lack of uni-
form policy is the problem of data heterogeneity. In ZTA,
monitoring network traffic and user behaviour within the
system is extremely dependent on the log data provided
by each security tool, and PAs have to use multiple trust
evaluation algorithms to adapt to different data formats,
which not only makes the trust evaluation hard, but also
leads to performance degradation of the automated trust
evaluation model.
Legacy system

With the development of the Internet of things, cloud
and other technologies, many devices can be realized by
the central control system unified orchestration. But leg-
acy infrastructure, applications, services, etc. still cannot
pass zero-trust awareness because there is no concept of
least privilege or lateral movement, nor is there any dy-
namic context-based authentication model that can be
used, so the legacy system is vulnerable to a range of se-
curity threats[!65. The existing solution is to add an au-
thentication module to the central control system and
then define its privileges. Although this solution allevi-
ates the system legacy problem to some extent, it re-
quires the accessing subject to traverse the infrastructure
directly, which violates the network micro-segmentation
principle of zero trust.
Data inconsistency

The data for trust evaluation comes from different
data sources, but the current ZTA has no uniform stand-
ard for the data of trust algorithms, so it may lead to
data inconsistency, which further affects the performance
of trust evaluation. Since the input for trust evaluation is
provided by different data sources such as CDM, there is
no uniformity in the format, role and size of the data col-
lected from these data sources, which makes it im-
possible for the trust algorithm to use the same method
for evaluating the information sources. If different al-
gorithms are used for evaluation, the efficiency of the
model operation will be reduced. If the same algorithm is
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used for evaluation, the evaluation results will be af-
fected directly.

5.2 Future development

5.2.1 Human expertise

Al-based ZTA systems offer the advantage of auto-
matic authorization management, which can significantly
reduce the burden of manual authentication processes.
However, relying solely on Al-based decision-making may
lead to incorrect or biased decisions, and then further res-
ult in false positives or false negatives. Therefore, incor-
porating human expertise in the loop can help reduce or
eliminate the impact of errors caused by AI systems. By
incorporating human feedback and review, the ZTA sys-
tem can improve its accuracy and adapt to changing cir-
cumstances more efficiently. For example, if an Al-based
ZTA system denies access to a legitimate user, a human
expert can be referred to re-evaluate the decision and
provide feedback to improve the system's accuracy. Then,
the Al-based system can learn from its mistakes and con-
tinuously improve its performance. Therefore, it is neces-
sary to introduce human-in-the-loop machine learn-
ingll66] for ZTA in order to make more accurate and effi-
cient decisions.
5.2.2 Data quality

Another critical factor to consider in Al-based ZTA
systems is the availability and quality of training data.
These systems rely on large datasets to train their mod-
els, and if the training data is compromised, the system's
performance can be severely affected. Data poisoning, a
type of adversarial attack, can manipulate the training
data to mislead the system's decision-making, resulting in
poor decisions based on misleading outputs'¢7. To mitig-
ate the impact of data poisoning, ZTA systems should
implement robust data cleansing and validation tech-
niques to ensure the quality and integrity of training
data. Additionally, it could use multi-modal datasets
from different sources and apply techniques such as data
randomization to reduce the impact of potential data
poisoning issues.
5.2.3 SASE

Secure access service edge (SASE) is a service based
on an entity's identity, real-time context, enterprise se-
curity/compliance policies, and continuous assessment of
risk/trust throughout the sessionll%8. SASE converges
network access and security capabilities and unifies in the
cloud for management and delivery. Zero trust is a way of
thinking that focuses on authentication and data access
authorization on an as-needed basis, whereas SASE refers
to a cloud delivery platform implemented at the edge
that provides broad protection for data anywhere. SASE
cannot be seen as a fast track to zero trust, but rather,
SASE should be combined with ZTA to better protect
cloud-based services as well as local services using zero
trust principles.
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5.2.4 Fast communication

The growing reliance on digital technology has in-
creased the complexity and scale of cyber threats, mak-
ing it challenging for organizations to protect their sys-
tems and data. However, implementing ZTA in untrus-
ted infrastructures requires handling a massive amount of
data generated between facilities, which needs to be
transmitted to the appropriate components for security
analysis and access policy updates.

Traditional wired communication technologies, such as
Ethernet and fiber-optic cables, offer high data rates and
reliability. However, they require physical connections
between devices, which can be costly and challenging to
maintain, especially in remote and challenging environ-
ments. Moreover, wired networks are vulnerable to phys-
ical attacks, such as cable cuts or sabotage, which can
lead to network downtime and data breaches. Wireless
communication technologies, such as WiFi and cellular
networks, provide mobility and flexibility in untrusted in-
frastructures. However, they suffer from limited band-
width, low data rates and high latency, making them in-
adequate for handling the massive amount of data gener-
ated in ZTA.

In contrast, next-generation networks such as 6G of-
fer several advantages over traditional wired and wireless
communication technologies. 6G networks provide
massive connectivity, ultra-low latency and faster data
rates, making them suitable for handling the massive
amount of data generated in ZTAI69 170 Tt is worth
mentioning that 6G networks have ability to support
massive machine-type communications (mMTC) from IoT
devices[!7l], sensors and other connected devices, which is
a critical requirement in ZTA. On the other hand, ZTA
can also dynamically detect anomaly activities of
users/devices/applications in 6G networks and restrict in-
ternal and external access to IoT resources/!70],

6 Conclusions

With its least privilege and the end-to-end principle,
ZTA solves the security problems prevalent in perimeter-
based security architectures such as lateral movement, in-
sider attacks, etc. The implementation and development
of ZTA is further promoted by the use of Al technologies.
This survey provides an insightful analysis of the recent
literature on ZTA, revealing gaps in addressing Al in
ZTA component automation and orchestration. In addi-
tion, this survey has identified trust evaluation, authen-
tication, attack detection, and monitoring as the funda-
mental classifications that constitute the operation of
ZTA component automation. To address the challenges
associated with these classifications, an overview of Al-
based solutions is provided.

With the development of cloud computing, 5G/6G
and other technologies, ZTA will be used in an increas-
ingly wide range of fields. As we have observed in the lit-

erature, only a few zero-trust models employ Al-based
automation techniques in their design. Therefore, this
survey provides an overview of opportunities for future
investigations to be explored by researchers. Mechanisms
that leverage AI technologies to drive the automated op-
eration of ZTA will lead developers to achieve ZTA auto-
mation and orchestration.
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