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Abstract:   With the breakthrough of AlphaGo, deep reinforcement learning has become a recognized technique for solving sequential
decision-making problems. Despite  its reputation, data  inefficiency caused by  its trial and error  learning mechanism makes deep rein-
forcement  learning difficult to apply  in a wide range of areas. Many methods have been developed  for sample efficient deep reinforce-
ment learning, such as environment modelling, experience transfer, and distributed modifications, among which distributed deep rein-
forcement learning has shown its potential in various applications, such as human-computer gaming and intelligent transportation. In
this paper, we conclude the state of this exciting field, by comparing the classical distributed deep reinforcement learning methods and
studying important components to achieve efficient distributed learning, covering single player single agent distributed deep reinforce-
ment learning to the most complex multiple players multiple agents distributed deep reinforcement learning. Furthermore, we review re-
cently released toolboxes that help to realize distributed deep reinforcement learning without many modifications of their non-distrib-
uted versions. By analysing their strengths and weaknesses, a multi-player multi-agent distributed deep reinforcement learning toolbox
is developed and released, which is further validated on Wargame, a complex environment, showing the usability of the proposed tool-
box for multiple players and multiple agents distributed deep reinforcement learning under complex games. Finally, we try to point out
challenges and future trends, hoping that this brief review can provide a guide or a spark for researchers who are interested in distrib-
uted deep reinforcement learning.
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 1   Introduction

With the breakthrough of AlphaGo[1, 2], an agent that

wins  many  professional  Go  players  in  human-computer

gaming,  deep reinforcement learning (DRL) has  come to

most  researchers′ attention,  which  has  become  a  recog-

nized  technique  for  solving  sequential  decision  making

problems. Many algorithms have been developed to solve

challenging  issues  that  lie  between  DRL  and  the  real

world  applications,  such  as  exploration  and  exploitation

dilemma,  data  inefficiency,  and  multi-agent  cooperation

and competition. Among all these challenges, data ineffi-

ciency  is  the  most  criticized  due  to  the  trial  and  error

learning  mechanism  of  DRL,  which  requires  a  huge

amount of interactive data.

To alleviate the data inefficiency problem, several re-

search  directions  have  been  developed[3].  For  example,

model-based deep reinforcement learning constructs envir-

onment  models  for  generating  imaginary  trajectories  to

help  reduce  times  of  interaction  with  the  environment.

Transfer reinforcement learning mines shared skills, roles,

or patterns from source tasks, and then uses the learned

knowledge to accelerate reinforcement learning in the tar-

get  task.  Inspired  by  distributed  machine  learning  tech-

niques, which have been successfully utilized in computer

vision and natural language processing[4], distributed deep

reinforcement learning (DDRL) was developed, which has

shown its  potential  to  train  very  successful  agents,  such

as Suphx[5], OpenAI Five[6], and AlphaStar[7].

Generally,  training  DRL agents  consists  of  two  main

parts, i.e., pulling policy network parameters to generate

data  by  interacting  with  the  environment,  and updating

policy  network  parameters  by  consuming  data.  Such  a
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structured  pattern  makes  distributed  modifications  of

DRL feasible, and many DDRL algorithms have been de-

veloped. For example, the general reinforcement learning

architecture[8], likely the first DDRL architecture, divides

the training system into four components, i.e., parameter

server,  learners,  actors  and  replay  buffer,  which  inspires

more  successive  data  efficient  DDRL  architectures.  The

recently proposed SEEDRL[9], an improved version of IM-

PALA[10],  is  claimed to be able  to produce and consume

millions of frames per second, based on which AlphaStar

is  successfully  trained  within  44  days  (192  v3 + 12  128

core TPUs, 1 800 CPUs) to beat professional human play-

ers.

To make distributed modifications of DRL be able to

use  multiple  machines,  several  engineering  problems

should  be  solved,  such  as  machine  communication  and

distributed  storage.  Fortunately,  several  useful  toolboxes

have  been  developed  and  released,  and  revising  DRL

codes  to  a  distributed  version  usually  requires  a  small

amount of code modification, which largely promotes the

development  of  DDRL.  For  example,  Horovod[11],  re-

leased by Uber, makes full use of the ring allreduce tech-

nique,  and  can  properly  use  multiple  GPUs  for  training

acceleration  by  adding  only  a  few  lines  of  codes  com-

pared with the single GPU version. Ray[12], a distributed

framework  of  machine  learning  released  by  UC Berkeley

RISELab, provides RLlib[13] for efficient DDRL, which is

easy to use due to its reinforcement learning abstraction

and algorithm library.

Considering  the  great  progress  of  DDRL,  it  is  neces-

sary to comb out the course of DDRL techniques to con-

clude challenges and opportunities to provide clues for fu-

ture research. Recently, Samsami and Alimadad[14] gave a

brief review of DDRL, but their aim is constructing single

agent  distributed  reinforcement  learning  framework,  and

more  challenging  multiple  players  and  multiple  agents

DDRL are absent. Czech[15] conducted a short survey on

distributed  methods  for  reinforcement  learning,  but  only

several  classical  algorithms  were  introduced  with  no  key

techniques,  comparisons  and  challenges  being  discussed.

Different  from  previous  summaries,  this  paper  aims  to

provide  a  more  comprehensive  survey.  Through  this  pa-

per,  we  hope  to  study  important  components  to  achieve

efficient  distributed  learning,  and  use  this  to  provide  a

new taxonomy. We will compare the classical distributed

deep reinforcement learning methods covering single play-

er single agent DDRL to the most complex multiple play-

ers  multiple  agents  DDRL.  Using  the  comparison,  we

hope to provide a guide for beginners and conclude with

challenges and opportunities for future study.

The rest of  the paper is  organized as follows.  In Sec-

tion  2,  we  briefly  describe  the  background  of  DRL,  dis-

tributed learning, and typical testbeds for DDRL. In Sec-

tion 3, we elaborate on the taxonomy of DDRL, by divid-

ing current algorithms based on the learning frameworks

and players and agents participating in. In Section 4, we

compare current DDRL toolboxes, which help to achieve

efficient  DDRL  a  lot.  In  Section  5,  we  introduce  a  new

multi-player multi-agent DDRL toolbox, which provides a

useful  DDRL  tool  for  complex  games.  In  Section  6,  we

summarize  the  main  challenges  and  opportunities  for

DDRL, hoping to inspire future research. Finally, we con-

clude the paper in Section 7.

 2   Background

 2.1   Deep reinforcement learning

Reinforcement  learning  is  a  typical  kind  of  machine

learning paradigm, the essence of which is learning via in-

teraction. In a general reinforcement learning method, an

agent  interacts  with  an  environment  by  providing  ac-

tions  to  drive  the  environment  dynamics,  and  receiving

rewards  to  improve  its  policy  for  chasing  long-term out-

comes. Usually, there are two typical kinds of algorithms

to  learn  the  agent,  i.e.,  model-free  methods  that  use  no

environment  models,  and  model-based  approaches  that

use  the  pregiven  or  learned  environment  models.  Many

algorithms have been proposed,  and readers  can refer  to

[16, 17] for a more thorough review.

In reality, applications naturally involve the participa-

tion  of  multiple  agents,  making  multi-agent  reinforce-

ment  learning  a  hot  topic.  Generally,  multi-agent  rein-

forcement learning is  modelled as  a  stochastic  game and

obeys a learning paradigm similar to that of conventional

reinforcement learning. Based on the game setting, agents

can  be  fully  cooperative,  competitive  and  a  mix  of  the

two,  requiring  reinforcement  learning  agents  to  emerge

abilities that can match the goal. Various key problems of

multi-agent reinforcement learning have been raised, such

as  communication  and  credit  assignment.  Readers  can

refer to [18, 19] for a detailed introduction.

With  the  breakthrough  of  deep  learning,  deep  rein-

forcement  learning  has  become  a  strong  learning

paradigm by  combining  the  representation  learning  abil-

ity of deep learning and the decision making ability of re-

inforcement  learning,  and  several  successful  deep  rein-

forcement  learning  agents  have  been  proposed.  For  ex-

ample, AlphaGo[1, 2], a Go agent that can beat profession-

al human players, is based on single agent deep reinforce-

ment  learning.  OpenAI  Five[6],  a  dota2  agent  that  wins

champion players in an e-sport for the first time, relies on

multi-agent deep reinforcement learning. In the following,

unless otherwise stated, we do not distinguish deep rein-

forcement  learning  and  multi-agent  deep  reinforcement

learning.

 2.2   Distributed learning

The  success  of  deep  learning  is  inseparable  from  big
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data and computing power, which leads to huge demand

for  distributed  learning  that  can  handle  data  intensive

and compute intensive computing. Due to the structured

computation  pattern  of  deep  learning  algorithms,  some

successful  distributed  learning  methods  have  been  pro-

posed for parallelism in deep learning[20, 21]. An early pop-

ular distributed deep learning framework is DistBelief[22],

designed by Google, which can train a deep network with

billions  of  parameters  using  tens  of  thousands  of  CPU

cores.  Based  on  DistBelief,  Google  released  the  second

generation  of  distributed  deep  learning  framework,

TensorFlow[23],  which  has  become  a  widely  used  tool.

Other  typical  distributed  deep  learning  frameworks[24],

such as PyTorch, MXNet and Caffe2, have also been de-

veloped  and  used  by  the  research  and  industrial  com-

munities.

Ben-Num and Hoefler[20] provided an in-depth concur-

rency  analysis  of  parallel  and  distributed  deep  learning.

In the survey, the authors gave different types of concur-

rency for deep neural networks, covering the bottom level

operators, and key factors such as network inference and

training.  Several  important  topics  such  as  asynchronous

stochastic  optimization,  distributed  system  architectures

and  communication  schemes  are  discussed,  providing

clues  for  future  directions  of  distributed  deep  learning.

Currently,  distributed  learning  is  widely  used  in  various

fields,  such  as  wireless  networks[25],  AIoT  service  plat-

forms[26] and human-computer gaming[27].

In  short,  DDRL is  a  special  type  of  distributed  deep

learning. Instead of focusing on data parallelism and mod-

el parallelism in conventional deep learning, DDRL aims

at  improving  data  throughput  due  to  the  characteristics

of reinforcement learning. To achieve this, several import-

ant techniques should be well explored like in distributed

deep  learning,  such  as  the  communication  schemes

between  machines,  asynchronous  stochastic  optimization

and  distributed  storage.  Many  methods  have  been  pro-

posed.  For  example,  parameter  server  and  its  variants,

such  as  shared  parameter  server  and  hierarchical  para-

meter  server  are  widely  used  to  store  network  paramet-

ers  that  may  be  updated  by  several  processes  with  syn-

chronous  or  asynchronous  stochastic  optimization.  RPC,

as  an  efficient  remote  procedure  call  for  communication,

is widely used for various distributed frameworks such as

SEED[9] and  Ray[12].  Readers  can  refer  to  [25]  for  more

details of the bottom techniques for distributed learning.

 2.3   Testing environment

With the huge success of AlphaGo[1], DDRL is widely

used in games, especially human-computer gaming. Those

games  provide  an  ideal  testbed  for  the  development  of

DDRL  algorithms  or  frameworks,  from  single  player

single  agent  DDRL  to  multiple  players  multiple  agents

DDRL.

Atari  is  a  popular  reinforcement  learning  testbed  be-

cause it has a similar high dimensional visual input com-

pared  to  humans[28].  In  addition,  several  environments

confront challenging issues such as long time horizons and

sparse rewards[29]. Many DDRL algorithms are compared

in  Atari  games,  showing  training  acceleration  against

DRL  without  parallelism.  However,  typical  Atari  games

are designed for single player single agent problems.

With  the  emergence  of  multi-agent  reinforcement

learning  in  multi-agent  games,  StarCraft  multi-agent

challenge (SMAC)[30] has become a recognized testbed for

single player multi-agent reinforcement learning. Specific-

ally, SMAC is a subtask of StarCraft that focuses on mi-

cromanagement challenges, where a team of units is con-

trolled to fight against build-in opponents. Several typic-

al  multi-agent  reinforcement  learning  algorithms  are  re-

leased along with SMAC, which support parallel data col-

lection in reinforcement learning.

Apart  from  the  above  single  player  single  agent  and

single  player multiple  agents  testing environments,  there

are  a  few  multiple  players  environments  for  deep  rein-

forcement  learning  algorithms,  such  as  in  OpenSpiel[31].

On  the  other  hand,  even  though  huge  success  has  been

made  for  multiple  players  games  such  as  Go,  StarCraft,

dota2,  and  honor  of  kings,  those  environments  are  used

for  a  few  researchers  due  to  the  huge  game  complexity.

Researchers  from  large  companies  such  as  Google  and

OpenAI  usually  use  large  computing  resources  to  train

human-level AI bots. However, on the whole, those com-

plex multiple player single agent and multiple agents en-

vironments largely promote the development of DDRL.

 3   Taxonomy of DDRL

 3.1   Taxonomic basis

Many DDRL algorithms or frameworks have been de-

veloped with representatives such as GORILA[8], A3C[32],

APE-X[33], IMPALA[10], distributed PPO[34], R2D2[35] and

Seed RL[9], based on which, we can draw the key compon-

ents  of  a  DDRL,  as  shown  in Fig. 1.  We  sometimes  use

the frameworks instead of algorithms or methods because

these frameworks are not targeted to a specific reinforce-

ment learning algorithm, and they are more like a distrib-

uted framework for various reinforcement learning meth-

ods.  Generally,  there  are  three  main  parts  for  a  basic

DDRL algorithm, which forms a single player single agent

DDRL method:

1) Actors: produce data (trajectories or gradients) by

interacting with the environment.

2)  Learners:  consume  data  (trajectories  or  gradients)

to perform policy neural network parameter updating.

3)  Coordinators:  coordinate  data  (parameters  or  tra-

jectories) to control the communication between learners

and actors.

Actors  pull  neural  network  parameters  from  the

Q. Yin et al. / Distributed Deep Reinforcement Learning: A Survey and a Multi-player Multi-agent Learning Toolbox 3 

 



learners,  receive  states  from  the  environments,  and  per-

form inference to obtain actions, which drive the dynam-

ics  of  environments  to  the  next  state.  By  repeating  the

above  process  with  more  than  one  actor,  data  through-

put  can  be  increased  and  enough  data  can  be  collected.

Learners pull data from actors, perform gradient calcula-

tion or post-processing, and update the network paramet-

ers. More than one learner can alleviate the limited stor-

age of a GPU by utilizing multiple GPUs with tools such

as ring allreduce or parameter-server[11]. By repeating the

above process, the final reinforcement learning agent can

be obtained.

Coordinators  are  important  for  DDRL  algorithms,

which  control  the  communication  between  learners  and

actors.  For  example,  when  the  coordinators  are  used  to

synchronize the parameters updating and pulling (by act-

ors),  the  DDRL  algorithm  is  synchronous.  When  the

parameters  updating  and  pulling  (by  actors)  are  not

strictly  coordinated,  the  DDRL  algorithm  is  asynchron-

ous. Therefore, a basic classification of DDRL algorithms

can be based on the coordinator types.

1)  Synchronous  based:  Global  policy  parameters  up-

dating is synchronized, and pulling policy parameters (by

actors)  is  synchronous,  e.g.,  different  actors  share  the

same latest global policy.

2)  Asynchronous  based:  Updating  the  global  policy

parameters  is  asynchronous,  or  policy  updating  (by

learners)  and  pulling  (by  actors)  are  asynchronous,  e.g.,

actors and learners usually have different policy paramet-

ers.

With the above basic framework, a single player single

agent DDRL algorithm can be designed. Note that we ig-

nore  the  bottom  techniques  used  to  implement  multiple

actors,  multiple  learners  and  coordinators,  such  as  com-

munication  schemes  between different  jobs  in  a  machine

or  in  multiple  machines  and  the  stochastic  optimization

strategies  for  parameter  updating.  These  bottom  tech-

niques are not the scope of this paper, and we will intro-

duce  them  in  Section  3.2  when  specific  DDRL  methods

are presented.

When  the  number  of  players  or  agents  is  increasing,

the  above  basic  framework  is  unable  to  train  usable  RL

agents. Based on current DDRL algorithms that support

large system level AI such as AlphaStar[7], OpenAI Five[6]

and JueWU[36], two key components are essential to build

multiple  players  and  multiple  agents  DDRL,  i.e.,  agent

cooperation and player evolution, as shown in Fig. 2.
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Actors

Coordinators

Single player single

agent DDRL

Players evolution

Single player multiple

agents DDRL

agents DDRL

Multiple players single

agent DDRL

Multiple players multiple

 
Fig. 2     Single  player  single  agent  DDRL  to  multiple  players
multiple agents DDRL
 

The  module  of  agents  cooperation  is  used  to  train

multiple agents based on multi-agent reinforcement learn-

ing  algorithms[18].  Generally,  multi-agent  reinforcement

learning  can  be  classified  into  two  categories,  i.e.,  inde-

pendent training and joint training, based on how to per-

form agent relationship modeling.

1)  Independent  training:  Train  each  agent  independ-

ently by considering other learning agents as part of the

environment.

2) Joint training: Train all the agents as a whole, con-

sidering factors such as agent communication, reward as-

signment and centralized training with distributed execu-

tion.

The module of players evolution is designed for agent

iteration  for  each  player,  where  agents  of  other  players

are learning at the same time, leading to more than one

generation of agents to be learned for each player, such as

in  AlphaStar  and OpenAI  Five.  Based  on current  main-

stream  players  evolution  techniques,  players  evolution

can be divided into two types:

1)  Self-play  based:  Different  players  share  the  same

policy networks, and the player updates the current gen-

eration of the policy by confronting its past versions.

2)  Population-play  based:  Different  players  have  dif-

ferent policy networks, or called populations, and a play-

er updates its current generation of policy by confronting

other players or/and its past versions.

Finally,  based  on  the  above  key  components  for

DDRL, the taxonomy of DDRL is shown in Fig. 3. In Sec-

tions 3.2–3.4,  we will  summarize and compare represent-

ative methods based on their main characteristics. In ad-

dition,  the  bottom  level  techniques  such  as  communica-

tions schemes will be introduced.

 3.2   Coordinator types

Based on the coordinator types, DDRL algorithms can

be  divided  into  asynchronous  based  and  synchronous

based  algorithms.  For  an  asynchronous  based  DDRL

method,  there  are  two  cases:  The  updating  of  global
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Fig. 1     Basic framework of DDRL
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policy parameters is asynchronous; the global policy para-

meters updating (by learners) and pulling (by actors) are

asynchronous.  For  a  synchronous  based  DDRL  method,

global  policy  parameters  updating  is  synchronized,  and

pulling policy parameters (by actors) is synchronous.

 3.2.1   Asynchronous based

Nair et al.[8] proposed probably the first massively dis-

tributed  architecture  for  deep  reinforcement  learning,

Gorila, which builds the basis of the succeeding DDRL al-

gorithms.  As  shown  in Fig. 4,  a  distributed  deep  Q-net-

work  (DQN)  algorithm  is  implemented.  There  are  mul-

tiple  parallel  actors  to  generate  trajectories  and  send

them  to  the  Q-network  and  target  Q-network  of  the

learners. In addition, learners calculate gradients for para-

meter updating based on a central parameter server that

can store a distributed neural network with multiple ma-

chines.  The  parameters  updating  (using  gradients)  is

based  on  asynchronous  stochastic  gradient  descent.  Due

to the implementation of DQN, neural network paramet-

er updating of learners and trajectory collecting of actors

are  also  asynchronously  performed  without  waiting.  In

their  paper,  the  implemented  distributed  DQN  reduces

the wall-time required to achieve compared or super res-

ults by an order of magnitude on most 49 games in Atari

compared to non-distributed DQN.
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Fig. 4     Basic framework of Gorila

 

Similar  to [8],  Horgan et  al.[33] introduced distributed

prioritized experience replay, i.e.,  APE-X, to enhance Q-

learning  based  distributed  reinforcement  learning.  Spe-

cifically,  prioritized  experience  replay  is  used  to  sample

the  most  important  trajectories,  which  are  generated  by

all  actors.  Accordingly,  a  shared  experience  replay

memory  should  be  introduced  to  store  all  the  generated

trajectories.  In  the  experiments,  a  fraction  of  the  wall-

clock training time is achieved on the arcade learning en-

vironment. To further enhance [33], Kapturowski et al.[35]

proposed  recurrent  experience  replay  in  distributed  rein-

forcement learning, i.e., R2D2, by introducing RNN-based

reinforcement  learning  agents.  The  authors  investigate

the effects of parameter lag and recurrent state staleness

problems on the performance, obtaining the first agent to

exceed  human-level  performance  in  52  of  the  57  Atari

games with the designed training strategy.

Mnih  et  al.[32] proposed  the  asynchronous  advantage

actor-critic (A3C) framework, which can make full use of

the multi-core CPU instead of the GPU, leading to cheap

distribution  of  the  reinforcement  learning  algorithm.  As

shown in Fig. 5, each actor calculates the gradient of the

samples (mainly states, actions and rewards used for reg-

ular reinforcement learning algorithms), send them to the

learners,  and  then  update  the  global  policy.  The  updat-

ing  is  asynchronous  without  synchronization  among

gradients  from  different  actors.  In  addition,  parameters

(maybe not the latest version) are pulled by each actor to

generate  data  with environments.  Based on the  multiple

CPU  threads  on  a  single  machine,  the  communication

costs among machines no longer exist. In their paper, four

specific reinforcement learning algorithms are established,

i.e., asynchronous one-step Q-learning, asynchronous one-

step  Sarsa,  asynchronous  n-step  Q-learning  and  asyn-

chronous  advantage  actor-critic.  Experiments  show  that

half  the  time  on  a  single  multi-core  CPU  instead  of  a

GPU is obtained on the Atari domain.

To  make  use  of  the  GPU′s  computational  power  in-

stead of just the multi-core CPU as in A3C, Babaeizadeh

et al.[37] proposed asynchronous advantage actor-critic on

a GPU, i.e., GA3C, which is a hybrid CPU/GPU version

of A3C. As shown in Fig. 6, the learner consists of  three

parts: a predictor to dequeue prediction requests and ob-

tain actions by the inference, a trainer to dequeue batches

of  trajectories  for  the agent model,  and the agent model
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to update the parameters with the trajectories. Note that

the  threads  of  the  predictor  and  trainer  are  asynchron-

ously  executed.  With  the  above  multi-process  multi-

thread CPU for receiving actions and sending states, and

several GPU threads for predicting actions and updating

parameters,  GA3C  achieves  a  significant  speed  up  com-

pared to A3C.

Placing gradient calculation on the actor side will lim-

it  the  data  throughput  of  the  whole  DDRL system,  i.e.,

trajectories  collected  per  time  unit,  so  Espeholt  et  al.[10]

proposed  importance  weighted  actor-learner  architecture

(IMPALA) to alleviate this problem. As shown in Fig. 7,
parallel  actors  communicate  with  environments,  collect

trajectories  and send them to the learners  for  parameter

updating. Since gradient calculation is put on the learner

side,  which  can  be  accelerated  with  GPUs,  the  frame-

work  is  claimed  to  scale  to  thousands  of  machines

without sacrificing data efficiency. Note that a synchron-

ized parameter update is used when scaling to many ma-

chines,  which  is  important  to  maintain  data  efficiency.

Considering that the local policy used to generate traject-

ories is behind the global policy in the learners due to the

asynchrony  between  learners  and  actors,  a  V-trace  off-

policy  actor-critic  algorithm is  introduced  to  correct  the

harmful discrepancy. Experiments on DMLab-30 and At-

ari-57  show  that  IMPALA  can  achieve  better  perform-

ance with less data compared with previous agents.

By using a  synchronized sampling strategy for  actors

instead of the independent sampling of IMPALA, Stooke

and  Abbeel[38] proposed  a  novel  accelerated  method,

which  consists  of  two  main  parts,  i.e.,  synchronized

sampling  and  synchronous/asynchronous  multi-GPU  op-

timization. As shown in Fig. 8, individual observations of

some  environments  are  gathered  into  a  batch  for  infer-

ence, which largely reduces the inference times compared

with approaches that generate trajectories for each envir-

onment  independently.  However,  such  synchronized

sampling may suffer from slowdown when different envir-

onments in different processes have large execution differ-

ences,  which  is  alleviated  by  tricks  such  as  allocating

available  CPU  cores  used  for  the  environments  evenly.

For  the  learners,  an  efficient  asynchronous  updating  is

performed by using lock to prevent other reading or writ-

ing  requests,  and  dividing  the  parameters  into  disjoint

chunks to be updated separately. The implemented asyn-

chronous  version  of  PPO,  i.e.,  APPO,  learns  successful

policies in Atari games in mere minutes.

With  the  above  synchronized  sampling  in  [38],  infer-

ence  times  will  be  largely  reduced,  but  the  communica-

tion  burden  between  learners  and  actors  will  be  a  big

problem  when  the  networks  are  huge.  Espeholt  et  al.[9]

proposed  scalable,  efficient,  deep-RL  (SEEDRL),  which

features  centralized  inference  and  an  optimized  commu-

nication layer called gRPC. As shown in Fig. 9, the com-

munication  between  learners  and  actors  is  mere  states

and actions, which largely reduce the communication bur-

den.  Furthermore,  a  streaming  gRPC  is  used  where  the

communication  from  actor  to  learner  is  kept  open  with

metadata  sent  only  once,  which  has  minimal  latency  for

the  connection.  The  authors  implemented  policy  gradi-

ents and Q-learning based algorithms and tested them on

the Atari-57, DeepMind lab and Google research football

environments, and a 40% to 80% cost reduction was ob-

tained, showing great improvements.

In summary, Gorila builds the basis of most DDRL al-

gorithms  with  four  key  components,  i.e.,  parallel  actors,

parallel learners, a distributed neural network and a dis-

tributed  store.  By  considering  prioritized  and  recurrent

experience  replays  for  policy  enhancement,  APE-X  and

R2D2  are  developed,  respectively.  To  make  full  use  of

multi-core  CPU,  an  A3C  method  is  designed  and  de-

ployed in a machine, which is further improved by GA3C

to  put  parameters  updating  in  the  most  suitable  device,

i.e., GPU. Increasing the model size will largely limit the
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data throughput when putting the gradient calculation on

the actor side as in A3C, so IMPALA puts the gradient

calculation in  the  learner  side,  and uses  V-trace  to  rem-

edy the policy lag with learners and actors distributed in

multiple  machines.  Compared  to  IMPALA,  which  uses

each  inference  for  each  environment,  APPO reduces  the

inference  times  with  synchronized  sampling.  With  the

above  synchronized  sampling,  SEEDRL  further  reduces

the  communication  burden  between  learners  and  actors

by  just  exchanging  states  and  actions  with  an  efficient

streaming gRPC.
 3.2.2   Synchronous based

As an alternative to A3C[32],  Clemente et al.[39] found

that  a  synchronous  version,  i.e.,  advantage  actor-critic

(A2C), can better use GPU resources, which should per-

form  well  with  more  actors.  In  the  implementation  of

A2C, e.g., PAAC, a coordinator is utilized to wait for all

gradients  of  the  actors  before  optimizing  the  global  net-

work.  As  shown  in Fig. 10,  learners  update  the  policy

parameters  before  all  the  trajectories  are  collected,  i.e.,

the job of  actors  is  done,  and when the learners  are up-

dating the policy, the trajectory sampling is stopped. As

a  result,  all  actors  are  coordinated  to  obtain  the  same

global  network  to  interact  with  environments  in  the  fol-

lowing steps.
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As  an  alternative  to  the  A2C  algorithm  in  handling

continuous  action  space,  the  PPO  algorithm[24] shows

great potential due to its trust region constraint. Heess et

al.[34] proposed large scale reinforcement learning with dis-

tributed  PPO,  i.e.,  DPPO,  which  has  both  synchronous

and asynchronous versions and shows better performance

with  the  synchronous  update.  As  shown  in Fig. 11,  the

implementation of DPPO is similar to A3C but with syn-

chronization  when  updating  the  policy  neural  network.

However, synchronization will limit the throughput of the

entire system due to the different rhythms of the actors.

The  authors  use  a  threshold  for  the  number  of  actors

whose gradients must be available for the learners, which

makes the algorithm scale to a large number of actors.

Different from the DPPO algorithm, where a paramet-

er server is applied for distributed neural network updat-

ing,  Wijmans  et  al.[40] further  proposed  a  decentralized

DPPO framework, i.e.,  DDPPO, which exhibits near-lin-

ear  scaling  to  the  GPUs.  As  shown  in Fig. 12,  a  learner

and  an  actor  are  bundled  together  as  a  unit  to  perform

trajectory  collection  and  gradient  calculation.  Then,

gradients from all the units are gathered together through

some reduce operations, e.g., ring allreduce, to update the

neural  networks,  which  ensures  that  the  parameters  are

the same for all the units. Note that to alleviate the syn-

chronization overhead when performing trajectory collec-

tion in parallel units, similar strategies such as in DPPO

are  used  to  discard  certain  percentages  of  trajectories  in

several units. For implementation, the ring allreduce and

trajectory  recording  operations  can  be  achieved  through

public tools such as APIs in PyTorch. Experiments show

a speedup of 107x on 128 GPUs over a serial implementa-

tion.

 
 

Learner + Actor Learner + Actor

Environment-1

Environment-n

Model

Global network

…

Model

Global network

Environment-1

Environment-n

…

Gradient Gradient

Action

State

State

Action

State

State

Gradient

T + 1

T T

 
Fig. 12     Basic framework of DDPPO

 
In summary, PAAC and DPPO are similar with syn-

chronous  updating.  However,  DPPO  introduces  more

tricks such as using a part of the data instead of waiting

all the data to be ready, which will improve the through-

put  of  the  whole  system.  DDPPO  is  a  different  frame-

work,  where  an  actor  and  a  learner  bundled  together

serve as a unit, and a ring allreduce operation is used to

synchronously update all  the network parameters among

the  above  units.  This  is  different  from  the  parameter

server framework.
 3.2.3   Discussion

Single machine or multiple machines. In the be-

ginning  of  developing  DDRL  algorithms,  researchers

make previous  non-distributed DRL methods  distributed
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using  one  machine.  For  example,  the  parallel  of  several

typical  actor-critic  algorithms  is  designed  to  use  the

multi-process  of  CPUs,  e.g.,  A3C[32],  and  PAAC[39].  Re-

cently,  researchers  have  aimed  to  improve  the  data

throughput of the whole DDRL system, e.g., IMPALA[10],

and SEEDRL[9], which serves as a basic infrastructure for

training  complex  games  AI  such  as  AlphaStar  and

OpenAI  Five.  These  systems  can  usually  make  use  of

multiple machines. However, early DDRL algorithms de-

signed for a single machine can also be deployed in mul-

tiple  machines  when  communications  between  machines

are  solved,  which  is  relatively  simple  by  using  open

sourced tools.

Exchanging  trajectories  or  gradients. Learners

and  actors  serve  as  basic  components  for  DDRL  al-

gorithms, and the data communicated between them can

be trajectories  or gradients based on whether to put the

gradient calculation on the actor or learner side. For ex-

ample, actors of A3C[32] are in charge of trajectory collec-

tion and gradient calculation, and the gradients are then

sent  to  learners  for  policy  updates,  which  make  simple

operations such as sum operations. Since gradient calcula-

tion is time-consuming, especially when the policy model

is  large,  the  calculating  load  between  the  learners  and

actors  will  be  unbalanced.  Accordingly,  an  increasing

number  of  DDRL  algorithms  have  put  gradient  calcula-

tion  on  the  learner  side  by  using  more  suitable  devices,

i.e.,  GPUs.  For  example,  in  higher  data  throughput

DDRL  frameworks  such  as  IMPALA[10],  learners  are  in

charge of gradient calculation, and actors are in charge of

trajectory collection.

Synchronized  or  independent  inference. When

actors  are  collecting  trajectories  by  interacting  with  the

environment,  actions  should  be  inferred.  Basically,  when

performing a step on an environment, there should be one

inference.  Previous  DDRL  methods  usually  maintain  an

environment  for  an  actor,  where  action  inference  is  per-

formed  independently  from  other  actors  and  environ-

ments.  With  the  increasing  number  of  environments  to

collect  trajectories,  it  is  resource  consuming,  especially

when only CPUs are  used on the actor  side.  By putting

the  inference  on  the  GPU  side,  the  resources  are  also

largely  wasted  because  the  batch  size  of  the  inference  is

one.  To  cope  with  the  above  problems,  many  DDRL

frameworks use an actor to manage several environments

and perform synchronized action inference.  For example,

APPO[38] and  SEEDRL[9] introduce  synchronization  to

collect states and distribute actions obtained by environ-

ments and an actor, respectively.

Asynchronous or synchronous DDRL. Both syn-

chronous  based  and  asynchronous  based  DDRL  al-

gorithms  have  advantages  and  disadvantages.  For  asyn-

chronous  DDRL  algorithms,  the  global  policy  usually

does  not  need  to  wait  all  the  trajectories  or  gradients,

and data collection conventionally does not need to wait

the  latest  policy  parameters.  Accordingly,  the  data

ε

throughput  of  the  whole  DDRL  system  will  be  large.

However, there exists a lag between the global policy and

behavior  policy,  and such a  lag  is  usually  a  problem for

on-policy based reinforcement learning algorithms. DDRL

frameworks  such  as  IMPALA[10] introduces  V-trace,  and

GA3C[37] brings in small term  to alleviate the problem,

but those kinds of methods will be unstable when the lags

are large. For synchronous DDRL algorithms, synchroniz-

ation  among  trajectories  or  gradients  is  required  before

updating the policy.  Accordingly,  waiting time is wasted

for actors or learners when one side is working. However,

synchronization makes the training stable, and it is easi-

er to be implemented such as DPPO[34] and DDPPO[40].

Others. Usually, multiple actors can be implemented

with no data exchange, because their jobs, i.e., trajectory

collection,  can  be  independent.  As  for  learners,  most

methods only maintain one learner, which will be enough

due to  limited model  size  and especially  the limited tra-

jectory batch size. However, large batch size is claimed to

be important for complex games[6],  and accordingly mul-

tiple  learners  become  necessary.  In  the  multiple  learners

case,  usually  a  synchronization  should  be  performed  be-

fore updating the global policy network. Generally, a sum

operation  can  handle  the  synchronization,  but  it  is  time

consuming  when  the  learners  are  distributed  in  multiple

machines.  An  optimal  choice  is  proposed  in  [40],  where

the ring allreduce operation can nicely deal with the syn-

chronization  problem,  and  an  implementation  of  [40]  is

easy by using a toolbox such as Horovod[11]. On the oth-

er hand, when the model size is large and a GPU cannot

load the whole model, a parameter-server framework[8, 33]

based  learner  can  be  a  choice,  which  may  be  combined

with  the  ring  allreduce  operation  to  handle  the  large

model size and large batch size challenge.

Brief summary. Finally, when a DDRL algorithm is

needed, how to select a proper or efficient method largely

relies  on  the  available  computing  resources,  the  policy

model size and the environment size. If there is only one

machine  with  multiple  CPU  cores  and  GPUs,  no  extra

communication  is  required  except  for  the  data  exchange

between the CPU and GPUs. However, if there are mul-

tiple  machines,  data  exchange  should  be  considered,

which may be the bottleneck of the whole system. When

the  policy  model  is  large,  the  exchange  of  the  model

between machines is time consuming, so methods such as

SEEDRL[9] are proper due to only states and actions be-

ing exchanged. However, if the policy model is small, fre-

quently  exchanging  trajectories  will  be  time  consuming,

and methods  such as  DDPPO[40] will  be  a  choice.  When

the environment size is large, massive CPU resources will

be  used  to  start-up  environments,  and  a  few  GPUs  will

be  competent  for  policy  updating.  Accordingly,  DDRL

methods  such  as  IMPALA[10] will  be  suitable  because  a

high data throughput can be obtained. Finally, there may

be no best DDRL methods for any learning environment,

and researchers can choose one that best suits their tasks.
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 3.3   Agents cooperation types

When confronting single agent reinforcement learning,

previous  DDRL algorithms can be  easily  used.  However,

when  there  are  multiple  agents,  distributed  multi-agent

reinforcement  learning  algorithms  are  required  to  train

multiple  agents  simultaneously.  Accordingly,  previous

DDRL algorithms need to be modified to handle the mul-

tiple agents case. Based on current training paradigms for

multi-agent  reinforcement  learning,  agents  cooperation

types can be classified into two categories, i.e., independ-

ent training and joint training, as shown in Fig. 13. Usu-

ally, an agents manager is added to control all the agents

in a game. Independent training trains each agent by con-

sidering other learning agents as part of the environment,

and joint training trains all the agents as a whole by us-

ing typical multi-agent reinforcement learning algorithms.
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Fig. 13     Basic framework of agents training

 
 3.3.1   Independent training

n nIndependent training makes  agents train as  inde-

pendent  training,  and  accordingly  previous  DDRL  al-

gorithms can be used with only a few modifications. The

agents manager is mainly used to bring other agents′ in-

formation,  e.g.,  actions,  into  the  current  DDRL training

of  an  agent  because  the  dynamics  of  an  environment

should  be  driven  by  all  agents.  Considering  the  require-

ment of agents cooperation, independent training makes a

greater contribution to promoting cooperation among in-

dependent agents.

Jaderberg  et  al.[41] proposed  For  the  Win  (FTW)

agents for the Quake III Arena in capture the flag (CTF)

mode,  where  several  agents  cooperate  to  fight  another

camp.  To  train  scalable  agents  that  can  cooperate  with

any  other  agents  even  for  unseen  agents,  the  authors

train  agents  independently,  where  a  population  of  inde-

pendent agents are trained concurrently, with each parti-

cipating  in  thousands  of  parallel  matches.  To  handle

thousands of parallel environments, an IMPALA[10] based

framework is used1. For the cooperation problem, the au-

thors design rewards based on several marks between the

agents cooperating to promote the emergence of coopera-

tion.  More  specifically,  all  the  agents  share  the  same  fi-

nal global reward, i.e., win or lose. In addition, intermedi-

ate rewards are learned based on several events that con-

sider  teammates′ actions,  such  as  teammates  capturing

the flag and teammates picking up the flag.

Berner  et  al.[6] proposed  OpenAI  Five  for  Dota2,

where  five  heroes  cooperate  to  fight  another  cooperated

five heroes. In their AI, each hero is modeled as an agent

and  trained  independently.  To  address  large  parallel  en-

vironments  for  generating  a  batch  size  of  more  than  a

million  time  steps,  a  SEEDRL[9] framework  is  used.  Un-

like  [41],  which  uses  different  policy  networks  for  differ-

ent agents,  OpenAI Five uses the same policy for  differ-

ent agents, which may promote the emergence of coopera-

tion.  The  action  differences  lie  in  the  feature  design,

where  different  agents  in  Dota2  share  almost  the  same

features  but  with  specific  features  such  as  hero  ID.  Fi-

nally,  similar  to  [41],  who  designed  rewards  to  promote

cooperation, the authors use a weighted sum of individu-

al and team rewards, which are given by following experi-

ence of human players, e.g., gaining resources and killing

enemies.

Ye  et  al.[36] proposed  JueWu2 for  Honor  of  Kings,

which is a similar game compared to Dota2 but played on

mobile  devices  instead  of  computer  devices.  As  in  [6],  a

SEEDRL[9] framework  is  adopted.  In  addition,  the  au-

thors  also  use  the  same  policy  for  different  agents  as  in

[6].  The  policy  network  is  different,  where  five  value

heads are used due to a deeper consideration of the game

characteristics.  The  key  difference  between  [6]  is  the

training paradigm used to scale to a large number of her-

oes, which is not the main scope of this paper, and read-

ers can refer to the original paper for more details.

Zha et  al.[42] proposed DouZero for  DouDiZhu,  where

a landlord agent and two peasant agents are confronting

for  a  win.  Three  agents  using  three  policy  networks  are

trained independently, as in [41]. A Gorila[8] based DDRL

algorithm is used to train the three agents with a single

server. Cooperation between the peasants agents emerges

with increasing training epochs.

Baker et al.[43] proposed multi-agent autocurricula for

game hide-and-seek to study emergent tool use. As in [6],

a SEEDRL[9] framework is used, and the same policy for

different agents is  used for training.  In addition,  the au-

thors  test  using  distinct  policies  for  different  agents,

showing similar results but reduced sample efficiency.

In  summary,  previous  DDRL  algorithms  or  frame-

works  can  be  easily  used  for  independent  training  with

some modifications: making the learners maintain one or

multiple policy networks for different agents, and driving

the environment dynamics with the actions of all agents.

The communication burden will  increase because an act-

or  of  an  agent  must  receive  the  actions  of  the  other

agents  distributed  in  different  machines.  This  situation

will be worse if different agents use different parameters,

such as DouZero and FTW, compared to agents  sharing

the same parameters, such as OpenAI Five and JueWu.
 3.3.2   Joint training

Joint training trains all agents as a whole using typic-

1 Mainly based on their codes released. 2 A recognized name.

Q. Yin et al. / Distributed Deep Reinforcement Learning: A Survey and a Multi-player Multi-agent Learning Toolbox 9 

 



al  multi-agent  reinforcement  learning  algorithms  like  a

single  agent.  The  difference  is  the  trajectories  collected,

which have all the agents′ data instead of just an agent.

The  agents  manager  can  be  designed  to  handle  multi-

agent issues, such as communication, and coordination, to

further accelerate training.  However,  current multi-agent

DDRL algorithms mostly  consider  a  simple  method,  i.e.,

actor  parallelization  to  collect  enough  trajectories.  Ac-

cordingly, most previous DDRL algorithms can be easily

implemented.

The  implementation  of  QMIX[44],  a  popular  Q  value

factorization-based multi-agent reinforcement learning al-

gorithm,  is  implemented  using  multi-processing  to  inter-

act with the environment[30]. Another example is RLlib[13],

a part of the open source Ray project[12], which makes ab-

stractions  for  DDRL  and  implements  several  jointly

trained  multi-agent  reinforcement  learning  algorithms,

e.g., QMIX and PPO with a centralized critic. Generally,

previous  joint  training is  similar  to  single  agent  training

in  the  field  of  DDRL,  but  consideration  of  parallelized

training  for  issues  such  as  communication  and  coordina-

tion  among  agents  may  further  accelerate  the  training

speed.

In  summary,  joint  training  in  the  field  of  DDRL  is

rarely  investigated,  and  only  actor  parallelization  is

widely  used.  In  these  methods,  since  multiple  agents

training is similar to the training of an agent, the imple-

mentation of actor parallelization may not require modi-

fications of previous DDRL algorithms or frameworks.
 3.3.3   Discussion

For independent training, even though different agents

are trained independently, different methods take into ac-

count  problems  such  as  feature  engineering  and  reward

reshaping  to  promote  cooperation.  Since  different  agents

are  trained  by  making  other  agents  part  of  the  environ-

ment,  conventional  DDRL  algorithms  can  be  used

without many modifications. From successful agents such

as OpenAI Five and JueWu, we can see that SEEDRL or

its revised versions are a good choice. Joint training is far

from  satisfactory  because  there  is  considerable  room  to

improve  parallelism  among  agents  by  properly  consider-

ing  the  multi-agent  issues  such  as  communication  when

designing actors and learners.

 3.4   Players evolution types

In most cases, we have no opponents to drive the ca-

pacity  growth  for  a  player3.  To  handle  such  a  problem,

the player usually fights against itself to increase its abil-

ity. For example, AlphaGo[1] uses DDRL and self-play for

superhuman  AI  learning.  Based  on  current  learning

paradigms for players evolution,  current methods can be

classified  into  two  categories,  i.e.,  self-play  and  popula-

tion-play,  as  shown  in Fig. 14.  To  maintain  the  players

for  evolution,  a  players  manager  is  required  for  the

DDRL  algorithms  for  one  or  multiple  players.  Self-play

maintains a player and its past versions, whereas, popula-

tion-play maintains several distinct players and their past

versions.

  

Single player single agent DDRL

Player 1
t = T

Player 1
t = 1

…

Maintain n players and
their past versions

Population-play
based

Self-play
based

Player n
t = 1

Player n
t = T

…

… …

Maintain a player and its
past versions

Players manager

 
Fig. 14     Basic framework of player iteration

 
 3.4.1   Self-play based evolution

Self-play has become a popular tool  since the success

of  the  AlphaGo  series[1, 2, 45],  which  trains  a  player  by

fighting against itself. In an iteration or called generation

of the player, the current version is trained based on pre-

vious DDRL algorithms by using one or some of its previ-

ous  versions  as  opponents.  The  players  manager  decides

which previous versions are used as opponents.

In JueWu[36], developed for the Honor of Kings, a na-

ive self-play is used for two players (each controlling five

agents)  using the same policy.  An SEEDRL[9] DDRL al-

gorithm  is  used,  and  the  self-play  is  used  in  the  fixed

lineup and random lineup stages for handling a large hero

pool size.  Players trained for hide-and-seek[43] are similar

to JueWu[36], where a SEEDRL[9] DDRL algorithm and a

naive  self-play  are  used  to  prove  the  multi-agent  auto-

curricula.  Another  similar  example  is  Suphx[5] proposed

for Mahjong, which uses self-play for a player to confront

the  other  three  players  (use  the  same  policy).  For  the

DDRL  algorithm,  an  IMPALA[10] framework  is  applied

for training each generation.

In  OpenAI  Five[6] designed  for  Dota2,  a  more  com-

plex  self-play  is  used  for  two  players  (each  controls  five

agents)  using  the  same  policy.  In  each  generation,  in-

stead  of  fighting  against  the  current  generation,  such  as

naive  self-play,  the  player  trains  the  current  policy

against  itself  for  80% of  games,  and against  its  previous

versions  for  20%  of  games.  Specifically,  a  dynamic

sampling  system  is  designed  to  select  the  past  versions

based on their dynamically generated quality score, which

claims  to  alleviate  cyclic  strategies  problem.  As  for  the

basic  DDRL  algorithm,  a  SEEDRL[9] framework  is  used

for all the generations of players training.

In summary,  the players  manager  maintains  the past

generations of the player, which serve as the opponent to

drive the dynamics of the environment. Accordingly, con-

ventional  DDRL  algorithms  or  frameworks  should  be

3 Here  player  means  a  side  for  a  game,  which  may control  one

agent such as Go or multiple agents such as Dota2.
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modified like independent training in agents cooperation.

For naive self-play, the current generation is used to train

itself,  whereas,  revised  self-play  usually  maintains  an

evaluation matrix to record the ability of each generation,

based on which, a sampling strategy is used to select the

opponent.
 3.4.2   Population-play based evolution

Population-play can be seen as an advanced self-play,

where  more  than  one  player  and  their  past  generations

should be maintained for players evolution. It can be used

for several cases: The policy used is different for different

players  (e.g.,  a  landlord  and  two  peasant  players  in

DouZero);  some  auxiliary  players  are  introduced  for  the

target player to overcome game-theoretic challenges (e.g.,

main exploiter and league exploiter players in AlphaStar);

parallel players are used with consistent roles to support

concurrent training and to alleviate instability of self-play

(e.g., populations in FTW).

In DouZero[42] designed for DouDiZhu, a landlord and

two  peasant  players  are  trained  simultaneously,  where

their  current generations fight against each other to col-

lect  trajectories  and  to  train  the  players.  The  basic

DDRL algorithm is Gorila[8],  which runs on a single ma-

chine, based on which all three players are trained asyn-

chronously.

In  AlphaStar[7] developed  for  StarCraft,  the  players

manager maintains three main players for three different

races,  i.e.,  Protoss,  Terran,  and  Zerg.  In  addition,  for

each race, several auxiliary players are designed, i.e., one

main  exploiter  player  and  two  league  exploiter  players.

Those  auxiliary  players  help  the  main  player  determine

weaknesses  and  help  all  the  players  find  systemic  weak-

nesses.  The  authors  claim  that  using  such  a  population

addresses the complexity and game-theoretic challenges of

the  StarCraft.  For  the  DDRL  algorithm,  SEEDRL[9] is

utilized  to  support  large  system training.  Commander[46]

is similar to [7], and more exploiter players are used.

In FTW[41] designed for Capture the Flag (CTF), the

players  manager  maintains  a  population  of  players  who

cooperate and confront each other to learn scalable bots.

The positions of all the players are the same, and a popu-

lation-based  training  method  is  designed  to  adjust  play-

ers  with worse  performance to  improve the  ability  of  all

the  players.  For  the  basic  DDRL  algorithm,  the  IM-

PALA[10] method  is  used  to  have  large  data  throughput

to train tens of players.

In  summary,  the  players  manager  maintains  all  the

players  and  their  past  generations.  Accordingly,  a  more

complex  evaluation  matrix  should  be  used  to  record  the

performances  against  past  generations  of  the  other  play-

ers and the player itself. Compared to DouZero, the play-

ers  in  AlphaStar  have  different  opponent  selection

strategies,  which will  largely increase the communication

burden between learners and actors and the computation-

al complexity of players manager in DDRL. For FTW, a

population of players cooperate and compete against each

other, which also brings in the difficulty of evaluating the

performance of each player in the players manager.
 3.4.3   Discussion

Self-play  has  a  long  history  in  multi-agent  settings

(different players naturally cause multiple agents), where

early work explored it in genetic algorithms[47]. It has be-

come  very  popular  with  the  combination  of  deep  rein-

forcement learning leading to the success of the AlphaGo

series[1, 2],  which  is  widely  used  for  various  AI  systems,

such as Libratus[48],  DeepStack[49] and OpenAI Five[6],  to

reach human-level  performance.  In [50],  the authors give

a  brief  survey  of  self-play  in  reinforcement  learning,

where its major themes, criteria and techniques are intro-

duced.  Even  though  some  important  concepts,  such  as

convergence, Pareto efficiency, and Nash equilibrium, are

discussed,  current  self-play  in  DDRL largely  depends  on

heuristic design based on the characteristics of the envir-

onment.

On the other hand, population-play can be seen as ad-

vanced self-play, which maintains more players to achieve

ability improvement. Since there is more than one player

to  learn,  the  evolution  becomes  harder  because  different

players  need  to  be  properly  improved  to  ensure  the  im-

provement of the whole system. Accordingly, several chal-

lenges are raised when using population-play, such as the

block  for  asymmetric  games[27, 51].  Despite  this,  current

works  use  population-play  to  accelerate  training,  over-

come game-theoretic challenges,  or just handle the prob-

lem that requires distinct players.

Compared with self-play, population-play is more flex-

ible, and can handle diverse situations. However, self-play

is  easy  to  implement,  and  has  proven  its  potential  in

complex  games  such  as  Dota2.  Overall,  there  is  no  con-

clusion  regarding  whether  self-play  or  population-play  is

better  in  games,  and  researchers  can  select  self-play  or

population-play DDRL based on their specific requests.

 4   Typical DDRL toolboxes

DDRL  is  important  for  complex  environments  using

reinforcement learning as solvers, and several useful tool-

boxes have been released to help researchers reduce devel-

opment  costs.  In  this  section,  we  analyze  several  typical

toolboxes,  hoping  to  give  a  clue  when  researchers  are

making a selection among them.

 4.1   Typical toolboxes

Ray[12] is  a  distributed  framework  consisting  of  two

main  parts,  i.e.,  a  system  layer  to  implement  tasks

scheduling and data management, and an application lay-

er to provide high-level APIs for various applications. Us-

ing these APIs, researchers can easily implement a DDRL

method  without  considering  the  node/machine  connec-

tions  and  scheduling  different  calculations.  For  example,

using @ray.remote as a decorator of a function, a remote
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function  can  be  obtained,  and the  results  or  futures  can

be calculated with @ray.get and @ray.wait. Furthermore,

an RLLib[13] package is introduced on top of Ray to sup-

port reinforcement learning such as A3C, APEX and IM-

PALA. In addition, several built-in multi-agent DDRL al-

gorithms are provided, such as QMIX[44] and MADDPG[52].

Users can use and revise these DDRL algorithms with the

above APIs.

Acme[53] is  designed  to  enable  distributed  reinforce-

ment  learning  to  promote  the  development  of  novel  RL

agents  and  their  applications.  It  involves  many  separate

(parallel) acting, learning and diagnostic and helper pro-

cesses, which are key building blocks for a DDRL system.

Using  these  templates  and  specifically  designed  APIs,

such as make_distributed_experiment, users can focus on

reinforcement learning algorithm design instead of paral-

lelization design. Furthermore, one of the main contribu-

tions  is  the  in-memory  storage  system,  called  Reverb,

which  is  a  high-throughput  data  system  that  is  suitable

for  experience  replay  based  reinforcement  learning  al-

gorithms.  With  the  aim  of  supporting  agents  at  various

scales  of  execution,  many  mainstream DDRL algorithms

have  been  implemented,  i.e.,  online  reinforcement  learn-

ing algorithms such as Deep Q-networks[28], R2D2[35] and

IMPALA[10],  offline  reinforcement learning such as  beha-

vior  cloning  and  TD3[54],  imitation  learning  such  as  ad-

versarial imitation learning[55] and soft Q imitation learn-

ing[56].

Tianshou[57] is  a  highly  modularized  Python  library

that  uses  PyTorch  for  DDRL.  Its  main  characteristic  is

the design of  building blocks that support  more than 20

classic  reinforcement  learning  algorithms  with  distrib-

uted versions through a unified python interface. Specific-

ally,  building  blocks  for  DDRL  are  provided,  which  can

be  used  for  fast  prototyping.  Since  Tianshou  focuses  on

small-to-medium-scale  applications  of  DDRL  with  only

parallel  sampling,  it  is  a lightweight platform that is  re-

search-friendly. It is claimed that Tianshou is easy to in-

stall, and users can apply Pip or Conda to accomplish in-

stallation  on  platforms  covering  Windows,  macOS  and

Linux.

TorchBeast[58] is another DDRL toolbox that is based

on  PyTorch  to  support  fast,  asynchronous  and  parallel

training  of  reinforcement  learning  agents.  The  authors

provide  two  versions,  i.e.,  pure-Python  MonoBeast  and

multi-machine  high-performance  PolyBeast  with  several

parts  being  implemented  with  C++.  Users  only  require

Python  and  PyTorch  to  implement  DDRL  algorithms.

For  example,  using  the  threading  function  of  Python  to

start threads of  actors,  where trajectories can be queued

for  learners.  In  the  toolbox,  IMPALA  is  supported  and

tested with the classic Atari suite.

MALib[59] is a scalable and efficient computing frame-

work  for  population-based  multi-agent  reinforcement

learning algorithms. Using a centralized task dispatching

model, it supports self-generated tasks and heterogeneous

policy  combinations.  In  addition,  by  abstracting  DDRL

algorithms  using  actor-evaluator-learner,  a  higher  paral-

lelism for learning and sampling is achieved. The authors

also claimed to have efficient code reuse and flexible de-

ployments  due  to  the  higher-level  abstractions  of  multi-

agent reinforcement learning. In the released code, sever-

al  popular  reinforcement  learning  environments,  such  as

Google  research  football  and  SMAC,  are  supported  and

typical population based algorithms, such as policy space

response oracle (PSRO)[60] and pipeline-PSRO[61], are im-

plemented.  With  these  examples  (highly  abstracted),

users  may  replace  the  environments  and  reinforcement

learning algorithms for population based DDRL.

SEED[9] is  a scalable and efficient deep reinforcement

learning toolbox, as described in Section 3.2.1. Generally,

it is verified on the tensor processing unit (TPU) device,

which is a special chip customized by Google for machine

learning.  Typical  DDRL  algorithms  are  implemented,

e.g.,  IMPALA[10] and  R2D2[35],  which  are  tested  on  four

classical environments, i.e.,  Atari,  DeepMind lab, Google

research football and Mujoco. Distributed training is sup-

ported using the cloud machine learning engine of Google,

and users can follow highly abstracted examples to imple-

ment their own reinforcement learning algorithms.

 4.2   Discussion

Before  comparing  different  kinds  of  toolboxes,  we

want to claim that there are no best DDRL toolboxes for

any requirements,  but the most suitable  one depends on

specific goals.

Tianshou  and  TorchBeast  are  lightweight  platforms

that support several typical DDRL algorithms. Users may

easily modify the released codes by referring to the proto-

types  or  examples  using  the  PyTorch  deep  learning  lib-

rary.  The  user-friendly  features  make  these  toolboxes

popular. However, even though those toolboxes are highly

modularized,  the  scalability  to  a  large  number  of  ma-

chines for performing large learner parallel and actor par-

allel  is  not  tested,  and  bottlenecks  may  appear  with  an

increasing number of machines.

Ray,  Acme  and  SEED  are  relatively  large  toolboxes

that can theoretically support any DDRL algorithm with

certain modifications. Using their open projects, users can

utilize  multiple  machines  to  implement  high  data

throughput DDRL algorithms. Moreover, multiple agents

training  and multiple  players  evolution  can  be  achieved,

such  as  for  AlphaStar.  However,  modifications  and  de-

bugging  are  not  easy  due  to  code  nesting  for  brief  ab-

stractions and function calls. For example, when adding a

new  function  (e.g.,  network  parameter  disturbance  after

exchanging with other players), the modifications may in-

volve all abstractions.

MALib is similar to Ray, Acme and SEED, which is a

specially  designed  DDRL  toolbox  for  population-based

multi-agent  reinforcement  learning.  With  their  APIs,
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users  may implement population based multi-agent  rein-

forcement  learning  algorithms  such  as  fictitious  self-

play[62] and PSRO. Similar to the previous toolboxes, the

modifications are not easy due to deep code nesting. Al-

though  experiments  for  a  large  number  of  machines  are

not  tested,  this  toolbox  is  fully  functional  (APIs

provided)  for  various  requirements  of  DDRL  algorithms

from single player single agent DDRL to multiple players

multiple agents DDRL.

In summary, current DDRL toolboxes provide a good

support for DDRL algorithms, and several typical testing

environments  are  embedded  for  performance  validation.

However,  those  DDRL  toolboxes  are  either  too  light-

weight  for  multiple  players  and  multiple  agents  or  too

heavy  for  secondary  development,  and  all  toolboxes  are

not specially designed or tested for complex games, which

we  think  is  important  because  it  may  require  flexible

functions  for  environments  and  the  agents  trained.  For

example,  the  agents  may  asynchronously  cooperate[63],

and the environments for  different players  are asymmet-

ric.  In  Section  5,  we  will  design  a  user-friendly  toolbox

that  focuses  on  multiple  players  and  multiple  agents  of

DDRL training on complex games.

 5   A multi-player multi-agent reinforce-
ment learning toolbox

In this section, we open a multi-player multi-agent re-

inforcement  learning  toolbox,  M2RL,  to  support  popula-

tions  of  players  (with  each  possibly  controlling  several

agents)  for  complex  games,  e.g.,  Wargame[51].  Note  that

this project is ongoing, so the main purpose is a prelimin-

ary  introduction,  and  we  will  continue  to  improve  this

project. The hyperlink of the project is http://turingai.ia.

ac.cn/ai_center/show/14.

 5.1   Overall framework

The overall framework is shown in Fig. 15. Each play-

er,  consisting  of  one  or  multiple  agents,  has  three  key

components:  learner,  actor  and  experience  buffer.  The

multiple  concurrently  executed  actors  produce  data  for

learners,  which  use  the  current  player  and other  players

as opponents based on the choice of players manager. The

experience buffer is used to store trajectories of the play-

er to support asynchronous or synchronous training. The

learner  for  each  player  is  used  to  update  parameters  of

the player and send parameters to the actors. Apart from

the  above  basic  factors,  players  manager  maintains  self-

play and population-play, which has two key parts: evalu-

ating players and choosing opponent players.

More specific details of M2RL are shown in Fig. 16. To

make  M2RL  easy  to  use  for  complex  games,  we  design

each  part  in  a  relatively  flexible  manner.  For  players

manager,  payoff  data  are  updated  once  new  generations

of  different  players  are  added,  based  on  which,  oppon-

ents for each player can be sampled to train its next gen-

eration.  A  sampling  function  can  be  modified  with  any
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form  to  implement  any  kind  of  self-play  or  population-

play strategy. For each player, the actors are in charge of

generating data with two kinds of inferences after receiv-

ing the observations, i.e.,  the current player and the op-

ponent  players  from  the  players  manager.  The  inference

for  opponent  players  is  implemented  with  remote  func-

tions  by loading  the  players.  To support  complex  obser-

vations  and  actions,  several  engineering  functions  are

provided  to  encode  features  and  explain  the  actions  for

the policy network and the environment, respectively. For

the  experience  buffer,  we  provide  an  extra  buffer  to  re-

vise the original buffer, which will be helpful for complex

reinforcement  learning  algorithms,  e.g.,  asynchronous

multi-agent  cooperation[63].  Finally,  a  learner  is  used  to

update  the  current  player  with  a  parameter  server  to

store the distributed parameters.

In summary, the main characteristics of M2RL are as

follows:

1)  The  players  manager  evaluates  all  saved  players

(including  their  past  versions)  using  their  confrontation

results, based on which, various opponent selection meth-

ods  can  be  implemented  to  promote  players′ evolution,

e.g., revised self-play in OpenAI Five[6] and prioritized fic-

titious  self-play  in  AlphaStar[7].  In  addition,  different

solutions  after  training  can  be  obtained  such  as  Nash

equilibrium and evolutionarily stable strategies[64].

2)  Each  player  maintains  its  own  learner,  actor  and

experience  buffer,  making  distinct  players  training  pos-

sible, e.g., red and blue players in Wargame[51]. Consider-

ing  that  the  game  is  complex  with  different  observation

and action spaces compared to the OpenAI gym, feature

engineering and mask engineering are used in the frame-

work.  In  addition,  the  experience  buffer  is  revised  to

change an unfinished buffer to a finished buffer, which is

very useful for asynchronous multi-agent cooperation[63].

3) There is little code nesting but mainly personalized

functions or classes as interfaces to be modified, and the

underlying codes are based on user-friendly remote func-

tions from Ray, which are easy to deploy, revise and use.

More specifically, we can make full  use of computing re-

sources by segmenting a GPU to several parts and assign-

ing  each  part  to  different  tasks,  which  is  important  for

complex games under limited computing resources.

 5.2   A case

Wargame  is  a  very  complex  game  similar  to  Dota2

and  StarCraft,  and  it  is  not  conquered  like  the  break-

through  of  OpenAI  Five  and  AlphaStar[27].  Accordingly,

we believe it will be a good testing environment to verify

the  usefulness  of  M2RL.  In  a  Wargame  map4,  the  red

player controls several fighting units to confront the blue

player who also controls several units. The game is asym-

metric because players have distinct strategy spaces, and

usually  the  blue  player  has  more  forces,  while  the  red

player  has  a  vision  advantage.  Please  refer  to  [51]  for

more details of the Wargame.

We  can  naturally  model  Wargame  as  a  two  players

multiple  agents  problem,  where  each  fighting  unit  is  re-

garded as an agent. To train two AI bots for the red and

blue players, we use several widely adopted settings, such

as  shared  PPO  policy  for  each  agent,  dual-clip  for  the

PPO and prioritized fictitious self-play in OpenAI Five[6],

JueWu[36] and AlphaStar[7]. Each player trains its bot us-

ing  approximately 200 000 games,  and  uses 9 500 games

for  the  players  manager  to  evaluate  each  generation  of

the player. The computing resources used here are as fol-

lows: 2×Intel(R) Xeon(R) Gold 6 240R CPU @ 2.40GHz,
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4× NVIDIA  GeForce  RTX 2 080 Ti,  and  500 GB

memory. With the above resources, the training lasts for

five  days,  and  we  finally  obtain  20  generations  for  each

player. To evaluate the performance of these bots, we use

the built-in demo agent as the baseline and bring in three

professional-level  AI  bots  designed  by  teams  who  have

studied Wargame for several years, represented as know-

ledge_1,  knowledge_2  and  knowledge_3.  It  should  be

noted  that  those  professional  AI  bots  do  not  participate

in training.  Similar  to  the evaluation for  AlphaGo[1] and

AlphaStar[7],  we  use  Elo  as  metrics.  The  detailed  codes

are released and the results are shown in Fig. 17.

In our experiments, we make no comparison with ex-

isting  toolboxes  because  they  are  not  specifically  de-

signed  for  complex  games  such  as  Wargame,  which  re-

quire  large  modifications.  For  example,  the  most  similar

toolbox MALib is claimed to lack enough optimization for

GPUs,  and  the  released  codes  may  lack  important  com-

ponents,  such  as  experience  storage  and  model  call  and

storage  for  self-play  and  population-play.  Other  similar

toolboxes,  such  as  Acme  and  SEED,  are  designed  for  a

single  agent,  and  the  released  codes  may  lack  essential

components  such  as  multi-agent  population  evaluation

and evolution. From Fig. 17, it can be seen that with in-

creasing  players  evolution,  the  learned  policy  for  each

player becomes stronger. This is also verified from Fig. 18

after  showing  the  asymmetric  replicator  dynamic[64],  i.e.,

the 20th and 19th generations being chosen with increas-

ing  evolution  for  the  red  and  blue  players,  respectively.

Overall,  the  results  show  the  ability  of  the  proposed

M2RL  to  some  extent.  Since  this  project  is  an  ongoing

item,  the  main  purpose  of  this  part  is  an  introduction,

and  we  will  continue  to  improve  the  toolbox  in  the  fu-

ture,  e.g.,  more  testing  and  comparison  on  various  com-

plex environments.

 6   Challenges and opportunities

Many DDRL algorithms and toolboxes have been pro-

posed,  which  have  largely  promoted  the  study  of  rein-

forcement  learning  and  its  applications.  We  believe  that

current methods still suffer from several challenges, which

may  be  future  directions.  First,  current  methods  rarely

consider  accelerating  complex  reinforcement  learning  al-

gorithms, such as those studying exploration, communica-

tion  and  generalization  problems.  Second,  current  ap-

proaches mainly use a ring allreduce or parameter server

for  learners,  which  seldom  handle  large  model  size  and

batch  size  situations  simultaneously.  Third,  self-play  or

population-play are important methods for multiple play-
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ers  and  multiple  agents  training,  which  are  also  flexible

without  strict  restrictions,  but  deeper  study  is  deficient.

Fourth,  several  famous  DDRL  toolboxes  have  been  de-

veloped,  but  none of  them have been verified with large

scale training, e.g., tens of machines for complex games.

DDRL  with  advanced  reinforcement  learning

algorithms. The  research  and  application  of  reinforce-

ment learning show explosive growth since the success of

AlphaGo. New topics have emerged, such as hierarchical

deep  reinforcement  learning,  model-based  reinforcement

learning, multi-agent reinforcement learning, off-line rein-

forcement learning, and meta reinforcement learning[16, 18],

but DDRL methods have rarely considered those new re-

search areas. Distributed implementation is kind of engin-

eering  but  not  naive.  For  example,  when considering  in-

formation  communication  for  a  multi-agent  reinforce-

ment  learning  algorithm,  agents  manager  should  reason-

ably  parallelize  agent  communication  calculation  to  im-

prove  data  throughput.  Accordingly,  how  to  accelerate

advanced reinforcement learning algorithms with distrib-

uted implementation is an important direction.

DDRL  with  large  model  size  and  batch  size.

With  the  success  of  foundation  models  in  the  field  of

computer  vision  and  natural  language  processing,  large

models  in  reinforcement  learning  will  be  a  direction[27].

This  requires DDRL methods to handle large model  size

and  batch  size  situations  simultaneously.  Currently,  the

learners  in  DDRL  are  based  on  techniques  such  as  ring

allreduce  or  parameter  server,  with  each  having  its  ad-

vantages. For example, a parameter server can store large

model  in  different  GPUs,  and ring  allreduce  can  quickly

exchange  gradients  between  different  GPUs.  However,

none of them are applied for large model sizes and batch

sizes in reinforcement learning. Accordingly, how to com-

bine  these  techniques  to  fit  DDRL  algorithms  for  effi-

cient training is a future direction.

Self-play  and  population-play  based  DDRL

methods. Self-play  and population-play  are  mainstream

evolution  methods  for  reinforcement  learning  agents,

which are widely used in current professional human-level

AI systems, e.g., OpenAI Five[6] and AlphaStar[7]. Gener-

ally,  self-play and population-play have no strict  restric-

tions  on  the  players,  which  means  a  player  can  fight

against any past versions for the same player or different

players. Currently, the widely used heuristic designs make

exploring  the  best  configuration  difficult,  which  also

makes designing templates for a toolbox a tricky problem.

In the future, self-play and population-play based DDRL

methods are worthy of further study, e.g., adaptively de-

termining the best configuration.

Toolboxes  construction  and  validation. Several

famous scientific research institutions such as DeepMind,

OpenAI,  and  UC  Berkeley,  have  released  toolboxes  to

support  DDRL  methods.  Most  of  them  use  gym  to  test

the performance, such as data throughput, and linearity.

However,  the  environments  in  gym  are  relatively  small

compared  with  the  environments  in  real  world  applica-

tions. On the other hand, most of the testing use one or

two  nodes/machines  with  limited  numbers  of  CPU  and

GPU devices,  making  the  testing  insufficient  to  discover

bottlenecks  in  the  toolboxes.  Accordingly,  even  though

most  current  DDRL  toolboxes  are  highly  modularized,

the scalability to a large number of machines for perform-

ing  large  learner  parallel  and  actor  parallel  for  complex

environments  has  not  been  fully  tested.  Future  bottle-

necks of the toolboxes may be discovered with large test-

ing.

 7   Conclusions

In  this  paper,  we  surveyed  representative  distributed

deep  reinforcement  learning  methods.  By  summarizing

key components to form a distributed deep reinforcement

learning  system,  single  player  single  agent  distributed

deep reinforcement learning methods are compared based

on different types of coordinators. Furthermore, by bring-

ing in agents cooperation and players evolution, multiple

players  multiple  agents  distributed  deep  reinforcement

learning  approaches  are  presented  in  detail.  To  support

DDRL implementation, some popular distributed deep re-

inforcement  learning  toolboxes  are  introduced  and  dis-

cussed, based on which, a new multiple players and mul-

tiple  agents  learning  toolbox  is  developed,  hoping  to  as-

sist  learning  for  complex  games.  Finally,  we  discuss  the

challenges  and  opportunities  of  this  exciting  field.

Through  this  paper,  we  hope  to  provide  a  reference  for

researchers  and  engineers  when  they  are  exploring  novel

reinforcement  learning  algorithms  and  solving  practical

reinforcement  learning  problems  and  conclude  challenges

and opportunities for future study.

 Acknowledgements

This  work was  supported by Open Fund/Postdoctor-

al Fund of the Laboratory of Cognition and Decision In-

telligence for Complex Systems, Institute of Automation,

Chinese Academy of Sciences, China (No. CASIA-KFKT-

XDA27040809).

 Declarations of conflict of interest

The authors declared that they have no conflicts of in-

terest to this work.

 Open Access

This article is licensed under a Creative Commons At-

tribution  4.0  International  License,  which  permits  use,

sharing, adaptation, distribution and reproduction in any

medium or format, as long as you give appropriate credit

to the original author(s) and the source, provide a link to

the  Creative  Commons  licence,  and  indicate  if  changes

were made.

 16 Machine Intelligence Research

 



The images or  other  third party material  in  this  art-

icle  are  included  in  the  article′s  Creative  Commons  li-

cence,  unless  indicated  otherwise  in  a  credit  line  to  the

material. If material is not included in the article′s Creat-

ive  Commons  licence  and  your  intended  use  is  not  per-

mitted  by  statutory  regulation  or  exceeds  the  permitted

use, you will need to obtain permission directly from the

copyright holder.

To  view  a  copy  of  this  licence,  visit http://creative-

commons.org/licenses/by/4.0/.

References

 D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G.
van den driessche, J. Schrittwieser, I. Antonoglou, V. Pan-
neershelvam,  M.  Lanctot,  S.  Dieleman,  D.  Grewe,  J.
Nham,  N.  Kalchbrenner,  I.  Sutskever,  T.  Lillicrap,  M.
Leach, K. Kavukcuoglu, T. Graepel, D. Hassabis. Master-
ing  the  game  of  go  with  deep  neural  networks  and  tree
search. Nature, vol. 529, no. 7587, pp. 484–489, 2016. DOI:
10.1038/nature16961.

[1]

 D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A.
Huang, A. Guez, T. Hubert, L. Baker, M. Lai, A. Bolton,
Y.  T.  Chen,  T.  Lillicrap,  F.  Hui,  L.  Sifre,  G.  Van  Den
driessche, T. Graepel, D. Hassabis. Mastering the game of
go without  human  knowledge. Nature,  vol. 550,  no. 7676,
pp. 354–359, 2017. DOI: 10.1038/nature24270.

[2]

 Y. Yu. Towards sample efficient reinforcement learning. In
Proceedings of the 27th International Joint Conference on
Artificial Intelligence, Stockholm, Sweden, pp. 5739–5743,
2018. DOI: 10.24963/ijcai.2018/820.

[3]

 X. P. Qiu, T. X. Sun, Y. G. Xu, Y. F. Shao, N. Dai, X. J.
Huang.  Pre-trained  models  for  natural  language  pro-
cessing: A  survey.  Science China Technological Sciences,
vol. 63, no. 10, pp. 1872–1897, 2020. DOI: 10.1007/s11431-
020-1647-3.

[4]

 J. J. Li, S. Koyamada, Q. W. Ye, G. Q. Liu, C. Wang, R.
H. Yang, L. Zhao, T. Qin, T. Y. Liu, H. W. Hon. Suphx:
Mastering mahjong with deep reinforcement learning, [On-
line], Available: https://arxiv.org/abs/2003.13590, 2020.

[5]

 C. Berner, G. Brockman, B. Chan, V. Cheung, P. Dȩbiak,
C. Dennison, D. Farhi, Q. Fischer, S. Hashme, C. Hesse, R.
Józefowicz, S. Gray, C. Olsson, J. Pachocki, M. Petrov, H.
P. D. O. Pinto,  J. Raiman, T.  Salimans,  J.  Schlatter,  J.
Schneider, S. Sidor, I. Sutskever, J. Tang, F. Wolski, S. S.
Zhang. Dota 2 with  large  scale deep  reinforcement  learn-
ing,  [Online],  Available:  https://arxiv.org/abs/1912.
06680, 2019.

[6]

 O. Vinyals, I. Babuschkin, W. M. Czarnecki, M. Mathieu,
A. Dudzik, J. Chung, D. H. Choi, R. Powell, T. Ewalds, P.
Georgiev,  J. Oh, D. Horgan, M. Kroiss,  I. Danihelka, A.
Huang, L. Sifre, T. Cai, J. P. Agapiou, M. Jaderberg, A. S.
Vezhnevets, R. Leblond, T. Pohlen, V. Dalibard, D. Bud-
den, Y. Sulsky, J. Molloy, T. L. Paine, C. Gulcehre, Z. Y.
Wang,  T.  Pfaff,  Y.  H.  Wu,  R.  Ring,  D.  Yogatama,  D.
Wünsch, K. Mckinney, O. Smith, T. Schaul, T. Lillicrap,
K. Kavukcuoglu, D. Hassabis, C. Apps, D. Silver. Grand-
master  level  in  StarCraft  ii  using  multi-agent  reinforce-
ment  learning.  Nature,  vol. 575,  no. 7782,  pp. 350–354,
2019. DOI: 10.1038/s41586-019-1724-z.

[7]

 A. Nair, P. Srinivasan, S. Blackwell, C. Alcicek, R. Fearon,
A. De Maria, V. Panneershelvam, M. Suleyman, C. Beat-
tie, S. Petersen, S. Legg, V. Mnih, K. Kavukcuoglu, D. Sil-
ver.  Massively  parallel  methods  for  deep  reinforcement
learning,  [Online], Available: https://arxiv.org/abs/1507.

[8]

04296, 2015.

 L.  Espeholt,  R.  Marinier,  P.  Stanczyk,  K.  Wang,  M.
Michalski. SEED RL: Scalable and efficient deep-RL with
accelerated central inference. In Proceedings of the 8th In-
ternational Conference on Learning Representations, Ad-
dis Ababa, Ethiopia, 2020.

[9]

 L. Espeholt, H. Soyer, R. Munos, K. Simonyan, V. Mnih,
T. Ward, Y. Doron, V. Firoiu, T. Harley,  I. Dunning, S.
Legg,  K.  Kavukcuoglu.  IMPALA:  Scalable  distributed
deep-RL with importance weighted actor-learner architec-
tures. In Proceedings of the 35th International Conference
on Machine Learning, Stockholm, Sweden, pp. 1407–1416,
2018.

[10]

 A. Sergeev, M. Del Balso. Horovod: Fast and easy distrib-
uted deep learning in TensorFlow, [Online], Available: ht-
tps://arxiv.org/abs/1802.05799, 2018.

[11]

 P. Moritz, R. Nishihara, S. Wang, A. Tumanov, R. Liaw,
E. Liang, M. Elibol, Z. H. Yang, W. Paul, M. I. Jordan, I.
Stoica. Ray: A distributed framework for emerging AI ap-
plications.  In Proceedings of the 13th USENIX Symposi-
um on Operating Systems Design and Implementation,
Carlsbad, USA, pp. 561–577, 2018.

[12]

 E.  Liang, R.  Liaw, R. Nishihara,  P. Moritz, R.  Fox, K.
Goldberg,  J. Gonzalez, M.  Jordan,  I.  Stoica. RLliB: Ab-
stractions  for  distributed  reinforcement  learning.  In Pro-
ceedings of the 35th International Conference on Machine
Learning, Stockholm, Sweden, pp. 3053–3062, 2018.

[13]

 M. R. Samsami, H. Alimadad. Distributed deep reinforce-
ment  learning: An overview,  [Online], Available: https://
arxiv.org/abs/2011.11012, 2020.

[14]

 J. Czech. Distributed methods  for  reinforcement  learning
survey. Reinforcement Learning Algorithms: Analysis and
Applications, B. Belousov, H. Abdulsamad, P. Klink, S. Par-
isi, J. Peters, Eds., Cham, Switzerland: Springer, pp. 151–
161, 2021. DOI: 10.1007/978-3-030-41188-6_13.

[15]

 K. Arulkumaran, M. P. Deisenroth, M. Brundage, A. A.
Bharath.  Deep  reinforcement  learning:  A  brief  survey.
IEEE Signal Processing Magazine, vol. 34, no. 6, pp. 26–38,
2017. DOI: 10.1109/MSP.2017.2743240.

[16]

 T. M. Moerland, J. Broekens, C. M. Jonker. Model-based
reinforcement  learning: A  survey,  [Online], Available: ht-
tps://arxiv.org/abs/2006.16712, 2020.

[17]

 S. Gronauer, K. Diepold. Multi-agent deep  reinforcement
learning: A  survey. Artificial Intelligence Review, vol. 55,
no. 2, pp. 895–943,  2022. DOI:  10.1007/s10462-021-09996-
w.

[18]

 Y. D. Yang,  J. Wang. An  overview  of multi-agent  rein-
forcement  learning  from  game  theoretical  perspective,
[Online],  Available:  https://arxiv.org/abs/2011.00583,
2021.

[19]

 T.  Ben-Num,  T.  Hoefler.  Demystifying  parallel  and  dis-
tributed deep  learning: An  in-depth concurrency analysis.
ACM Computing Surveys,  vol. 52,  no. 4,  Article  number
65, 2020. DOI: 10.1145/3320060.

[20]

 W. Wen, C. Xu, F. Yan, C. P. Wu, Y. D. Wang, Y. R.
Chen, H. Li. TernGrad: Ternary gradients to reduce com-
munication in distributed deep learning. In Proceedings of
the 31st International Conference on Neural Information
Processing Systems,  Long  Beach,  USA,  pp. 1508–1518,
2017.

[21]

 J. Dean, G. S. Corrado, R. Monga, K. Chen, M. Devin, Q.
V. Le, M. Z. Mao, M. Ranzato, A. Senior, P. Tucker, K.
Yang, A. Y. Ng. Large scale distributed deep networks. In
Proceedings of the 25th International Conference on Neur-

[22]

Q. Yin et al. / Distributed Deep Reinforcement Learning: A Survey and a Multi-player Multi-agent Learning Toolbox 17 

 

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.1038/nature16961
http://dx.doi.org/10.1038/nature24270
http://dx.doi.org/10.24963/ijcai.2018/820
http://dx.doi.org/10.1007/s11431-020-1647-3
http://dx.doi.org/10.1007/s11431-020-1647-3
https://arxiv.org/abs/2003.13590
https://arxiv.org/abs/1912.06680
https://arxiv.org/abs/1912.06680
http://dx.doi.org/10.1038/s41586-019-1724-z
https://arxiv.org/abs/1507.04296
https://arxiv.org/abs/1507.04296
https://arxiv.org/abs/1802.05799
https://arxiv.org/abs/1802.05799
https://arxiv.org/abs/2011.11012
https://arxiv.org/abs/2011.11012
http://dx.doi.org/10.1007/978-3-030-41188-6_13
http://dx.doi.org/10.1007/978-3-030-41188-6_13
http://dx.doi.org/10.1109/MSP.2017.2743240
https://arxiv.org/abs/2006.16712
https://arxiv.org/abs/2006.16712
http://dx.doi.org/10.1007/s10462-021-09996-w
http://dx.doi.org/10.1007/s10462-021-09996-w
https://arxiv.org/abs/2011.00583
http://dx.doi.org/10.1145/3320060


al Information Processing Systems,  Lake  Tahoe,  USA,
pp. 1223–1231, 2012.

 M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. F. Chen,
C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, S.
Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y.
Q. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg,
D. Mane, R. Monga,  S. Moore, D. Murray, C. Olah, M.
Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P.
Tucker,  V.  Vanhoucke,  V.  Vasudevan,  F.  Viegas,  O.
Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, X.
Q.  Zheng.  TensorFlow:  Large-scale  machine  learning  on
heterogeneous distributed systems, [Online], Available: ht-
tps://arxiv.org/abs/1603.04467, 2016.

[23]

 J.  Schulman,  F.  Wolski,  P.  Dhariwal,  A.  Radford,  O.
Klimov.  Proximal  policy  optimization  algorithms,
[Online],  Available:  https://arxiv.org/abs/1707.06347,
2022.

[24]

 J. Park, S. Samarakoon, A. Elgabli, J. Kim, M. Bennis, S.
L. Kim, M. Debbah. Communication-efficient and distrib-
uted  learning  over wireless  networks: Principles  and  ap-
plications.  In Proceedings of the IEEE,  vol. 109,  no. 5,
pp. 796–819, 2021. DOI: 10.1109/JPROC.2021.3055679.

[25]

 T. C. Chiu, Y. Y. Shih, A. C. Pang, C. S. Wang, W. Weng,
C. T. Chou. Semisupervised distributed learning with non-
IID  data  for  AIoT  service  platform.  IEEE Internet of
Things Journal,  vol. 7,  no. 10,  pp. 9266–9277,  2020.  DOI:
10.1109/JIOT.2020.2995162.

[26]

 Q. Y. Yin, J. Yang, K. Q. Huang, M. J. Zhao, W. C. Ni, B.
Liang, Y. Huang, S. Wu, L. Wang. AI in human-computer
gaming:  Techniques,  challenges  and  opportunities.  Ma-
chine Intelligence Research,  vol. 20,  no. 3,  pp. 299–317,
2023. DOI: 10.1007/s11633-022-1384-6.

[27]

 V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Ve-
ness, M. G. Bellemare, A. Graves, M. Riedmiller, A. K.
Fidjeland, G. Ostrovski, S. Petersen, C. Beattie, A. Sadik,
I.  Antonoglou,  H.  King,  D.  Kumaran,  D.  Wierstra,  S.
Legg, D. Hassabis. Human-level control through deep rein-
forcement learning. Nature, vol. 518, no. 7540, pp. 529–533,
2015. DOI: 10.1038/nature14236.

[28]

 Y. Burda, H. Edwards, A. Storkey, O. Klimov. Explora-
tion by random network distillation. In Proceedings of the
7th International Conference on Learning Representa-
tions, New Orleans, USA, 2019.

[29]

 M. Samvelyan, T. Rashid, C. S. de Witt, G. Farquhar, N.
Nardelli, T. G. J. Rudner, C. M. Hung, P. H. S. Torr, J. N.
Foerster,  S.  Whiteson.  The  starcraft  multi-agent  chal-
lenge. In Proceedings of the 18th International Conference
on Autonomous Agents and MultiAgent Systems,
Montreal, Canada, pp. 2186–2188, 2019.

[30]

 M. Lanctot, E. Lockhart,  J. B. Lespiau, V. Zambaldi, S.
Upadhyay, J. Pérolat, S. Srinivasan, F. Timbers, K. Tuyls,
S.  Omidshafiei,  D.  Hennes,  D.  Morrill,  P.  Muller,  T.
Ewalds, R. Faulkner, J. Kramár, B. De Vylder, B. Saeta, J.
Bradbury, D. Ding, S. Borgeaud, M. Lai, J. Schrittwieser,
T.  Anthony,  E.  Hughes,  I.  Danihelka,  J.  Ryan-Davis.
OpenSpiel:  A  framework  for  reinforcement  learning  in
games,  [Online],  Available:  https://arxiv.org/abs/1908.
09453, 2020.

[31]

 V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap,
T.  Harley,  D.  Silver,  K.  Kavukcuoglu.  Asynchronous
methods for deep reinforcement learning. In Proceedings of
the 33rd International Conference on Machine Learning,
New York City, USA, pp. 1928–1937, 2016.

[32]

 D. Horgan, J. Quan, D. Budden, G. Barth-Maron, M. Hes-
sel, H.  van Hasselt, D. Silver. Distributed prioritized  ex-
perience  replay.  In  Proceedings of the 6th International

[33]

Conference on Learning Representations,  Vancouver,
Canada, 2018.

 N.  Heess,  D.  TB,  S.  Sriram,  J.  Lemmon,  J.  Merel,  G.
Wayne, Y. Tassa, T. Erez, Z. Y. Wang, S. M. Ali Eslami,
M. A. Riedmiller, D. Silver. Emergence of  locomotion be-
haviours in rich environments, [Online], Available: https://
arxiv.org/abs/1707.02286, 2017.

[34]

 S.  Kapturowski,  G.  Ostrovski,  J.  Quan,  R.  Munos,  W.
Dabney. Recurrent  experience  replay  in distributed  rein-
forcement learning. In Proceedings of the 7th Internation-
al Conference on Learning Representations, New Orleans,
USA, 2019.

[35]

 D. H. Ye, G. B. Chen, W. Zhang, S. Chen, B. Yuan, B.
Liu, J. Chen, Z. Liu, F. H. Qiu, H. S. Yu, Y. Y. T. Yin, B.
Shi, L. Wang, T. F. Shi, Q. Fu, W. Yang, L. X. Huang, W.
Liu. Towards playing full moba games with deep reinforce-
ment  learning.  In  Proceedings of the 34th International
Conference on Neural Information Processing Systems,
Vancouver, Canada, pp. 621–632, 2020.

[36]

 M. Babaeizadeh, I. Frosio, S. Tyree, J. Clemons, J. Kautz.
Reinforcement  learning  through  asynchronous  advantage
actor-critic on a GPU.  In Proceedings of the 5th Interna-
tional Conference on Learning Representations,  Toulon,
France, 2017.

[37]

 A. Stooke, P. Abbeel. Accelerated methods  for deep rein-
forcement learning, [Online], Available: https://arxiv.org/
abs/1803.02811, 2019.

[38]

 A.  V.  Clemente,  H.  N.  Castejón,  A.  Chandra.  Efficient
parallel methods for deep reinforcement learning, [Online],
Available: https://arxiv.org/abs/1705.04862, 2017.

[39]

 E.  Wijmans,  A.  Kadian,  A.  Morcos,  S.  Lee,  I.  Essa,  D.
Parikh, M. Savva, D. Batra. DD-PPO: Learning near-per-
fect pointgoal navigators  from 2.5 billion  frames.  In Pro-
ceedings of the 8th International Conference on Learning
Representations, Addis Ababa, Ethiopia, 2020.

[40]

 M. Jaderberg, W. M. Czarnecki, I. Dunning, L. Marris, G.
Lever, A. G. Castañeda, C. Beattie, N. C. Rabinowitz, A.
S.  Morcos,  A.  Ruderman,  N.  Sonnerat,  T.  Green,  L.
Deason, J. Z. Leibo, D. Silver, D. Hassabis, K. Kavukcuo-
glu,  T.  Graepel.  Human-level  performance  in  3D  multi-
player  games with population-based  reinforcement  learn-
ing. Science, vol. 364, no. 6443, pp. 859–865, 2019. DOI: 10.
1126/science.aau6249.

[41]

 D. C. Zha, J. R. Xie, W. Y. Ma, S. Zhang, X. R. Lian, X.
Hu, J. Liu. DouZero: Mastering DouDizhu with  self-play
deep reinforcement learning. In Proceedings of the 38th In-
ternational Conference on Machine Learning,  pp. 12333–
12344, 2021.

[42]

 B. Baker, I. Kanitscheider, T. Markov, Y. Wu, G. Powell,
B. McGrew,  I. Mordatch. Emergent  tool use  from multi-
agent autocurricula. In Proceedings of the 8th Internation-
al Conference on Learning Representations, Addis Ababa,
Ethiopia, 2020.

[43]

 T. Rashid, M. Samvelyan, C. S. de Witt, G. Farquhar, J.
N. Foerster,  S. Whiteson. QMIX: Monotonic  value  func-
tion  factorisation  for  deep  multi-agent  reinforcement
learning. In Proceedings of the 35th International Confer-
ence on Machine Learning,  Stockholm,  Sweden,
pp. 4295–4304, 2018.

[44]

 D. Silver, T. Hubert,  J. Schrittwieser,  I. Antonoglou, M.
Lai, A. Guez, M. Lanctot, L. Sifre, D. Kumaran, T. Grae-
pel, T. Lillicrap, K. Simonyan, D. Hassabis. A general rein-
forcement  learning  algorithm  that  masters  chess,  shogi,
and go through self-play. Science, vol. 362, no. 6419, pp. 1140–
1144, 2018. DOI: 10.1126/science.aar6404.

[45]

 18 Machine Intelligence Research

 

https://arxiv.org/abs/1603.04467
https://arxiv.org/abs/1603.04467
https://arxiv.org/abs/1707.06347
http://dx.doi.org/10.1109/JPROC.2021.3055679
http://dx.doi.org/10.1109/JIOT.2020.2995162
http://dx.doi.org/10.1007/s11633-022-1384-6
http://dx.doi.org/10.1038/nature14236
https://arxiv.org/abs/1908.09453
https://arxiv.org/abs/1908.09453
https://arxiv.org/abs/1707.02286
https://arxiv.org/abs/1707.02286
https://arxiv.org/abs/1803.02811
https://arxiv.org/abs/1803.02811
https://arxiv.org/abs/1705.04862
http://dx.doi.org/10.1126/science.aau6249
http://dx.doi.org/10.1126/science.aau6249
http://dx.doi.org/10.1126/science.aar6404


 X. J. Wang, J. X. Song, P. H. Qi, P. Peng, Z. K. Tang, W.
Zhang, W. M. Li, X. J. Pi, J. J. He, C. Gao, H. T. Long, Q.
Yuan. SCC: An efficient deep reinforcement learning agent
mastering the game of StarCraft II. In Proceedings of the
38th International Conference on Machine Learning,
pp. 10905–10915, 2021.

[46]

 J.  Paredis.  Coevolutionary  computation.  Artificial Life,
vol. 2, no. 4, pp. 355–375, 1995. DOI: 10.1162/artl.1995.2.4.
355.

[47]

 N. Brown, T. Sandholm. Superhuman AI for heads-up no-
limit  poker:  Libratus  beats  top  professionals.  Science,
vol. 359, no. 6374, pp. 418–424, 2018. DOI: 10.1126/science.
aao1733.

[48]

 M. Moravčík, M. Schmid, N. Burch, V. Lisý, D. Morrill, N.
Bard,  T.  Davis,  K.  Waugh,  M.  Johanson,  M.  Bowling.
Deepstack: Expert-level artificial  intelligence  in heads-up
no-limit  poker.  Science,  vol. 356,  no. 6337,  pp. 508–513,
2017. DOI: 10.1126/science.aam6960.

[49]

 A. DiGiovanni, E. C. Zell. Survey of self-play in reinforce-
ment learning, [Online], Available: https://arxiv.org/abs/
2107.02850, 2021.

[50]

 Q.  Y.  Yin,  M.  J.  Zhao,  W.  C.  Ni,  J.  G.  Zhang,  K.  Q.
Huang.  Intelligent  decision making  technology  and  chal-
lenge of wargame. Acta Automatica Sinica, vol. 49, no. 5,
pp. 9132–928,  2023.  DOI:  10.16383/j.aas.c210547.  (in
Chinese)

[51]

 R. Lowe, Y. Wu, A. Tamar, J. Harb, P. Abbeel, I. Mord-
atch. Multi-agent actor-critic  for mixed  cooperative-com-
petitive environments. In Proceedings of the 31st Interna-
tional Conference on Neural Information Processing Sys-
tems, Long Beach, USA, pp. 6382–6393, 2017.

[52]

 M. W. Hoffman, B. Shahriari, J. Aslanides, G. Barth-Ma-
ron,  N.  Momchev,  D.  Sinopalnikov,  P.  Stańczyk,  S.
Ramos, A. Raichuk, D. Vincent, L. Hussenot, R. Dadashi,
G. Dulac-Arnold, M. Orsini, A. Jacq, J. Ferret, N. Vieil-
lard, S. K. S. Ghasemipour, S. Girgin, O. Pietquin, F. Beh-
bahani, T. Norman, A. Abdolmaleki, A. Cassirer, F. Yang,
K.  Baumli,  S.  Henderson,  A.  Friesen,  R.  Haroun,  A.
Novikov, S. G. Colmenarejo, S. Cabi, C. Gulcehre, T. Le
Paine, S. Srinivasan, A. Cowie, Z. Y. Wang, B. Piot, N. de
Freitas. Acme: A research framework for distributed rein-
forcement learning, [Online], Available: https://arxiv.org/
abs/2006.00979, 2020.

[53]

 S. Fujimoto, H. Hoof, D. Meger. Addressing  function ap-
proximation error  in actor-critic methods.  In Proceedings
of the 35th International Conference on Machine Learning,
Stockholm, Sweden, pp. 1587–1596, 2018.

[54]

 J. Ho, S. Ermon. Generative  adversarial  imitation  learn-
ing.  In Proceedings of the 30th International Conference
on Neural Information Processing Systems,  Barcelona,
Spain, pp. 4572–4580, 2016.

[55]

 S. Reddy, A. D. Dragan, S. Levine. SQIL: Imitation learn-
ing via reinforcement learning with sparse rewards. In Pro-
ceedings of the 8th International Conference on Learning
Representations, Addis Ababa, Ethiopia, 2019.

[56]

 J. Y. Weng, H. Y. Chen, D. Yan, K. C. You, A. Duburcq,
M. H. Zhang, Y.  Su, H.  Su,  J. Zhu. Tianshou: A  highly
modularized deep  reinforcement  learning  library. Journal
of Machine Learning Research,  vol. 23,  no. 267,  pp. 1–6,
2022.

[57]

 H. Küttler, N. Nardelli, T. Lavril, M. Selvatici, V. Sivaku-
mar, T. Rocktäschel, E. Grefenstette. Torchbeast: A pyt-
orch platform  for distributed RL,  [Online], Available: ht-
tps://arxiv.org/abs/1910.03552, 2019.

[58]

 M. Zhou, Z. Y. Wan, H. J. Wang, M. N. Wen, R. Z. Wu,[59]

Y. Wen, Y. D. Yang, W. N. Zhang,  J. Wan. MALiB: A
parallel  framework  for population-based multi-agent rein-
forcement learning, [Online], Available: https://arxiv.org/
abs/2106.07551, 2021.

 P.  Muller,  S.  Omidshafiei,  M.  Rowland,  K.  Tuyls,  J.
Pérolat, S. Q. Liu, D. Hennes, L. Marris, M. Lanctot, E.
Hughes, Z. Wang, G. Lever, N. Heess, T. Graepel, R. Mun-
os. A generalized  training approach  for multiagent  learn-
ing. In Proceedings of the 8th International Conference on
Learning Representations, Addis Ababa, Ethiopia, 2020.

[60]

 S. McAleer, J. Lanier, R. Fox, P. Baldi. Pipeline psro: A
scalable approach  for  finding approximate nash equilibria
in  large  games.  In Proceedings of the 34th International
Conference on Neural Information Processing Systems,
Vancouver, Canada, pp. 20238–20248, 2020.

[61]

 J. Heinrich, M. Lanctot, D. Silver. Fictitious  self-play  in
extensive-form games. In Proceedings of the 32nd Interna-
tional Conference on International Conference on Ma-
chine Learning, Lille, France, pp. 805–813, 2015.

[62]

 H. T. Jia, Y. J. Hu, Y. F. Chen, C. X. Ren, T. J. Lv, C. J.
Fan, C.  J. Zhang. Fever  basketball: A  complex,  flexible,
and  asynchronized  sports  game  environment  for  multi-
agent reinforcement learning, [Online], Available: https://
arxiv.org/abs/2012.03204, 2020.

[63]

 E.  Accinelli,  E.  J.  S.  Carrera.  Evolutionarily  stable
strategies and replicator dynamics in asymmetric two-pop-
ulation  games.  Dynamics, Games and Science I,  M.  M.
Peixoto, A. A. Pinto, D. A. Rand, Eds., Berlin, Germany:
Springer, pp. 25–35, 2011. DOI: 10.1007/978-3-642-11456-
4_3.

[64]

 
Qiyue  Yin  received  the Ph.D.  degree  in
pattern  recognition  and  intelligence  sys-
tems from the National Laboratory of Pat-
tern  Recognition  (NLPR),  Institute  of
Automation,  Chinese  Academy  of  Sci-
ences  (CASIA), China  in 2017. He  is  cur-
rently  an  associate  professor  at  CASIA,
China.
     His  research  interests  include  machine

learning, pattern recognition and artificial intelligence on games.
     E-mail: qyyin@nlpr.ia.ac.cn (Corresponding author)
     ORCID iD: 0000-0002-3442-6275

 
Tongtong  Yu  received  the  master′s  de-
gree  in  computer  science  and  technology
from  Beijing  University  of  Technology,
China  in  2020. She  is  currently  an  engin-
eer  at  Institute  of  Automation,  Chinese
Academy of Sciences (CASIA), China.
     Her  research  interests  include machine
learning  and  artificial  intelligence  on
games.

     E-mail: tongtong.yu@ia.ac.cn

 
Shengqi  Shen  received  the  master′s  de-
gree  in  control  science  and  engineering
from Beijing University of Chemical Tech-
nology, China  in 2018. He  is  currently an
engineer  at  Institute  of  Automation,
Chinese  Academy  of  Sciences  (CASIA),
China.
     His  research  interests  include  machine
learning, decision making in games.

     E-mail: shengqi.shen@ia.ac.cn 

Q. Yin et al. / Distributed Deep Reinforcement Learning: A Survey and a Multi-player Multi-agent Learning Toolbox 19 

 

http://dx.doi.org/10.1162/artl.1995.2.4.355
http://dx.doi.org/10.1162/artl.1995.2.4.355
http://dx.doi.org/10.1126/science.aao1733
http://dx.doi.org/10.1126/science.aao1733
http://dx.doi.org/10.1126/science.aam6960
https://arxiv.org/abs/2107.02850
https://arxiv.org/abs/2107.02850
http://dx.doi.org/10.16383/j.aas.c210547
https://arxiv.org/abs/2006.00979
https://arxiv.org/abs/2006.00979
https://arxiv.org/abs/1910.03552
https://arxiv.org/abs/1910.03552
https://arxiv.org/abs/2106.07551
https://arxiv.org/abs/2106.07551
https://arxiv.org/abs/2012.03204
https://arxiv.org/abs/2012.03204
http://dx.doi.org/10.1007/978-3-642-11456-4_3
http://dx.doi.org/10.1007/978-3-642-11456-4_3
http://dx.doi.org/10.1007/978-3-642-11456-4_3


Jun  Yang  received  the  Ph.D.  degree  in
control  science  and  engineering  from
Tsinghua University, China  in 2011. He  is
currently  an  associate  professor  with  the
Department  of  Automation,  Tsinghua
University, China.
     His  research  interests  include  multi-
agent  reinforcement  learning  and  game
theory.

     E-mail: yangjun603@tsinghua.edu.cn

 
Meijing  Zhao  received  the Ph.D. degree
in pattern recognition and intelligence sys-
tems  from  Integrated  Information System
Research Center, Institute of Automation,
Chinese  Academy  of  Sciences  (CASIA),
China  in  2016.  She  is  currently  an  asso-
ciate professor at CASIA, China.
     Her  research  interests  include  semantic
information processing, knowledge  repres-

entation and reasoning.
     E-mail: meijing.zhao@ia.ac.cn

 
Wancheng Ni  received  the Ph.D. degree
in  contemporary  integrated  manufactur-
ing  systems  from Department of Automa-
tion, Tsinghua University, China  in 2007.
She  is currently a professor at  Institute of
Automation,  Chinese  Academy  of  Sci-
ences (CASIA), China.
     Her  research  interests  include  informa-
tion  processing  and  knowledge  discovery,

group intelligent decision-making platform and evaluation.
     E-mail: wancheng.ni@ia.ac.cn 

Kaiqi  Huang  received  the  Ph.D.  degree
in  communication  and  information  pro-
cessing from  Southeast  University,  China
in 2004. He is currently a professor at Insti-
tute  of Automation, Chinese Academy  of
Sciences (CASIA), China.
     His research interests include visual sur-
veillance, image understanding, pattern re-
cognition,  human-computer  gaming  and

biological based vision.
     E-mail: kqhuang@nlpr.ia.ac.cn

 
Bin  Liang  received  the  Ph.D.  degree  in
precision  instruments  and  mechanology
from Tsinghua University, China  in 1994.
He  is  currently  a  professor  with  the  De-
partment  of  Automation,  Tsinghua  Uni-
versity, China.
     His  research  interests  include  artificial
intelligence,  anomaly  detection,  space  ro-
botics, and fault-tolerant control.

     E-mail: bliang@tsinghua.edu.cn

 
Liang Wang received the Ph.D. degree in
pattern  recognition  and  intelligence  sys-
tems from the National Laboratory of Pat-
tern  Recognition  (NLPR),  Institute  of
Automation,  Chinese  Academy  of  Sci-
ences  (CASIA), China  in 2004. He  is  cur-
rently a professor at CASIA, China.
     His research  interests  include computer
vision, pattern recognition, machine learn-

ing, and data mining.
     E-mail: wangliang@nlpr.ia.ac.cn

 20 Machine Intelligence Research

 


