

Distributed Deep Reinforcement Learning: A Survey and a

Multi-player Multi-agent Learning Toolbox

Qiyue Yin 1,2 Tongtong Yu 1 Shengqi Shen 1 Jun Yang 3 Meijing Zhao 1
 Wancheng Ni 1,2 Kaiqi Huang 1,2,4 Bin Liang 3 Liang Wang 1,2,4

1 Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China

2 School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, China

3 Department of Automation, Tsinghua University, Beijing 100084, China

4 Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Beijing 100190, China

Abstract: With the breakthrough of AlphaGo, deep reinforcement learning has become a recognized technique for solving sequential
decision-making problems. Despite its reputation, data inefficiency caused by its trial and error learning mechanism makes deep rein-
forcement learning difficult to apply in a wide range of areas. Many methods have been developed for sample efficient deep reinforce-
ment learning, such as environment modelling, experience transfer, and distributed modifications, among which distributed deep rein-
forcement learning has shown its potential in various applications, such as human-computer gaming and intelligent transportation. In
this paper, we conclude the state of this exciting field, by comparing the classical distributed deep reinforcement learning methods and
studying important components to achieve efficient distributed learning, covering single player single agent distributed deep reinforce-
ment learning to the most complex multiple players multiple agents distributed deep reinforcement learning. Furthermore, we review re-
cently released toolboxes that help to realize distributed deep reinforcement learning without many modifications of their non-distrib-
uted versions. By analysing their strengths and weaknesses, a multi-player multi-agent distributed deep reinforcement learning toolbox
is developed and released, which is further validated on Wargame, a complex environment, showing the usability of the proposed tool-
box for multiple players and multiple agents distributed deep reinforcement learning under complex games. Finally, we try to point out
challenges and future trends, hoping that this brief review can provide a guide or a spark for researchers who are interested in distrib-
uted deep reinforcement learning.

Keywords: Deep reinforcement learning, distributed machine learning, self-play, population-play, toolbox.

Citation: Q. Yin, T. Yu, S. Shen, J. Yang, M. Zhao, W. Ni, K. Huang, B. Liang, L. Wang. Distributed deep reinforcement learning: A
survey and a multi-player multi-agent learning toolbox. Machine Intelligence Research. http://doi.org/10.1007/s11633-023-1454-4

 1 Introduction

With the breakthrough of AlphaGo[1, 2], an agent that

wins many professional Go players in human-computer

gaming, deep reinforcement learning (DRL) has come to

most researchers′ attention, which has become a recog-

nized technique for solving sequential decision making

problems. Many algorithms have been developed to solve

challenging issues that lie between DRL and the real

world applications, such as exploration and exploitation

dilemma, data inefficiency, and multi-agent cooperation

and competition. Among all these challenges, data ineffi-

ciency is the most criticized due to the trial and error

learning mechanism of DRL, which requires a huge

amount of interactive data.

To alleviate the data inefficiency problem, several re-

search directions have been developed[3]. For example,

model-based deep reinforcement learning constructs envir-

onment models for generating imaginary trajectories to

help reduce times of interaction with the environment.

Transfer reinforcement learning mines shared skills, roles,

or patterns from source tasks, and then uses the learned

knowledge to accelerate reinforcement learning in the tar-

get task. Inspired by distributed machine learning tech-

niques, which have been successfully utilized in computer

vision and natural language processing[4], distributed deep

reinforcement learning (DDRL) was developed, which has

shown its potential to train very successful agents, such

as Suphx[5], OpenAI Five[6], and AlphaStar[7].

Generally, training DRL agents consists of two main

parts, i.e., pulling policy network parameters to generate

data by interacting with the environment, and updating

policy network parameters by consuming data. Such a

Review
Manuscript received on December 30, 2022; accepted on May 6,

2023
Recommended by Associate Editor Mao-Guo Gong

Colored figures are available in the online version at https://link.
springer.com/journal/11633
© The Author(s) 2024

Machine Intelligence Research

www.mi-research.net DOI: 10.1007/s11633-023-1454-4

https://doi.org/10.1007/s11633-023-1454-4
https://link.springer.com/journal/11633
https://link.springer.com/journal/11633

structured pattern makes distributed modifications of

DRL feasible, and many DDRL algorithms have been de-

veloped. For example, the general reinforcement learning

architecture[8], likely the first DDRL architecture, divides

the training system into four components, i.e., parameter

server, learners, actors and replay buffer, which inspires

more successive data efficient DDRL architectures. The

recently proposed SEEDRL[9], an improved version of IM-

PALA[10], is claimed to be able to produce and consume

millions of frames per second, based on which AlphaStar

is successfully trained within 44 days (192 v3 + 12 128

core TPUs, 1 800 CPUs) to beat professional human play-

ers.

To make distributed modifications of DRL be able to

use multiple machines, several engineering problems

should be solved, such as machine communication and

distributed storage. Fortunately, several useful toolboxes

have been developed and released, and revising DRL

codes to a distributed version usually requires a small

amount of code modification, which largely promotes the

development of DDRL. For example, Horovod[11], re-

leased by Uber, makes full use of the ring allreduce tech-

nique, and can properly use multiple GPUs for training

acceleration by adding only a few lines of codes com-

pared with the single GPU version. Ray[12], a distributed

framework of machine learning released by UC Berkeley

RISELab, provides RLlib[13] for efficient DDRL, which is

easy to use due to its reinforcement learning abstraction

and algorithm library.

Considering the great progress of DDRL, it is neces-

sary to comb out the course of DDRL techniques to con-

clude challenges and opportunities to provide clues for fu-

ture research. Recently, Samsami and Alimadad[14] gave a

brief review of DDRL, but their aim is constructing single

agent distributed reinforcement learning framework, and

more challenging multiple players and multiple agents

DDRL are absent. Czech[15] conducted a short survey on

distributed methods for reinforcement learning, but only

several classical algorithms were introduced with no key

techniques, comparisons and challenges being discussed.

Different from previous summaries, this paper aims to

provide a more comprehensive survey. Through this pa-

per, we hope to study important components to achieve

efficient distributed learning, and use this to provide a

new taxonomy. We will compare the classical distributed

deep reinforcement learning methods covering single play-

er single agent DDRL to the most complex multiple play-

ers multiple agents DDRL. Using the comparison, we

hope to provide a guide for beginners and conclude with

challenges and opportunities for future study.

The rest of the paper is organized as follows. In Sec-

tion 2, we briefly describe the background of DRL, dis-

tributed learning, and typical testbeds for DDRL. In Sec-

tion 3, we elaborate on the taxonomy of DDRL, by divid-

ing current algorithms based on the learning frameworks

and players and agents participating in. In Section 4, we

compare current DDRL toolboxes, which help to achieve

efficient DDRL a lot. In Section 5, we introduce a new

multi-player multi-agent DDRL toolbox, which provides a

useful DDRL tool for complex games. In Section 6, we

summarize the main challenges and opportunities for

DDRL, hoping to inspire future research. Finally, we con-

clude the paper in Section 7.

 2 Background

 2.1 Deep reinforcement learning

Reinforcement learning is a typical kind of machine

learning paradigm, the essence of which is learning via in-

teraction. In a general reinforcement learning method, an

agent interacts with an environment by providing ac-

tions to drive the environment dynamics, and receiving

rewards to improve its policy for chasing long-term out-

comes. Usually, there are two typical kinds of algorithms

to learn the agent, i.e., model-free methods that use no

environment models, and model-based approaches that

use the pregiven or learned environment models. Many

algorithms have been proposed, and readers can refer to

[16, 17] for a more thorough review.

In reality, applications naturally involve the participa-

tion of multiple agents, making multi-agent reinforce-

ment learning a hot topic. Generally, multi-agent rein-

forcement learning is modelled as a stochastic game and

obeys a learning paradigm similar to that of conventional

reinforcement learning. Based on the game setting, agents

can be fully cooperative, competitive and a mix of the

two, requiring reinforcement learning agents to emerge

abilities that can match the goal. Various key problems of

multi-agent reinforcement learning have been raised, such

as communication and credit assignment. Readers can

refer to [18, 19] for a detailed introduction.

With the breakthrough of deep learning, deep rein-

forcement learning has become a strong learning

paradigm by combining the representation learning abil-

ity of deep learning and the decision making ability of re-

inforcement learning, and several successful deep rein-

forcement learning agents have been proposed. For ex-

ample, AlphaGo[1, 2], a Go agent that can beat profession-

al human players, is based on single agent deep reinforce-

ment learning. OpenAI Five[6], a dota2 agent that wins

champion players in an e-sport for the first time, relies on

multi-agent deep reinforcement learning. In the following,

unless otherwise stated, we do not distinguish deep rein-

forcement learning and multi-agent deep reinforcement

learning.

 2.2 Distributed learning

The success of deep learning is inseparable from big

 2 Machine Intelligence Research

data and computing power, which leads to huge demand

for distributed learning that can handle data intensive

and compute intensive computing. Due to the structured

computation pattern of deep learning algorithms, some

successful distributed learning methods have been pro-

posed for parallelism in deep learning[20, 21]. An early pop-

ular distributed deep learning framework is DistBelief[22],

designed by Google, which can train a deep network with

billions of parameters using tens of thousands of CPU

cores. Based on DistBelief, Google released the second

generation of distributed deep learning framework,

TensorFlow[23], which has become a widely used tool.

Other typical distributed deep learning frameworks[24],

such as PyTorch, MXNet and Caffe2, have also been de-

veloped and used by the research and industrial com-

munities.

Ben-Num and Hoefler[20] provided an in-depth concur-

rency analysis of parallel and distributed deep learning.

In the survey, the authors gave different types of concur-

rency for deep neural networks, covering the bottom level

operators, and key factors such as network inference and

training. Several important topics such as asynchronous

stochastic optimization, distributed system architectures

and communication schemes are discussed, providing

clues for future directions of distributed deep learning.

Currently, distributed learning is widely used in various

fields, such as wireless networks[25], AIoT service plat-

forms[26] and human-computer gaming[27].

In short, DDRL is a special type of distributed deep

learning. Instead of focusing on data parallelism and mod-

el parallelism in conventional deep learning, DDRL aims

at improving data throughput due to the characteristics

of reinforcement learning. To achieve this, several import-

ant techniques should be well explored like in distributed

deep learning, such as the communication schemes

between machines, asynchronous stochastic optimization

and distributed storage. Many methods have been pro-

posed. For example, parameter server and its variants,

such as shared parameter server and hierarchical para-

meter server are widely used to store network paramet-

ers that may be updated by several processes with syn-

chronous or asynchronous stochastic optimization. RPC,

as an efficient remote procedure call for communication,

is widely used for various distributed frameworks such as

SEED[9] and Ray[12]. Readers can refer to [25] for more

details of the bottom techniques for distributed learning.

 2.3 Testing environment

With the huge success of AlphaGo[1], DDRL is widely

used in games, especially human-computer gaming. Those

games provide an ideal testbed for the development of

DDRL algorithms or frameworks, from single player

single agent DDRL to multiple players multiple agents

DDRL.

Atari is a popular reinforcement learning testbed be-

cause it has a similar high dimensional visual input com-

pared to humans[28]. In addition, several environments

confront challenging issues such as long time horizons and

sparse rewards[29]. Many DDRL algorithms are compared

in Atari games, showing training acceleration against

DRL without parallelism. However, typical Atari games

are designed for single player single agent problems.

With the emergence of multi-agent reinforcement

learning in multi-agent games, StarCraft multi-agent

challenge (SMAC)[30] has become a recognized testbed for

single player multi-agent reinforcement learning. Specific-

ally, SMAC is a subtask of StarCraft that focuses on mi-

cromanagement challenges, where a team of units is con-

trolled to fight against build-in opponents. Several typic-

al multi-agent reinforcement learning algorithms are re-

leased along with SMAC, which support parallel data col-

lection in reinforcement learning.

Apart from the above single player single agent and

single player multiple agents testing environments, there

are a few multiple players environments for deep rein-

forcement learning algorithms, such as in OpenSpiel[31].

On the other hand, even though huge success has been

made for multiple players games such as Go, StarCraft,

dota2, and honor of kings, those environments are used

for a few researchers due to the huge game complexity.

Researchers from large companies such as Google and

OpenAI usually use large computing resources to train

human-level AI bots. However, on the whole, those com-

plex multiple player single agent and multiple agents en-

vironments largely promote the development of DDRL.

 3 Taxonomy of DDRL

 3.1 Taxonomic basis

Many DDRL algorithms or frameworks have been de-

veloped with representatives such as GORILA[8], A3C[32],

APE-X[33], IMPALA[10], distributed PPO[34], R2D2[35] and

Seed RL[9], based on which, we can draw the key compon-

ents of a DDRL, as shown in Fig. 1. We sometimes use

the frameworks instead of algorithms or methods because

these frameworks are not targeted to a specific reinforce-

ment learning algorithm, and they are more like a distrib-

uted framework for various reinforcement learning meth-

ods. Generally, there are three main parts for a basic

DDRL algorithm, which forms a single player single agent

DDRL method:

1) Actors: produce data (trajectories or gradients) by

interacting with the environment.

2) Learners: consume data (trajectories or gradients)

to perform policy neural network parameter updating.

3) Coordinators: coordinate data (parameters or tra-

jectories) to control the communication between learners

and actors.

Actors pull neural network parameters from the

Q. Yin et al. / Distributed Deep Reinforcement Learning: A Survey and a Multi-player Multi-agent Learning Toolbox 3

learners, receive states from the environments, and per-

form inference to obtain actions, which drive the dynam-

ics of environments to the next state. By repeating the

above process with more than one actor, data through-

put can be increased and enough data can be collected.

Learners pull data from actors, perform gradient calcula-

tion or post-processing, and update the network paramet-

ers. More than one learner can alleviate the limited stor-

age of a GPU by utilizing multiple GPUs with tools such

as ring allreduce or parameter-server[11]. By repeating the

above process, the final reinforcement learning agent can

be obtained.

Coordinators are important for DDRL algorithms,

which control the communication between learners and

actors. For example, when the coordinators are used to

synchronize the parameters updating and pulling (by act-

ors), the DDRL algorithm is synchronous. When the

parameters updating and pulling (by actors) are not

strictly coordinated, the DDRL algorithm is asynchron-

ous. Therefore, a basic classification of DDRL algorithms

can be based on the coordinator types.

1) Synchronous based: Global policy parameters up-

dating is synchronized, and pulling policy parameters (by

actors) is synchronous, e.g., different actors share the

same latest global policy.

2) Asynchronous based: Updating the global policy

parameters is asynchronous, or policy updating (by

learners) and pulling (by actors) are asynchronous, e.g.,

actors and learners usually have different policy paramet-

ers.

With the above basic framework, a single player single

agent DDRL algorithm can be designed. Note that we ig-

nore the bottom techniques used to implement multiple

actors, multiple learners and coordinators, such as com-

munication schemes between different jobs in a machine

or in multiple machines and the stochastic optimization

strategies for parameter updating. These bottom tech-

niques are not the scope of this paper, and we will intro-

duce them in Section 3.2 when specific DDRL methods

are presented.

When the number of players or agents is increasing,

the above basic framework is unable to train usable RL

agents. Based on current DDRL algorithms that support

large system level AI such as AlphaStar[7], OpenAI Five[6]

and JueWU[36], two key components are essential to build

multiple players and multiple agents DDRL, i.e., agent

cooperation and player evolution, as shown in Fig. 2.

Agents cooperation
Learners

Actors

Coordinators

Single player single

agent DDRL

Players evolution

Single player multiple

agents DDRL

agents DDRL

Multiple players single

agent DDRL

Multiple players multiple

Fig. 2 Single player single agent DDRL to multiple players
multiple agents DDRL

The module of agents cooperation is used to train

multiple agents based on multi-agent reinforcement learn-

ing algorithms[18]. Generally, multi-agent reinforcement

learning can be classified into two categories, i.e., inde-

pendent training and joint training, based on how to per-

form agent relationship modeling.

1) Independent training: Train each agent independ-

ently by considering other learning agents as part of the

environment.

2) Joint training: Train all the agents as a whole, con-

sidering factors such as agent communication, reward as-

signment and centralized training with distributed execu-

tion.

The module of players evolution is designed for agent

iteration for each player, where agents of other players

are learning at the same time, leading to more than one

generation of agents to be learned for each player, such as

in AlphaStar and OpenAI Five. Based on current main-

stream players evolution techniques, players evolution

can be divided into two types:

1) Self-play based: Different players share the same

policy networks, and the player updates the current gen-

eration of the policy by confronting its past versions.

2) Population-play based: Different players have dif-

ferent policy networks, or called populations, and a play-

er updates its current generation of policy by confronting

other players or/and its past versions.

Finally, based on the above key components for

DDRL, the taxonomy of DDRL is shown in Fig. 3. In Sec-

tions 3.2–3.4, we will summarize and compare represent-

ative methods based on their main characteristics. In ad-

dition, the bottom level techniques such as communica-

tions schemes will be introduced.

 3.2 Coordinator types

Based on the coordinator types, DDRL algorithms can

be divided into asynchronous based and synchronous

based algorithms. For an asynchronous based DDRL

method, there are two cases: The updating of global

Learners Actors

Data: used for learner to update

Coordinator

Coordinator

Data: used for actor to infer

Fig. 1 Basic framework of DDRL

 4 Machine Intelligence Research

policy parameters is asynchronous; the global policy para-

meters updating (by learners) and pulling (by actors) are

asynchronous. For a synchronous based DDRL method,

global policy parameters updating is synchronized, and

pulling policy parameters (by actors) is synchronous.

 3.2.1 Asynchronous based

Nair et al.[8] proposed probably the first massively dis-

tributed architecture for deep reinforcement learning,

Gorila, which builds the basis of the succeeding DDRL al-

gorithms. As shown in Fig. 4, a distributed deep Q-net-

work (DQN) algorithm is implemented. There are mul-

tiple parallel actors to generate trajectories and send

them to the Q-network and target Q-network of the

learners. In addition, learners calculate gradients for para-

meter updating based on a central parameter server that

can store a distributed neural network with multiple ma-

chines. The parameters updating (using gradients) is

based on asynchronous stochastic gradient descent. Due

to the implementation of DQN, neural network paramet-

er updating of learners and trajectory collecting of actors

are also asynchronously performed without waiting. In

their paper, the implemented distributed DQN reduces

the wall-time required to achieve compared or super res-

ults by an order of magnitude on most 49 games in Atari

compared to non-distributed DQN.

Learners

Parameter server

Actors

Q network-1 Environment-1

Environment-nQ network-n

… …

Action

Action

Trajectory

Pull

model

Gradient

T

T

Q-network

Target Q-network

State

State

Fig. 4 Basic framework of Gorila

Similar to [8], Horgan et al.[33] introduced distributed

prioritized experience replay, i.e., APE-X, to enhance Q-

learning based distributed reinforcement learning. Spe-

cifically, prioritized experience replay is used to sample

the most important trajectories, which are generated by

all actors. Accordingly, a shared experience replay

memory should be introduced to store all the generated

trajectories. In the experiments, a fraction of the wall-

clock training time is achieved on the arcade learning en-

vironment. To further enhance [33], Kapturowski et al.[35]

proposed recurrent experience replay in distributed rein-

forcement learning, i.e., R2D2, by introducing RNN-based

reinforcement learning agents. The authors investigate

the effects of parameter lag and recurrent state staleness

problems on the performance, obtaining the first agent to

exceed human-level performance in 52 of the 57 Atari

games with the designed training strategy.

Mnih et al.[32] proposed the asynchronous advantage

actor-critic (A3C) framework, which can make full use of

the multi-core CPU instead of the GPU, leading to cheap

distribution of the reinforcement learning algorithm. As

shown in Fig. 5, each actor calculates the gradient of the

samples (mainly states, actions and rewards used for reg-

ular reinforcement learning algorithms), send them to the

learners, and then update the global policy. The updat-

ing is asynchronous without synchronization among

gradients from different actors. In addition, parameters

(maybe not the latest version) are pulled by each actor to

generate data with environments. Based on the multiple

CPU threads on a single machine, the communication

costs among machines no longer exist. In their paper, four

specific reinforcement learning algorithms are established,

i.e., asynchronous one-step Q-learning, asynchronous one-

step Sarsa, asynchronous n-step Q-learning and asyn-

chronous advantage actor-critic. Experiments show that

half the time on a single multi-core CPU instead of a

GPU is obtained on the Atari domain.

To make use of the GPU′s computational power in-

stead of just the multi-core CPU as in A3C, Babaeizadeh

et al.[37] proposed asynchronous advantage actor-critic on

a GPU, i.e., GA3C, which is a hybrid CPU/GPU version

of A3C. As shown in Fig. 6, the learner consists of three

parts: a predictor to dequeue prediction requests and ob-

tain actions by the inference, a trainer to dequeue batches

of trajectories for the agent model, and the agent model

Single player single agent DDRL

※ Coordinators type
� Asynchronous based

� Synchronous based

※ Players

evolution

� Self-play based for all players

� Population-play based for all players

※ Agents

cooperation

� Independent training for each agent

� Joint training for all agents

Single player multiple agents DDRL Multiple players single agent DDRLMultiple players multiple agents DDRL

DDRL components
Learners Actors

Coordinators

Fig. 3 The taxonomy of distributed deep reinforcement learning

Q. Yin et al. / Distributed Deep Reinforcement Learning: A Survey and a Multi-player Multi-agent Learning Toolbox 5

to update the parameters with the trajectories. Note that

the threads of the predictor and trainer are asynchron-

ously executed. With the above multi-process multi-

thread CPU for receiving actions and sending states, and

several GPU threads for predicting actions and updating

parameters, GA3C achieves a significant speed up com-

pared to A3C.

Placing gradient calculation on the actor side will lim-

it the data throughput of the whole DDRL system, i.e.,

trajectories collected per time unit, so Espeholt et al.[10]

proposed importance weighted actor-learner architecture

(IMPALA) to alleviate this problem. As shown in Fig. 7,
parallel actors communicate with environments, collect

trajectories and send them to the learners for parameter

updating. Since gradient calculation is put on the learner

side, which can be accelerated with GPUs, the frame-

work is claimed to scale to thousands of machines

without sacrificing data efficiency. Note that a synchron-

ized parameter update is used when scaling to many ma-

chines, which is important to maintain data efficiency.

Considering that the local policy used to generate traject-

ories is behind the global policy in the learners due to the

asynchrony between learners and actors, a V-trace off-

policy actor-critic algorithm is introduced to correct the

harmful discrepancy. Experiments on DMLab-30 and At-

ari-57 show that IMPALA can achieve better perform-

ance with less data compared with previous agents.

By using a synchronized sampling strategy for actors

instead of the independent sampling of IMPALA, Stooke

and Abbeel[38] proposed a novel accelerated method,

which consists of two main parts, i.e., synchronized

sampling and synchronous/asynchronous multi-GPU op-

timization. As shown in Fig. 8, individual observations of

some environments are gathered into a batch for infer-

ence, which largely reduces the inference times compared

with approaches that generate trajectories for each envir-

onment independently. However, such synchronized

sampling may suffer from slowdown when different envir-

onments in different processes have large execution differ-

ences, which is alleviated by tricks such as allocating

available CPU cores used for the environments evenly.

For the learners, an efficient asynchronous updating is

performed by using lock to prevent other reading or writ-

ing requests, and dividing the parameters into disjoint

chunks to be updated separately. The implemented asyn-

chronous version of PPO, i.e., APPO, learns successful

policies in Atari games in mere minutes.

With the above synchronized sampling in [38], infer-

ence times will be largely reduced, but the communica-

tion burden between learners and actors will be a big

problem when the networks are huge. Espeholt et al.[9]

proposed scalable, efficient, deep-RL (SEEDRL), which

features centralized inference and an optimized commu-

nication layer called gRPC. As shown in Fig. 9, the com-

munication between learners and actors is mere states

and actions, which largely reduce the communication bur-

den. Furthermore, a streaming gRPC is used where the

communication from actor to learner is kept open with

metadata sent only once, which has minimal latency for

the connection. The authors implemented policy gradi-

ents and Q-learning based algorithms and tested them on

the Atari-57, DeepMind lab and Google research football

environments, and a 40% to 80% cost reduction was ob-

tained, showing great improvements.

In summary, Gorila builds the basis of most DDRL al-

gorithms with four key components, i.e., parallel actors,

parallel learners, a distributed neural network and a dis-

tributed store. By considering prioritized and recurrent

experience replays for policy enhancement, APE-X and

R2D2 are developed, respectively. To make full use of

multi-core CPU, an A3C method is designed and de-

ployed in a machine, which is further improved by GA3C

to put parameters updating in the most suitable device,

i.e., GPU. Increasing the model size will largely limit the

Learners Actors

Agent

Local network-1 Environment-1

Environment-nLocal network-n

… …

Action

Action

Gradient

Gradient

Pull

model

Pull

model

T
State

State

Global network T

Fig. 5 Basic framework of A3C

Learners Actors

…Model

Global network

Gradient Environment-1

Environment-n

Trainers

Predictors
States, rewards

States State

State

Actions A
c
ti

o
n

T

T

Fig. 6 Basic framework of GA3C

Learners Actors

Agent

Global network

Local network-1 Environment-1

Environment-nLocal network-n

… …
Action

State

Action

State

Pull

model

Pull

model

Gradient
T

T

Trajectory

Trajectory

Fig. 7 Basic framework of IMPALA

Learners Actors

Agent
Global network

Local network-1

Local network-n

…

Actions

States

Action

State

Pull

model

Environment-1

Environment-n

…

Environment-1

Environment-n

…
…

Push

model

Push

model

Gradient

Gradient

T

T

Fig. 8 Basic framework of APPO

 6 Machine Intelligence Research

data throughput when putting the gradient calculation on

the actor side as in A3C, so IMPALA puts the gradient

calculation in the learner side, and uses V-trace to rem-

edy the policy lag with learners and actors distributed in

multiple machines. Compared to IMPALA, which uses

each inference for each environment, APPO reduces the

inference times with synchronized sampling. With the

above synchronized sampling, SEEDRL further reduces

the communication burden between learners and actors

by just exchanging states and actions with an efficient

streaming gRPC.
 3.2.2 Synchronous based

As an alternative to A3C[32], Clemente et al.[39] found

that a synchronous version, i.e., advantage actor-critic

(A2C), can better use GPU resources, which should per-

form well with more actors. In the implementation of

A2C, e.g., PAAC, a coordinator is utilized to wait for all

gradients of the actors before optimizing the global net-

work. As shown in Fig. 10, learners update the policy

parameters before all the trajectories are collected, i.e.,

the job of actors is done, and when the learners are up-

dating the policy, the trajectory sampling is stopped. As

a result, all actors are coordinated to obtain the same

global network to interact with environments in the fol-

lowing steps.

Learners Actors

…

Model

Global network

Trajectories pool

Environment-1

Environment-n

Batch
states

Distribute
actions

T

T + 1
Gradient

T

Fig. 10 Basic framework of PAAC

As an alternative to the A2C algorithm in handling

continuous action space, the PPO algorithm[24] shows

great potential due to its trust region constraint. Heess et

al.[34] proposed large scale reinforcement learning with dis-

tributed PPO, i.e., DPPO, which has both synchronous

and asynchronous versions and shows better performance

with the synchronous update. As shown in Fig. 11, the

implementation of DPPO is similar to A3C but with syn-

chronization when updating the policy neural network.

However, synchronization will limit the throughput of the

entire system due to the different rhythms of the actors.

The authors use a threshold for the number of actors

whose gradients must be available for the learners, which

makes the algorithm scale to a large number of actors.

Different from the DPPO algorithm, where a paramet-

er server is applied for distributed neural network updat-

ing, Wijmans et al.[40] further proposed a decentralized

DPPO framework, i.e., DDPPO, which exhibits near-lin-

ear scaling to the GPUs. As shown in Fig. 12, a learner

and an actor are bundled together as a unit to perform

trajectory collection and gradient calculation. Then,

gradients from all the units are gathered together through

some reduce operations, e.g., ring allreduce, to update the

neural networks, which ensures that the parameters are

the same for all the units. Note that to alleviate the syn-

chronization overhead when performing trajectory collec-

tion in parallel units, similar strategies such as in DPPO

are used to discard certain percentages of trajectories in

several units. For implementation, the ring allreduce and

trajectory recording operations can be achieved through

public tools such as APIs in PyTorch. Experiments show

a speedup of 107x on 128 GPUs over a serial implementa-

tion.

Learner + Actor Learner + Actor

Environment-1

Environment-n

Model

Global network

…

Model

Global network

Environment-1

Environment-n

…

Gradient Gradient

Action

State

State

Action

State

State

Gradient

T + 1

T T

Fig. 12 Basic framework of DDPPO

In summary, PAAC and DPPO are similar with syn-

chronous updating. However, DPPO introduces more

tricks such as using a part of the data instead of waiting

all the data to be ready, which will improve the through-

put of the whole system. DDPPO is a different frame-

work, where an actor and a learner bundled together

serve as a unit, and a ring allreduce operation is used to

synchronously update all the network parameters among

the above units. This is different from the parameter

server framework.
 3.2.3 Discussion

Single machine or multiple machines. In the be-

ginning of developing DDRL algorithms, researchers

make previous non-distributed DRL methods distributed

Learners Actors

Environment-1

Environment-n

…

Environment-1

Environment-n

…
…

Model

Global network

Trajectory queue

States

Actions

Actions
Gradient

Batches Cache

T

T

Fig. 9 Basic framework of SEEDRL

Learners Actors

Model

Global network

Local network-1 Environment-1

Environment-nLocal network-n

… …

Action

State

Action

State

Gradient

Gradient

Parameter

T

T + 1

T + 1
×

Fig. 11 Basic framework of DPPO

Q. Yin et al. / Distributed Deep Reinforcement Learning: A Survey and a Multi-player Multi-agent Learning Toolbox 7

using one machine. For example, the parallel of several

typical actor-critic algorithms is designed to use the

multi-process of CPUs, e.g., A3C[32], and PAAC[39]. Re-

cently, researchers have aimed to improve the data

throughput of the whole DDRL system, e.g., IMPALA[10],

and SEEDRL[9], which serves as a basic infrastructure for

training complex games AI such as AlphaStar and

OpenAI Five. These systems can usually make use of

multiple machines. However, early DDRL algorithms de-

signed for a single machine can also be deployed in mul-

tiple machines when communications between machines

are solved, which is relatively simple by using open

sourced tools.

Exchanging trajectories or gradients. Learners

and actors serve as basic components for DDRL al-

gorithms, and the data communicated between them can

be trajectories or gradients based on whether to put the

gradient calculation on the actor or learner side. For ex-

ample, actors of A3C[32] are in charge of trajectory collec-

tion and gradient calculation, and the gradients are then

sent to learners for policy updates, which make simple

operations such as sum operations. Since gradient calcula-

tion is time-consuming, especially when the policy model

is large, the calculating load between the learners and

actors will be unbalanced. Accordingly, an increasing

number of DDRL algorithms have put gradient calcula-

tion on the learner side by using more suitable devices,

i.e., GPUs. For example, in higher data throughput

DDRL frameworks such as IMPALA[10], learners are in

charge of gradient calculation, and actors are in charge of

trajectory collection.

Synchronized or independent inference. When

actors are collecting trajectories by interacting with the

environment, actions should be inferred. Basically, when

performing a step on an environment, there should be one

inference. Previous DDRL methods usually maintain an

environment for an actor, where action inference is per-

formed independently from other actors and environ-

ments. With the increasing number of environments to

collect trajectories, it is resource consuming, especially

when only CPUs are used on the actor side. By putting

the inference on the GPU side, the resources are also

largely wasted because the batch size of the inference is

one. To cope with the above problems, many DDRL

frameworks use an actor to manage several environments

and perform synchronized action inference. For example,

APPO[38] and SEEDRL[9] introduce synchronization to

collect states and distribute actions obtained by environ-

ments and an actor, respectively.

Asynchronous or synchronous DDRL. Both syn-

chronous based and asynchronous based DDRL al-

gorithms have advantages and disadvantages. For asyn-

chronous DDRL algorithms, the global policy usually

does not need to wait all the trajectories or gradients,

and data collection conventionally does not need to wait

the latest policy parameters. Accordingly, the data

ε

throughput of the whole DDRL system will be large.

However, there exists a lag between the global policy and

behavior policy, and such a lag is usually a problem for

on-policy based reinforcement learning algorithms. DDRL

frameworks such as IMPALA[10] introduces V-trace, and

GA3C[37] brings in small term to alleviate the problem,

but those kinds of methods will be unstable when the lags

are large. For synchronous DDRL algorithms, synchroniz-

ation among trajectories or gradients is required before

updating the policy. Accordingly, waiting time is wasted

for actors or learners when one side is working. However,

synchronization makes the training stable, and it is easi-

er to be implemented such as DPPO[34] and DDPPO[40].

Others. Usually, multiple actors can be implemented

with no data exchange, because their jobs, i.e., trajectory

collection, can be independent. As for learners, most

methods only maintain one learner, which will be enough

due to limited model size and especially the limited tra-

jectory batch size. However, large batch size is claimed to

be important for complex games[6], and accordingly mul-

tiple learners become necessary. In the multiple learners

case, usually a synchronization should be performed be-

fore updating the global policy network. Generally, a sum

operation can handle the synchronization, but it is time

consuming when the learners are distributed in multiple

machines. An optimal choice is proposed in [40], where

the ring allreduce operation can nicely deal with the syn-

chronization problem, and an implementation of [40] is

easy by using a toolbox such as Horovod[11]. On the oth-

er hand, when the model size is large and a GPU cannot

load the whole model, a parameter-server framework[8, 33]

based learner can be a choice, which may be combined

with the ring allreduce operation to handle the large

model size and large batch size challenge.

Brief summary. Finally, when a DDRL algorithm is

needed, how to select a proper or efficient method largely

relies on the available computing resources, the policy

model size and the environment size. If there is only one

machine with multiple CPU cores and GPUs, no extra

communication is required except for the data exchange

between the CPU and GPUs. However, if there are mul-

tiple machines, data exchange should be considered,

which may be the bottleneck of the whole system. When

the policy model is large, the exchange of the model

between machines is time consuming, so methods such as

SEEDRL[9] are proper due to only states and actions be-

ing exchanged. However, if the policy model is small, fre-

quently exchanging trajectories will be time consuming,

and methods such as DDPPO[40] will be a choice. When

the environment size is large, massive CPU resources will

be used to start-up environments, and a few GPUs will

be competent for policy updating. Accordingly, DDRL

methods such as IMPALA[10] will be suitable because a

high data throughput can be obtained. Finally, there may

be no best DDRL methods for any learning environment,

and researchers can choose one that best suits their tasks.

 8 Machine Intelligence Research

 3.3 Agents cooperation types

When confronting single agent reinforcement learning,

previous DDRL algorithms can be easily used. However,

when there are multiple agents, distributed multi-agent

reinforcement learning algorithms are required to train

multiple agents simultaneously. Accordingly, previous

DDRL algorithms need to be modified to handle the mul-

tiple agents case. Based on current training paradigms for

multi-agent reinforcement learning, agents cooperation

types can be classified into two categories, i.e., independ-

ent training and joint training, as shown in Fig. 13. Usu-

ally, an agents manager is added to control all the agents

in a game. Independent training trains each agent by con-

sidering other learning agents as part of the environment,

and joint training trains all the agents as a whole by us-

ing typical multi-agent reinforcement learning algorithms.

Single player single agent DDRL

Agents manager

Agent nAgent 1 …

As a whole like a
single agent

Joint

training

Independent

training

n agents = n copy
of single agent

Fig. 13 Basic framework of agents training

 3.3.1 Independent training

n nIndependent training makes agents train as inde-

pendent training, and accordingly previous DDRL al-

gorithms can be used with only a few modifications. The

agents manager is mainly used to bring other agents′ in-

formation, e.g., actions, into the current DDRL training

of an agent because the dynamics of an environment

should be driven by all agents. Considering the require-

ment of agents cooperation, independent training makes a

greater contribution to promoting cooperation among in-

dependent agents.

Jaderberg et al.[41] proposed For the Win (FTW)

agents for the Quake III Arena in capture the flag (CTF)

mode, where several agents cooperate to fight another

camp. To train scalable agents that can cooperate with

any other agents even for unseen agents, the authors

train agents independently, where a population of inde-

pendent agents are trained concurrently, with each parti-

cipating in thousands of parallel matches. To handle

thousands of parallel environments, an IMPALA[10] based

framework is used1. For the cooperation problem, the au-

thors design rewards based on several marks between the

agents cooperating to promote the emergence of coopera-

tion. More specifically, all the agents share the same fi-

nal global reward, i.e., win or lose. In addition, intermedi-

ate rewards are learned based on several events that con-

sider teammates′ actions, such as teammates capturing

the flag and teammates picking up the flag.

Berner et al.[6] proposed OpenAI Five for Dota2,

where five heroes cooperate to fight another cooperated

five heroes. In their AI, each hero is modeled as an agent

and trained independently. To address large parallel en-

vironments for generating a batch size of more than a

million time steps, a SEEDRL[9] framework is used. Un-

like [41], which uses different policy networks for differ-

ent agents, OpenAI Five uses the same policy for differ-

ent agents, which may promote the emergence of coopera-

tion. The action differences lie in the feature design,

where different agents in Dota2 share almost the same

features but with specific features such as hero ID. Fi-

nally, similar to [41], who designed rewards to promote

cooperation, the authors use a weighted sum of individu-

al and team rewards, which are given by following experi-

ence of human players, e.g., gaining resources and killing

enemies.

Ye et al.[36] proposed JueWu2 for Honor of Kings,

which is a similar game compared to Dota2 but played on

mobile devices instead of computer devices. As in [6], a

SEEDRL[9] framework is adopted. In addition, the au-

thors also use the same policy for different agents as in

[6]. The policy network is different, where five value

heads are used due to a deeper consideration of the game

characteristics. The key difference between [6] is the

training paradigm used to scale to a large number of her-

oes, which is not the main scope of this paper, and read-

ers can refer to the original paper for more details.

Zha et al.[42] proposed DouZero for DouDiZhu, where

a landlord agent and two peasant agents are confronting

for a win. Three agents using three policy networks are

trained independently, as in [41]. A Gorila[8] based DDRL

algorithm is used to train the three agents with a single

server. Cooperation between the peasants agents emerges

with increasing training epochs.

Baker et al.[43] proposed multi-agent autocurricula for

game hide-and-seek to study emergent tool use. As in [6],

a SEEDRL[9] framework is used, and the same policy for

different agents is used for training. In addition, the au-

thors test using distinct policies for different agents,

showing similar results but reduced sample efficiency.

In summary, previous DDRL algorithms or frame-

works can be easily used for independent training with

some modifications: making the learners maintain one or

multiple policy networks for different agents, and driving

the environment dynamics with the actions of all agents.

The communication burden will increase because an act-

or of an agent must receive the actions of the other

agents distributed in different machines. This situation

will be worse if different agents use different parameters,

such as DouZero and FTW, compared to agents sharing

the same parameters, such as OpenAI Five and JueWu.
 3.3.2 Joint training

Joint training trains all agents as a whole using typic-

1 Mainly based on their codes released. 2 A recognized name.

Q. Yin et al. / Distributed Deep Reinforcement Learning: A Survey and a Multi-player Multi-agent Learning Toolbox 9

al multi-agent reinforcement learning algorithms like a

single agent. The difference is the trajectories collected,

which have all the agents′ data instead of just an agent.

The agents manager can be designed to handle multi-

agent issues, such as communication, and coordination, to

further accelerate training. However, current multi-agent

DDRL algorithms mostly consider a simple method, i.e.,

actor parallelization to collect enough trajectories. Ac-

cordingly, most previous DDRL algorithms can be easily

implemented.

The implementation of QMIX[44], a popular Q value

factorization-based multi-agent reinforcement learning al-

gorithm, is implemented using multi-processing to inter-

act with the environment[30]. Another example is RLlib[13],

a part of the open source Ray project[12], which makes ab-

stractions for DDRL and implements several jointly

trained multi-agent reinforcement learning algorithms,

e.g., QMIX and PPO with a centralized critic. Generally,

previous joint training is similar to single agent training

in the field of DDRL, but consideration of parallelized

training for issues such as communication and coordina-

tion among agents may further accelerate the training

speed.

In summary, joint training in the field of DDRL is

rarely investigated, and only actor parallelization is

widely used. In these methods, since multiple agents

training is similar to the training of an agent, the imple-

mentation of actor parallelization may not require modi-

fications of previous DDRL algorithms or frameworks.
 3.3.3 Discussion

For independent training, even though different agents

are trained independently, different methods take into ac-

count problems such as feature engineering and reward

reshaping to promote cooperation. Since different agents

are trained by making other agents part of the environ-

ment, conventional DDRL algorithms can be used

without many modifications. From successful agents such

as OpenAI Five and JueWu, we can see that SEEDRL or

its revised versions are a good choice. Joint training is far

from satisfactory because there is considerable room to

improve parallelism among agents by properly consider-

ing the multi-agent issues such as communication when

designing actors and learners.

 3.4 Players evolution types

In most cases, we have no opponents to drive the ca-

pacity growth for a player3. To handle such a problem,

the player usually fights against itself to increase its abil-

ity. For example, AlphaGo[1] uses DDRL and self-play for

superhuman AI learning. Based on current learning

paradigms for players evolution, current methods can be

classified into two categories, i.e., self-play and popula-

tion-play, as shown in Fig. 14. To maintain the players

for evolution, a players manager is required for the

DDRL algorithms for one or multiple players. Self-play

maintains a player and its past versions, whereas, popula-

tion-play maintains several distinct players and their past

versions.

Single player single agent DDRL

Player 1
t = T

Player 1
t = 1

…

Maintain n players and
their past versions

Population-play
based

Self-play
based

Player n
t = 1

Player n
t = T

…

… …

Maintain a player and its
past versions

Players manager

Fig. 14 Basic framework of player iteration

 3.4.1 Self-play based evolution

Self-play has become a popular tool since the success

of the AlphaGo series[1, 2, 45], which trains a player by

fighting against itself. In an iteration or called generation

of the player, the current version is trained based on pre-

vious DDRL algorithms by using one or some of its previ-

ous versions as opponents. The players manager decides

which previous versions are used as opponents.

In JueWu[36], developed for the Honor of Kings, a na-

ive self-play is used for two players (each controlling five

agents) using the same policy. An SEEDRL[9] DDRL al-

gorithm is used, and the self-play is used in the fixed

lineup and random lineup stages for handling a large hero

pool size. Players trained for hide-and-seek[43] are similar

to JueWu[36], where a SEEDRL[9] DDRL algorithm and a

naive self-play are used to prove the multi-agent auto-

curricula. Another similar example is Suphx[5] proposed

for Mahjong, which uses self-play for a player to confront

the other three players (use the same policy). For the

DDRL algorithm, an IMPALA[10] framework is applied

for training each generation.

In OpenAI Five[6] designed for Dota2, a more com-

plex self-play is used for two players (each controls five

agents) using the same policy. In each generation, in-

stead of fighting against the current generation, such as

naive self-play, the player trains the current policy

against itself for 80% of games, and against its previous

versions for 20% of games. Specifically, a dynamic

sampling system is designed to select the past versions

based on their dynamically generated quality score, which

claims to alleviate cyclic strategies problem. As for the

basic DDRL algorithm, a SEEDRL[9] framework is used

for all the generations of players training.

In summary, the players manager maintains the past

generations of the player, which serve as the opponent to

drive the dynamics of the environment. Accordingly, con-

ventional DDRL algorithms or frameworks should be

3 Here player means a side for a game, which may control one

agent such as Go or multiple agents such as Dota2.

 10 Machine Intelligence Research

modified like independent training in agents cooperation.

For naive self-play, the current generation is used to train

itself, whereas, revised self-play usually maintains an

evaluation matrix to record the ability of each generation,

based on which, a sampling strategy is used to select the

opponent.
 3.4.2 Population-play based evolution

Population-play can be seen as an advanced self-play,

where more than one player and their past generations

should be maintained for players evolution. It can be used

for several cases: The policy used is different for different

players (e.g., a landlord and two peasant players in

DouZero); some auxiliary players are introduced for the

target player to overcome game-theoretic challenges (e.g.,

main exploiter and league exploiter players in AlphaStar);

parallel players are used with consistent roles to support

concurrent training and to alleviate instability of self-play

(e.g., populations in FTW).

In DouZero[42] designed for DouDiZhu, a landlord and

two peasant players are trained simultaneously, where

their current generations fight against each other to col-

lect trajectories and to train the players. The basic

DDRL algorithm is Gorila[8], which runs on a single ma-

chine, based on which all three players are trained asyn-

chronously.

In AlphaStar[7] developed for StarCraft, the players

manager maintains three main players for three different

races, i.e., Protoss, Terran, and Zerg. In addition, for

each race, several auxiliary players are designed, i.e., one

main exploiter player and two league exploiter players.

Those auxiliary players help the main player determine

weaknesses and help all the players find systemic weak-

nesses. The authors claim that using such a population

addresses the complexity and game-theoretic challenges of

the StarCraft. For the DDRL algorithm, SEEDRL[9] is

utilized to support large system training. Commander[46]

is similar to [7], and more exploiter players are used.

In FTW[41] designed for Capture the Flag (CTF), the

players manager maintains a population of players who

cooperate and confront each other to learn scalable bots.

The positions of all the players are the same, and a popu-

lation-based training method is designed to adjust play-

ers with worse performance to improve the ability of all

the players. For the basic DDRL algorithm, the IM-

PALA[10] method is used to have large data throughput

to train tens of players.

In summary, the players manager maintains all the

players and their past generations. Accordingly, a more

complex evaluation matrix should be used to record the

performances against past generations of the other play-

ers and the player itself. Compared to DouZero, the play-

ers in AlphaStar have different opponent selection

strategies, which will largely increase the communication

burden between learners and actors and the computation-

al complexity of players manager in DDRL. For FTW, a

population of players cooperate and compete against each

other, which also brings in the difficulty of evaluating the

performance of each player in the players manager.
 3.4.3 Discussion

Self-play has a long history in multi-agent settings

(different players naturally cause multiple agents), where

early work explored it in genetic algorithms[47]. It has be-

come very popular with the combination of deep rein-

forcement learning leading to the success of the AlphaGo

series[1, 2], which is widely used for various AI systems,

such as Libratus[48], DeepStack[49] and OpenAI Five[6], to

reach human-level performance. In [50], the authors give

a brief survey of self-play in reinforcement learning,

where its major themes, criteria and techniques are intro-

duced. Even though some important concepts, such as

convergence, Pareto efficiency, and Nash equilibrium, are

discussed, current self-play in DDRL largely depends on

heuristic design based on the characteristics of the envir-

onment.

On the other hand, population-play can be seen as ad-

vanced self-play, which maintains more players to achieve

ability improvement. Since there is more than one player

to learn, the evolution becomes harder because different

players need to be properly improved to ensure the im-

provement of the whole system. Accordingly, several chal-

lenges are raised when using population-play, such as the

block for asymmetric games[27, 51]. Despite this, current

works use population-play to accelerate training, over-

come game-theoretic challenges, or just handle the prob-

lem that requires distinct players.

Compared with self-play, population-play is more flex-

ible, and can handle diverse situations. However, self-play

is easy to implement, and has proven its potential in

complex games such as Dota2. Overall, there is no con-

clusion regarding whether self-play or population-play is

better in games, and researchers can select self-play or

population-play DDRL based on their specific requests.

 4 Typical DDRL toolboxes

DDRL is important for complex environments using

reinforcement learning as solvers, and several useful tool-

boxes have been released to help researchers reduce devel-

opment costs. In this section, we analyze several typical

toolboxes, hoping to give a clue when researchers are

making a selection among them.

 4.1 Typical toolboxes

Ray[12] is a distributed framework consisting of two

main parts, i.e., a system layer to implement tasks

scheduling and data management, and an application lay-

er to provide high-level APIs for various applications. Us-

ing these APIs, researchers can easily implement a DDRL

method without considering the node/machine connec-

tions and scheduling different calculations. For example,

using @ray.remote as a decorator of a function, a remote

Q. Yin et al. / Distributed Deep Reinforcement Learning: A Survey and a Multi-player Multi-agent Learning Toolbox 11

function can be obtained, and the results or futures can

be calculated with @ray.get and @ray.wait. Furthermore,

an RLLib[13] package is introduced on top of Ray to sup-

port reinforcement learning such as A3C, APEX and IM-

PALA. In addition, several built-in multi-agent DDRL al-

gorithms are provided, such as QMIX[44] and MADDPG[52].

Users can use and revise these DDRL algorithms with the

above APIs.

Acme[53] is designed to enable distributed reinforce-

ment learning to promote the development of novel RL

agents and their applications. It involves many separate

(parallel) acting, learning and diagnostic and helper pro-

cesses, which are key building blocks for a DDRL system.

Using these templates and specifically designed APIs,

such as make_distributed_experiment, users can focus on

reinforcement learning algorithm design instead of paral-

lelization design. Furthermore, one of the main contribu-

tions is the in-memory storage system, called Reverb,

which is a high-throughput data system that is suitable

for experience replay based reinforcement learning al-

gorithms. With the aim of supporting agents at various

scales of execution, many mainstream DDRL algorithms

have been implemented, i.e., online reinforcement learn-

ing algorithms such as Deep Q-networks[28], R2D2[35] and

IMPALA[10], offline reinforcement learning such as beha-

vior cloning and TD3[54], imitation learning such as ad-

versarial imitation learning[55] and soft Q imitation learn-

ing[56].

Tianshou[57] is a highly modularized Python library

that uses PyTorch for DDRL. Its main characteristic is

the design of building blocks that support more than 20

classic reinforcement learning algorithms with distrib-

uted versions through a unified python interface. Specific-

ally, building blocks for DDRL are provided, which can

be used for fast prototyping. Since Tianshou focuses on

small-to-medium-scale applications of DDRL with only

parallel sampling, it is a lightweight platform that is re-

search-friendly. It is claimed that Tianshou is easy to in-

stall, and users can apply Pip or Conda to accomplish in-

stallation on platforms covering Windows, macOS and

Linux.

TorchBeast[58] is another DDRL toolbox that is based

on PyTorch to support fast, asynchronous and parallel

training of reinforcement learning agents. The authors

provide two versions, i.e., pure-Python MonoBeast and

multi-machine high-performance PolyBeast with several

parts being implemented with C++. Users only require

Python and PyTorch to implement DDRL algorithms.

For example, using the threading function of Python to

start threads of actors, where trajectories can be queued

for learners. In the toolbox, IMPALA is supported and

tested with the classic Atari suite.

MALib[59] is a scalable and efficient computing frame-

work for population-based multi-agent reinforcement

learning algorithms. Using a centralized task dispatching

model, it supports self-generated tasks and heterogeneous

policy combinations. In addition, by abstracting DDRL

algorithms using actor-evaluator-learner, a higher paral-

lelism for learning and sampling is achieved. The authors

also claimed to have efficient code reuse and flexible de-

ployments due to the higher-level abstractions of multi-

agent reinforcement learning. In the released code, sever-

al popular reinforcement learning environments, such as

Google research football and SMAC, are supported and

typical population based algorithms, such as policy space

response oracle (PSRO)[60] and pipeline-PSRO[61], are im-

plemented. With these examples (highly abstracted),

users may replace the environments and reinforcement

learning algorithms for population based DDRL.

SEED[9] is a scalable and efficient deep reinforcement

learning toolbox, as described in Section 3.2.1. Generally,

it is verified on the tensor processing unit (TPU) device,

which is a special chip customized by Google for machine

learning. Typical DDRL algorithms are implemented,

e.g., IMPALA[10] and R2D2[35], which are tested on four

classical environments, i.e., Atari, DeepMind lab, Google

research football and Mujoco. Distributed training is sup-

ported using the cloud machine learning engine of Google,

and users can follow highly abstracted examples to imple-

ment their own reinforcement learning algorithms.

 4.2 Discussion

Before comparing different kinds of toolboxes, we

want to claim that there are no best DDRL toolboxes for

any requirements, but the most suitable one depends on

specific goals.

Tianshou and TorchBeast are lightweight platforms

that support several typical DDRL algorithms. Users may

easily modify the released codes by referring to the proto-

types or examples using the PyTorch deep learning lib-

rary. The user-friendly features make these toolboxes

popular. However, even though those toolboxes are highly

modularized, the scalability to a large number of ma-

chines for performing large learner parallel and actor par-

allel is not tested, and bottlenecks may appear with an

increasing number of machines.

Ray, Acme and SEED are relatively large toolboxes

that can theoretically support any DDRL algorithm with

certain modifications. Using their open projects, users can

utilize multiple machines to implement high data

throughput DDRL algorithms. Moreover, multiple agents

training and multiple players evolution can be achieved,

such as for AlphaStar. However, modifications and de-

bugging are not easy due to code nesting for brief ab-

stractions and function calls. For example, when adding a

new function (e.g., network parameter disturbance after

exchanging with other players), the modifications may in-

volve all abstractions.

MALib is similar to Ray, Acme and SEED, which is a

specially designed DDRL toolbox for population-based

multi-agent reinforcement learning. With their APIs,

 12 Machine Intelligence Research

users may implement population based multi-agent rein-

forcement learning algorithms such as fictitious self-

play[62] and PSRO. Similar to the previous toolboxes, the

modifications are not easy due to deep code nesting. Al-

though experiments for a large number of machines are

not tested, this toolbox is fully functional (APIs

provided) for various requirements of DDRL algorithms

from single player single agent DDRL to multiple players

multiple agents DDRL.

In summary, current DDRL toolboxes provide a good

support for DDRL algorithms, and several typical testing

environments are embedded for performance validation.

However, those DDRL toolboxes are either too light-

weight for multiple players and multiple agents or too

heavy for secondary development, and all toolboxes are

not specially designed or tested for complex games, which

we think is important because it may require flexible

functions for environments and the agents trained. For

example, the agents may asynchronously cooperate[63],

and the environments for different players are asymmet-

ric. In Section 5, we will design a user-friendly toolbox

that focuses on multiple players and multiple agents of

DDRL training on complex games.

 5 A multi-player multi-agent reinforce-
ment learning toolbox

In this section, we open a multi-player multi-agent re-

inforcement learning toolbox, M2RL, to support popula-

tions of players (with each possibly controlling several

agents) for complex games, e.g., Wargame[51]. Note that

this project is ongoing, so the main purpose is a prelimin-

ary introduction, and we will continue to improve this

project. The hyperlink of the project is http://turingai.ia.

ac.cn/ai_center/show/14.

 5.1 Overall framework

The overall framework is shown in Fig. 15. Each play-

er, consisting of one or multiple agents, has three key

components: learner, actor and experience buffer. The

multiple concurrently executed actors produce data for

learners, which use the current player and other players

as opponents based on the choice of players manager. The

experience buffer is used to store trajectories of the play-

er to support asynchronous or synchronous training. The

learner for each player is used to update parameters of

the player and send parameters to the actors. Apart from

the above basic factors, players manager maintains self-

play and population-play, which has two key parts: evalu-

ating players and choosing opponent players.

More specific details of M2RL are shown in Fig. 16. To

make M2RL easy to use for complex games, we design

each part in a relatively flexible manner. For players

manager, payoff data are updated once new generations

of different players are added, based on which, oppon-

ents for each player can be sampled to train its next gen-

eration. A sampling function can be modified with any

Players manager

Player-1 Player-2 Player-N

Player-1 population Player-2 population Player-N population

Experience

buffer
Learner

Actor

Env

My agent Another

player′s
agent

Experience

buffer
Learner

Actor

Env

My agent Another

player′s
agent

Experience

buffer
Learner

Actor

Env

My agent Another

player′s
agent

… …

…

Evaluation→Player-X VS (Player-1, … , Player-N)

Choosing algorithm→Player-X′s opponent chosen probabilities

My agent
My agent

My agent
My agent

My agent
My agent

Fig. 15 Basic framework of the proposed multi-player multi-agent reinforcement learning toolbox M2RL

Q. Yin et al. / Distributed Deep Reinforcement Learning: A Survey and a Multi-player Multi-agent Learning Toolbox 13

http://turingai.ia.ac.cn/ai_center/show/14
http://turingai.ia.ac.cn/ai_center/show/14
http://turingai.ia.ac.cn/ai_center/show/14

form to implement any kind of self-play or population-

play strategy. For each player, the actors are in charge of

generating data with two kinds of inferences after receiv-

ing the observations, i.e., the current player and the op-

ponent players from the players manager. The inference

for opponent players is implemented with remote func-

tions by loading the players. To support complex obser-

vations and actions, several engineering functions are

provided to encode features and explain the actions for

the policy network and the environment, respectively. For

the experience buffer, we provide an extra buffer to re-

vise the original buffer, which will be helpful for complex

reinforcement learning algorithms, e.g., asynchronous

multi-agent cooperation[63]. Finally, a learner is used to

update the current player with a parameter server to

store the distributed parameters.

In summary, the main characteristics of M2RL are as

follows:

1) The players manager evaluates all saved players

(including their past versions) using their confrontation

results, based on which, various opponent selection meth-

ods can be implemented to promote players′ evolution,

e.g., revised self-play in OpenAI Five[6] and prioritized fic-

titious self-play in AlphaStar[7]. In addition, different

solutions after training can be obtained such as Nash

equilibrium and evolutionarily stable strategies[64].

2) Each player maintains its own learner, actor and

experience buffer, making distinct players training pos-

sible, e.g., red and blue players in Wargame[51]. Consider-

ing that the game is complex with different observation

and action spaces compared to the OpenAI gym, feature

engineering and mask engineering are used in the frame-

work. In addition, the experience buffer is revised to

change an unfinished buffer to a finished buffer, which is

very useful for asynchronous multi-agent cooperation[63].

3) There is little code nesting but mainly personalized

functions or classes as interfaces to be modified, and the

underlying codes are based on user-friendly remote func-

tions from Ray, which are easy to deploy, revise and use.

More specifically, we can make full use of computing re-

sources by segmenting a GPU to several parts and assign-

ing each part to different tasks, which is important for

complex games under limited computing resources.

 5.2 A case

Wargame is a very complex game similar to Dota2

and StarCraft, and it is not conquered like the break-

through of OpenAI Five and AlphaStar[27]. Accordingly,

we believe it will be a good testing environment to verify

the usefulness of M2RL. In a Wargame map4, the red

player controls several fighting units to confront the blue

player who also controls several units. The game is asym-

metric because players have distinct strategy spaces, and

usually the blue player has more forces, while the red

player has a vision advantage. Please refer to [51] for

more details of the Wargame.

We can naturally model Wargame as a two players

multiple agents problem, where each fighting unit is re-

garded as an agent. To train two AI bots for the red and

blue players, we use several widely adopted settings, such

as shared PPO policy for each agent, dual-clip for the

PPO and prioritized fictitious self-play in OpenAI Five[6],

JueWu[36] and AlphaStar[7]. Each player trains its bot us-

ing approximately 200 000 games, and uses 9 500 games

for the players manager to evaluate each generation of

the player. The computing resources used here are as fol-

lows: 2×Intel(R) Xeon(R) Gold 6 240R CPU @ 2.40GHz,

Player 1

Players manager

Evaluate manager

Payoff data

All players data

Chosen player data

Player test

Opponent choosing

Actor

Actor

Actor

Experience buffer

Batch sampling

Learner

Unfinished buffer

Finished buffer

Env

Env

Env

Our ObsOpponent Obs

Reward engineering

Observation

Parameters

Model

train

Batch trajectories

Parameter server

Parameters pulling

Action

Step sampling

Agent

Agent

Agent

Action

Observation

Step trajectories

Parameters

Parameter

buffer

Player

data

All experience

Win experience

Episode

Trajectories

Player

data

Mask engineering

Feature engineering

Model

inference

Action engineering

Step counter

Probability/Value

Mask

Feature

Opponent actor

Model

inference

Feature
+ mask

Agent

Agent

Agent

Probability
/Value

Player 2

Save/Load player

Player data

Player N

Save/Load player

Save/load player

Fig. 16 Specific details of the proposed multi-player multi-agent reinforcement learning toolbox M2RL

4 http://wargame.ia.ac.cn/main, ID = 2010431153

 14 Machine Intelligence Research

http://wargame.ia.ac.cn/main

4× NVIDIA GeForce RTX 2 080 Ti, and 500 GB

memory. With the above resources, the training lasts for

five days, and we finally obtain 20 generations for each

player. To evaluate the performance of these bots, we use

the built-in demo agent as the baseline and bring in three

professional-level AI bots designed by teams who have

studied Wargame for several years, represented as know-

ledge_1, knowledge_2 and knowledge_3. It should be

noted that those professional AI bots do not participate

in training. Similar to the evaluation for AlphaGo[1] and

AlphaStar[7], we use Elo as metrics. The detailed codes

are released and the results are shown in Fig. 17.

In our experiments, we make no comparison with ex-

isting toolboxes because they are not specifically de-

signed for complex games such as Wargame, which re-

quire large modifications. For example, the most similar

toolbox MALib is claimed to lack enough optimization for

GPUs, and the released codes may lack important com-

ponents, such as experience storage and model call and

storage for self-play and population-play. Other similar

toolboxes, such as Acme and SEED, are designed for a

single agent, and the released codes may lack essential

components such as multi-agent population evaluation

and evolution. From Fig. 17, it can be seen that with in-

creasing players evolution, the learned policy for each

player becomes stronger. This is also verified from Fig. 18

after showing the asymmetric replicator dynamic[64], i.e.,

the 20th and 19th generations being chosen with increas-

ing evolution for the red and blue players, respectively.

Overall, the results show the ability of the proposed

M2RL to some extent. Since this project is an ongoing

item, the main purpose of this part is an introduction,

and we will continue to improve the toolbox in the fu-

ture, e.g., more testing and comparison on various com-

plex environments.

 6 Challenges and opportunities

Many DDRL algorithms and toolboxes have been pro-

posed, which have largely promoted the study of rein-

forcement learning and its applications. We believe that

current methods still suffer from several challenges, which

may be future directions. First, current methods rarely

consider accelerating complex reinforcement learning al-

gorithms, such as those studying exploration, communica-

tion and generalization problems. Second, current ap-

proaches mainly use a ring allreduce or parameter server

for learners, which seldom handle large model size and

batch size situations simultaneously. Third, self-play or

population-play are important methods for multiple play-

300

500

700

900

1 100

1 300

1 500

1 700

5.5 16.5 27.5 38.5 49.5 60.5 71.5 82.5 93.5 104.5

E
lo

 r
at

in
g

Training hours

Elo_red

300

500

700

900

1 100

1 300

1 500

1 700

5.5 16.5 27.5 38.5 49.5 60.5 71.5 82.5 93.5 104.5

E
lo

 r
at

in
g

Training hours

Elo_blue

M2RL
Demo
Knowledge_1
Knowledge_2
Knowledge_3

M2RL
Demo
Knowledge_1
Knowledge_2
Knowledge_3

Fig. 17 Elo results of the trained AI bots (red and blue players) based on M2RL. Knowledge_1, knowledge_2 and knowledge_3 are
three professional level AI bots. Demo is an AI with a strategy to select the highest priority action when it is possible.

0.35

0.30

0.25

0.20

0.15

0.10

0.05

0

0.14

0.12

0.10

0.08

0.06

0.04

0.02

0

0 2 4 6 8 10

Timepoints

0 2 4 6 8 10

Timepoints

Probability distribution of strategies

over time for red player

Probability distribution of strategies

over time for blue player

1.0

0.8

0.6

0.4

0.2

0

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

0 20 40 60 80 100

Timepoints

0 20 40 60 80 100

Timepoints

Probability distribution of strategies

over time for red player

Probability distribution of strategies

over time for blue player

P
ro

b
ab

il
it

y

P
ro

b
ab

il
it

y

P
ro

b
ab

il
it

y

P
ro

b
ab

il
it

y

s0
s1
s2
s3
s4
s5
s6
s7
s8
s9

s10
s11
s12
s13
s14
s15
s16
s17
s18
s19

s0
s1
s2
s3
s4
s5
s6
s7
s8
s9

s10
s11
s12
s13
s14
s15
s16
s17
s18
s19

s0
s1
s2
s3
s4
s5
s6
s7
s8
s9

s10
s11
s12
s13
s14
s15
s16
s17
s18
s19

s0
s1
s2
s3
s4
s5
s6
s7
s8
s9

s10
s11
s12
s13
s14
s15
s16
s17
s18
s19

Fig. 18 Asymmetric replicator dynamics for the red and blue players with time =10 and time=100

Q. Yin et al. / Distributed Deep Reinforcement Learning: A Survey and a Multi-player Multi-agent Learning Toolbox 15

ers and multiple agents training, which are also flexible

without strict restrictions, but deeper study is deficient.

Fourth, several famous DDRL toolboxes have been de-

veloped, but none of them have been verified with large

scale training, e.g., tens of machines for complex games.

DDRL with advanced reinforcement learning

algorithms. The research and application of reinforce-

ment learning show explosive growth since the success of

AlphaGo. New topics have emerged, such as hierarchical

deep reinforcement learning, model-based reinforcement

learning, multi-agent reinforcement learning, off-line rein-

forcement learning, and meta reinforcement learning[16, 18],

but DDRL methods have rarely considered those new re-

search areas. Distributed implementation is kind of engin-

eering but not naive. For example, when considering in-

formation communication for a multi-agent reinforce-

ment learning algorithm, agents manager should reason-

ably parallelize agent communication calculation to im-

prove data throughput. Accordingly, how to accelerate

advanced reinforcement learning algorithms with distrib-

uted implementation is an important direction.

DDRL with large model size and batch size.

With the success of foundation models in the field of

computer vision and natural language processing, large

models in reinforcement learning will be a direction[27].

This requires DDRL methods to handle large model size

and batch size situations simultaneously. Currently, the

learners in DDRL are based on techniques such as ring

allreduce or parameter server, with each having its ad-

vantages. For example, a parameter server can store large

model in different GPUs, and ring allreduce can quickly

exchange gradients between different GPUs. However,

none of them are applied for large model sizes and batch

sizes in reinforcement learning. Accordingly, how to com-

bine these techniques to fit DDRL algorithms for effi-

cient training is a future direction.

Self-play and population-play based DDRL

methods. Self-play and population-play are mainstream

evolution methods for reinforcement learning agents,

which are widely used in current professional human-level

AI systems, e.g., OpenAI Five[6] and AlphaStar[7]. Gener-

ally, self-play and population-play have no strict restric-

tions on the players, which means a player can fight

against any past versions for the same player or different

players. Currently, the widely used heuristic designs make

exploring the best configuration difficult, which also

makes designing templates for a toolbox a tricky problem.

In the future, self-play and population-play based DDRL

methods are worthy of further study, e.g., adaptively de-

termining the best configuration.

Toolboxes construction and validation. Several

famous scientific research institutions such as DeepMind,

OpenAI, and UC Berkeley, have released toolboxes to

support DDRL methods. Most of them use gym to test

the performance, such as data throughput, and linearity.

However, the environments in gym are relatively small

compared with the environments in real world applica-

tions. On the other hand, most of the testing use one or

two nodes/machines with limited numbers of CPU and

GPU devices, making the testing insufficient to discover

bottlenecks in the toolboxes. Accordingly, even though

most current DDRL toolboxes are highly modularized,

the scalability to a large number of machines for perform-

ing large learner parallel and actor parallel for complex

environments has not been fully tested. Future bottle-

necks of the toolboxes may be discovered with large test-

ing.

 7 Conclusions

In this paper, we surveyed representative distributed

deep reinforcement learning methods. By summarizing

key components to form a distributed deep reinforcement

learning system, single player single agent distributed

deep reinforcement learning methods are compared based

on different types of coordinators. Furthermore, by bring-

ing in agents cooperation and players evolution, multiple

players multiple agents distributed deep reinforcement

learning approaches are presented in detail. To support

DDRL implementation, some popular distributed deep re-

inforcement learning toolboxes are introduced and dis-

cussed, based on which, a new multiple players and mul-

tiple agents learning toolbox is developed, hoping to as-

sist learning for complex games. Finally, we discuss the

challenges and opportunities of this exciting field.

Through this paper, we hope to provide a reference for

researchers and engineers when they are exploring novel

reinforcement learning algorithms and solving practical

reinforcement learning problems and conclude challenges

and opportunities for future study.

 Acknowledgements

This work was supported by Open Fund/Postdoctor-

al Fund of the Laboratory of Cognition and Decision In-

telligence for Complex Systems, Institute of Automation,

Chinese Academy of Sciences, China (No. CASIA-KFKT-

XDA27040809).

 Declarations of conflict of interest

The authors declared that they have no conflicts of in-

terest to this work.

 Open Access

This article is licensed under a Creative Commons At-

tribution 4.0 International License, which permits use,

sharing, adaptation, distribution and reproduction in any

medium or format, as long as you give appropriate credit

to the original author(s) and the source, provide a link to

the Creative Commons licence, and indicate if changes

were made.

 16 Machine Intelligence Research

The images or other third party material in this art-

icle are included in the article′s Creative Commons li-

cence, unless indicated otherwise in a credit line to the

material. If material is not included in the article′s Creat-

ive Commons licence and your intended use is not per-

mitted by statutory regulation or exceeds the permitted

use, you will need to obtain permission directly from the

copyright holder.

To view a copy of this licence, visit http://creative-

commons.org/licenses/by/4.0/.

References

 D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G.
van den driessche, J. Schrittwieser, I. Antonoglou, V. Pan-
neershelvam, M. Lanctot, S. Dieleman, D. Grewe, J.
Nham, N. Kalchbrenner, I. Sutskever, T. Lillicrap, M.
Leach, K. Kavukcuoglu, T. Graepel, D. Hassabis. Master-
ing the game of go with deep neural networks and tree
search. Nature, vol. 529, no. 7587, pp. 484–489, 2016. DOI:
10.1038/nature16961.

[1]

 D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A.
Huang, A. Guez, T. Hubert, L. Baker, M. Lai, A. Bolton,
Y. T. Chen, T. Lillicrap, F. Hui, L. Sifre, G. Van Den
driessche, T. Graepel, D. Hassabis. Mastering the game of
go without human knowledge. Nature, vol. 550, no. 7676,
pp. 354–359, 2017. DOI: 10.1038/nature24270.

[2]

 Y. Yu. Towards sample efficient reinforcement learning. In
Proceedings of the 27th International Joint Conference on
Artificial Intelligence, Stockholm, Sweden, pp. 5739–5743,
2018. DOI: 10.24963/ijcai.2018/820.

[3]

 X. P. Qiu, T. X. Sun, Y. G. Xu, Y. F. Shao, N. Dai, X. J.
Huang. Pre-trained models for natural language pro-
cessing: A survey. Science China Technological Sciences,
vol. 63, no. 10, pp. 1872–1897, 2020. DOI: 10.1007/s11431-
020-1647-3.

[4]

 J. J. Li, S. Koyamada, Q. W. Ye, G. Q. Liu, C. Wang, R.
H. Yang, L. Zhao, T. Qin, T. Y. Liu, H. W. Hon. Suphx:
Mastering mahjong with deep reinforcement learning, [On-
line], Available: https://arxiv.org/abs/2003.13590, 2020.

[5]

 C. Berner, G. Brockman, B. Chan, V. Cheung, P. Dȩbiak,
C. Dennison, D. Farhi, Q. Fischer, S. Hashme, C. Hesse, R.
Józefowicz, S. Gray, C. Olsson, J. Pachocki, M. Petrov, H.
P. D. O. Pinto, J. Raiman, T. Salimans, J. Schlatter, J.
Schneider, S. Sidor, I. Sutskever, J. Tang, F. Wolski, S. S.
Zhang. Dota 2 with large scale deep reinforcement learn-
ing, [Online], Available: https://arxiv.org/abs/1912.
06680, 2019.

[6]

 O. Vinyals, I. Babuschkin, W. M. Czarnecki, M. Mathieu,
A. Dudzik, J. Chung, D. H. Choi, R. Powell, T. Ewalds, P.
Georgiev, J. Oh, D. Horgan, M. Kroiss, I. Danihelka, A.
Huang, L. Sifre, T. Cai, J. P. Agapiou, M. Jaderberg, A. S.
Vezhnevets, R. Leblond, T. Pohlen, V. Dalibard, D. Bud-
den, Y. Sulsky, J. Molloy, T. L. Paine, C. Gulcehre, Z. Y.
Wang, T. Pfaff, Y. H. Wu, R. Ring, D. Yogatama, D.
Wünsch, K. Mckinney, O. Smith, T. Schaul, T. Lillicrap,
K. Kavukcuoglu, D. Hassabis, C. Apps, D. Silver. Grand-
master level in StarCraft ii using multi-agent reinforce-
ment learning. Nature, vol. 575, no. 7782, pp. 350–354,
2019. DOI: 10.1038/s41586-019-1724-z.

[7]

 A. Nair, P. Srinivasan, S. Blackwell, C. Alcicek, R. Fearon,
A. De Maria, V. Panneershelvam, M. Suleyman, C. Beat-
tie, S. Petersen, S. Legg, V. Mnih, K. Kavukcuoglu, D. Sil-
ver. Massively parallel methods for deep reinforcement
learning, [Online], Available: https://arxiv.org/abs/1507.

[8]

04296, 2015.

 L. Espeholt, R. Marinier, P. Stanczyk, K. Wang, M.
Michalski. SEED RL: Scalable and efficient deep-RL with
accelerated central inference. In Proceedings of the 8th In-
ternational Conference on Learning Representations, Ad-
dis Ababa, Ethiopia, 2020.

[9]

 L. Espeholt, H. Soyer, R. Munos, K. Simonyan, V. Mnih,
T. Ward, Y. Doron, V. Firoiu, T. Harley, I. Dunning, S.
Legg, K. Kavukcuoglu. IMPALA: Scalable distributed
deep-RL with importance weighted actor-learner architec-
tures. In Proceedings of the 35th International Conference
on Machine Learning, Stockholm, Sweden, pp. 1407–1416,
2018.

[10]

 A. Sergeev, M. Del Balso. Horovod: Fast and easy distrib-
uted deep learning in TensorFlow, [Online], Available: ht-
tps://arxiv.org/abs/1802.05799, 2018.

[11]

 P. Moritz, R. Nishihara, S. Wang, A. Tumanov, R. Liaw,
E. Liang, M. Elibol, Z. H. Yang, W. Paul, M. I. Jordan, I.
Stoica. Ray: A distributed framework for emerging AI ap-
plications. In Proceedings of the 13th USENIX Symposi-
um on Operating Systems Design and Implementation,
Carlsbad, USA, pp. 561–577, 2018.

[12]

 E. Liang, R. Liaw, R. Nishihara, P. Moritz, R. Fox, K.
Goldberg, J. Gonzalez, M. Jordan, I. Stoica. RLliB: Ab-
stractions for distributed reinforcement learning. In Pro-
ceedings of the 35th International Conference on Machine
Learning, Stockholm, Sweden, pp. 3053–3062, 2018.

[13]

 M. R. Samsami, H. Alimadad. Distributed deep reinforce-
ment learning: An overview, [Online], Available: https://
arxiv.org/abs/2011.11012, 2020.

[14]

 J. Czech. Distributed methods for reinforcement learning
survey. Reinforcement Learning Algorithms: Analysis and
Applications, B. Belousov, H. Abdulsamad, P. Klink, S. Par-
isi, J. Peters, Eds., Cham, Switzerland: Springer, pp. 151–
161, 2021. DOI: 10.1007/978-3-030-41188-6_13.

[15]

 K. Arulkumaran, M. P. Deisenroth, M. Brundage, A. A.
Bharath. Deep reinforcement learning: A brief survey.
IEEE Signal Processing Magazine, vol. 34, no. 6, pp. 26–38,
2017. DOI: 10.1109/MSP.2017.2743240.

[16]

 T. M. Moerland, J. Broekens, C. M. Jonker. Model-based
reinforcement learning: A survey, [Online], Available: ht-
tps://arxiv.org/abs/2006.16712, 2020.

[17]

 S. Gronauer, K. Diepold. Multi-agent deep reinforcement
learning: A survey. Artificial Intelligence Review, vol. 55,
no. 2, pp. 895–943, 2022. DOI: 10.1007/s10462-021-09996-
w.

[18]

 Y. D. Yang, J. Wang. An overview of multi-agent rein-
forcement learning from game theoretical perspective,
[Online], Available: https://arxiv.org/abs/2011.00583,
2021.

[19]

 T. Ben-Num, T. Hoefler. Demystifying parallel and dis-
tributed deep learning: An in-depth concurrency analysis.
ACM Computing Surveys, vol. 52, no. 4, Article number
65, 2020. DOI: 10.1145/3320060.

[20]

 W. Wen, C. Xu, F. Yan, C. P. Wu, Y. D. Wang, Y. R.
Chen, H. Li. TernGrad: Ternary gradients to reduce com-
munication in distributed deep learning. In Proceedings of
the 31st International Conference on Neural Information
Processing Systems, Long Beach, USA, pp. 1508–1518,
2017.

[21]

 J. Dean, G. S. Corrado, R. Monga, K. Chen, M. Devin, Q.
V. Le, M. Z. Mao, M. Ranzato, A. Senior, P. Tucker, K.
Yang, A. Y. Ng. Large scale distributed deep networks. In
Proceedings of the 25th International Conference on Neur-

[22]

Q. Yin et al. / Distributed Deep Reinforcement Learning: A Survey and a Multi-player Multi-agent Learning Toolbox 17

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.1038/nature16961
http://dx.doi.org/10.1038/nature24270
http://dx.doi.org/10.24963/ijcai.2018/820
http://dx.doi.org/10.1007/s11431-020-1647-3
http://dx.doi.org/10.1007/s11431-020-1647-3
https://arxiv.org/abs/2003.13590
https://arxiv.org/abs/1912.06680
https://arxiv.org/abs/1912.06680
http://dx.doi.org/10.1038/s41586-019-1724-z
https://arxiv.org/abs/1507.04296
https://arxiv.org/abs/1507.04296
https://arxiv.org/abs/1802.05799
https://arxiv.org/abs/1802.05799
https://arxiv.org/abs/2011.11012
https://arxiv.org/abs/2011.11012
http://dx.doi.org/10.1007/978-3-030-41188-6_13
http://dx.doi.org/10.1007/978-3-030-41188-6_13
http://dx.doi.org/10.1109/MSP.2017.2743240
https://arxiv.org/abs/2006.16712
https://arxiv.org/abs/2006.16712
http://dx.doi.org/10.1007/s10462-021-09996-w
http://dx.doi.org/10.1007/s10462-021-09996-w
https://arxiv.org/abs/2011.00583
http://dx.doi.org/10.1145/3320060

al Information Processing Systems, Lake Tahoe, USA,
pp. 1223–1231, 2012.

 M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. F. Chen,
C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, S.
Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y.
Q. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg,
D. Mane, R. Monga, S. Moore, D. Murray, C. Olah, M.
Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P.
Tucker, V. Vanhoucke, V. Vasudevan, F. Viegas, O.
Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, X.
Q. Zheng. TensorFlow: Large-scale machine learning on
heterogeneous distributed systems, [Online], Available: ht-
tps://arxiv.org/abs/1603.04467, 2016.

[23]

 J. Schulman, F. Wolski, P. Dhariwal, A. Radford, O.
Klimov. Proximal policy optimization algorithms,
[Online], Available: https://arxiv.org/abs/1707.06347,
2022.

[24]

 J. Park, S. Samarakoon, A. Elgabli, J. Kim, M. Bennis, S.
L. Kim, M. Debbah. Communication-efficient and distrib-
uted learning over wireless networks: Principles and ap-
plications. In Proceedings of the IEEE, vol. 109, no. 5,
pp. 796–819, 2021. DOI: 10.1109/JPROC.2021.3055679.

[25]

 T. C. Chiu, Y. Y. Shih, A. C. Pang, C. S. Wang, W. Weng,
C. T. Chou. Semisupervised distributed learning with non-
IID data for AIoT service platform. IEEE Internet of
Things Journal, vol. 7, no. 10, pp. 9266–9277, 2020. DOI:
10.1109/JIOT.2020.2995162.

[26]

 Q. Y. Yin, J. Yang, K. Q. Huang, M. J. Zhao, W. C. Ni, B.
Liang, Y. Huang, S. Wu, L. Wang. AI in human-computer
gaming: Techniques, challenges and opportunities. Ma-
chine Intelligence Research, vol. 20, no. 3, pp. 299–317,
2023. DOI: 10.1007/s11633-022-1384-6.

[27]

 V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Ve-
ness, M. G. Bellemare, A. Graves, M. Riedmiller, A. K.
Fidjeland, G. Ostrovski, S. Petersen, C. Beattie, A. Sadik,
I. Antonoglou, H. King, D. Kumaran, D. Wierstra, S.
Legg, D. Hassabis. Human-level control through deep rein-
forcement learning. Nature, vol. 518, no. 7540, pp. 529–533,
2015. DOI: 10.1038/nature14236.

[28]

 Y. Burda, H. Edwards, A. Storkey, O. Klimov. Explora-
tion by random network distillation. In Proceedings of the
7th International Conference on Learning Representa-
tions, New Orleans, USA, 2019.

[29]

 M. Samvelyan, T. Rashid, C. S. de Witt, G. Farquhar, N.
Nardelli, T. G. J. Rudner, C. M. Hung, P. H. S. Torr, J. N.
Foerster, S. Whiteson. The starcraft multi-agent chal-
lenge. In Proceedings of the 18th International Conference
on Autonomous Agents and MultiAgent Systems,
Montreal, Canada, pp. 2186–2188, 2019.

[30]

 M. Lanctot, E. Lockhart, J. B. Lespiau, V. Zambaldi, S.
Upadhyay, J. Pérolat, S. Srinivasan, F. Timbers, K. Tuyls,
S. Omidshafiei, D. Hennes, D. Morrill, P. Muller, T.
Ewalds, R. Faulkner, J. Kramár, B. De Vylder, B. Saeta, J.
Bradbury, D. Ding, S. Borgeaud, M. Lai, J. Schrittwieser,
T. Anthony, E. Hughes, I. Danihelka, J. Ryan-Davis.
OpenSpiel: A framework for reinforcement learning in
games, [Online], Available: https://arxiv.org/abs/1908.
09453, 2020.

[31]

 V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap,
T. Harley, D. Silver, K. Kavukcuoglu. Asynchronous
methods for deep reinforcement learning. In Proceedings of
the 33rd International Conference on Machine Learning,
New York City, USA, pp. 1928–1937, 2016.

[32]

 D. Horgan, J. Quan, D. Budden, G. Barth-Maron, M. Hes-
sel, H. van Hasselt, D. Silver. Distributed prioritized ex-
perience replay. In Proceedings of the 6th International

[33]

Conference on Learning Representations, Vancouver,
Canada, 2018.

 N. Heess, D. TB, S. Sriram, J. Lemmon, J. Merel, G.
Wayne, Y. Tassa, T. Erez, Z. Y. Wang, S. M. Ali Eslami,
M. A. Riedmiller, D. Silver. Emergence of locomotion be-
haviours in rich environments, [Online], Available: https://
arxiv.org/abs/1707.02286, 2017.

[34]

 S. Kapturowski, G. Ostrovski, J. Quan, R. Munos, W.
Dabney. Recurrent experience replay in distributed rein-
forcement learning. In Proceedings of the 7th Internation-
al Conference on Learning Representations, New Orleans,
USA, 2019.

[35]

 D. H. Ye, G. B. Chen, W. Zhang, S. Chen, B. Yuan, B.
Liu, J. Chen, Z. Liu, F. H. Qiu, H. S. Yu, Y. Y. T. Yin, B.
Shi, L. Wang, T. F. Shi, Q. Fu, W. Yang, L. X. Huang, W.
Liu. Towards playing full moba games with deep reinforce-
ment learning. In Proceedings of the 34th International
Conference on Neural Information Processing Systems,
Vancouver, Canada, pp. 621–632, 2020.

[36]

 M. Babaeizadeh, I. Frosio, S. Tyree, J. Clemons, J. Kautz.
Reinforcement learning through asynchronous advantage
actor-critic on a GPU. In Proceedings of the 5th Interna-
tional Conference on Learning Representations, Toulon,
France, 2017.

[37]

 A. Stooke, P. Abbeel. Accelerated methods for deep rein-
forcement learning, [Online], Available: https://arxiv.org/
abs/1803.02811, 2019.

[38]

 A. V. Clemente, H. N. Castejón, A. Chandra. Efficient
parallel methods for deep reinforcement learning, [Online],
Available: https://arxiv.org/abs/1705.04862, 2017.

[39]

 E. Wijmans, A. Kadian, A. Morcos, S. Lee, I. Essa, D.
Parikh, M. Savva, D. Batra. DD-PPO: Learning near-per-
fect pointgoal navigators from 2.5 billion frames. In Pro-
ceedings of the 8th International Conference on Learning
Representations, Addis Ababa, Ethiopia, 2020.

[40]

 M. Jaderberg, W. M. Czarnecki, I. Dunning, L. Marris, G.
Lever, A. G. Castañeda, C. Beattie, N. C. Rabinowitz, A.
S. Morcos, A. Ruderman, N. Sonnerat, T. Green, L.
Deason, J. Z. Leibo, D. Silver, D. Hassabis, K. Kavukcuo-
glu, T. Graepel. Human-level performance in 3D multi-
player games with population-based reinforcement learn-
ing. Science, vol. 364, no. 6443, pp. 859–865, 2019. DOI: 10.
1126/science.aau6249.

[41]

 D. C. Zha, J. R. Xie, W. Y. Ma, S. Zhang, X. R. Lian, X.
Hu, J. Liu. DouZero: Mastering DouDizhu with self-play
deep reinforcement learning. In Proceedings of the 38th In-
ternational Conference on Machine Learning, pp. 12333–
12344, 2021.

[42]

 B. Baker, I. Kanitscheider, T. Markov, Y. Wu, G. Powell,
B. McGrew, I. Mordatch. Emergent tool use from multi-
agent autocurricula. In Proceedings of the 8th Internation-
al Conference on Learning Representations, Addis Ababa,
Ethiopia, 2020.

[43]

 T. Rashid, M. Samvelyan, C. S. de Witt, G. Farquhar, J.
N. Foerster, S. Whiteson. QMIX: Monotonic value func-
tion factorisation for deep multi-agent reinforcement
learning. In Proceedings of the 35th International Confer-
ence on Machine Learning, Stockholm, Sweden,
pp. 4295–4304, 2018.

[44]

 D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, M.
Lai, A. Guez, M. Lanctot, L. Sifre, D. Kumaran, T. Grae-
pel, T. Lillicrap, K. Simonyan, D. Hassabis. A general rein-
forcement learning algorithm that masters chess, shogi,
and go through self-play. Science, vol. 362, no. 6419, pp. 1140–
1144, 2018. DOI: 10.1126/science.aar6404.

[45]

 18 Machine Intelligence Research

https://arxiv.org/abs/1603.04467
https://arxiv.org/abs/1603.04467
https://arxiv.org/abs/1707.06347
http://dx.doi.org/10.1109/JPROC.2021.3055679
http://dx.doi.org/10.1109/JIOT.2020.2995162
http://dx.doi.org/10.1007/s11633-022-1384-6
http://dx.doi.org/10.1038/nature14236
https://arxiv.org/abs/1908.09453
https://arxiv.org/abs/1908.09453
https://arxiv.org/abs/1707.02286
https://arxiv.org/abs/1707.02286
https://arxiv.org/abs/1803.02811
https://arxiv.org/abs/1803.02811
https://arxiv.org/abs/1705.04862
http://dx.doi.org/10.1126/science.aau6249
http://dx.doi.org/10.1126/science.aau6249
http://dx.doi.org/10.1126/science.aar6404

 X. J. Wang, J. X. Song, P. H. Qi, P. Peng, Z. K. Tang, W.
Zhang, W. M. Li, X. J. Pi, J. J. He, C. Gao, H. T. Long, Q.
Yuan. SCC: An efficient deep reinforcement learning agent
mastering the game of StarCraft II. In Proceedings of the
38th International Conference on Machine Learning,
pp. 10905–10915, 2021.

[46]

 J. Paredis. Coevolutionary computation. Artificial Life,
vol. 2, no. 4, pp. 355–375, 1995. DOI: 10.1162/artl.1995.2.4.
355.

[47]

 N. Brown, T. Sandholm. Superhuman AI for heads-up no-
limit poker: Libratus beats top professionals. Science,
vol. 359, no. 6374, pp. 418–424, 2018. DOI: 10.1126/science.
aao1733.

[48]

 M. Moravčík, M. Schmid, N. Burch, V. Lisý, D. Morrill, N.
Bard, T. Davis, K. Waugh, M. Johanson, M. Bowling.
Deepstack: Expert-level artificial intelligence in heads-up
no-limit poker. Science, vol. 356, no. 6337, pp. 508–513,
2017. DOI: 10.1126/science.aam6960.

[49]

 A. DiGiovanni, E. C. Zell. Survey of self-play in reinforce-
ment learning, [Online], Available: https://arxiv.org/abs/
2107.02850, 2021.

[50]

 Q. Y. Yin, M. J. Zhao, W. C. Ni, J. G. Zhang, K. Q.
Huang. Intelligent decision making technology and chal-
lenge of wargame. Acta Automatica Sinica, vol. 49, no. 5,
pp. 9132–928, 2023. DOI: 10.16383/j.aas.c210547. (in
Chinese)

[51]

 R. Lowe, Y. Wu, A. Tamar, J. Harb, P. Abbeel, I. Mord-
atch. Multi-agent actor-critic for mixed cooperative-com-
petitive environments. In Proceedings of the 31st Interna-
tional Conference on Neural Information Processing Sys-
tems, Long Beach, USA, pp. 6382–6393, 2017.

[52]

 M. W. Hoffman, B. Shahriari, J. Aslanides, G. Barth-Ma-
ron, N. Momchev, D. Sinopalnikov, P. Stańczyk, S.
Ramos, A. Raichuk, D. Vincent, L. Hussenot, R. Dadashi,
G. Dulac-Arnold, M. Orsini, A. Jacq, J. Ferret, N. Vieil-
lard, S. K. S. Ghasemipour, S. Girgin, O. Pietquin, F. Beh-
bahani, T. Norman, A. Abdolmaleki, A. Cassirer, F. Yang,
K. Baumli, S. Henderson, A. Friesen, R. Haroun, A.
Novikov, S. G. Colmenarejo, S. Cabi, C. Gulcehre, T. Le
Paine, S. Srinivasan, A. Cowie, Z. Y. Wang, B. Piot, N. de
Freitas. Acme: A research framework for distributed rein-
forcement learning, [Online], Available: https://arxiv.org/
abs/2006.00979, 2020.

[53]

 S. Fujimoto, H. Hoof, D. Meger. Addressing function ap-
proximation error in actor-critic methods. In Proceedings
of the 35th International Conference on Machine Learning,
Stockholm, Sweden, pp. 1587–1596, 2018.

[54]

 J. Ho, S. Ermon. Generative adversarial imitation learn-
ing. In Proceedings of the 30th International Conference
on Neural Information Processing Systems, Barcelona,
Spain, pp. 4572–4580, 2016.

[55]

 S. Reddy, A. D. Dragan, S. Levine. SQIL: Imitation learn-
ing via reinforcement learning with sparse rewards. In Pro-
ceedings of the 8th International Conference on Learning
Representations, Addis Ababa, Ethiopia, 2019.

[56]

 J. Y. Weng, H. Y. Chen, D. Yan, K. C. You, A. Duburcq,
M. H. Zhang, Y. Su, H. Su, J. Zhu. Tianshou: A highly
modularized deep reinforcement learning library. Journal
of Machine Learning Research, vol. 23, no. 267, pp. 1–6,
2022.

[57]

 H. Küttler, N. Nardelli, T. Lavril, M. Selvatici, V. Sivaku-
mar, T. Rocktäschel, E. Grefenstette. Torchbeast: A pyt-
orch platform for distributed RL, [Online], Available: ht-
tps://arxiv.org/abs/1910.03552, 2019.

[58]

 M. Zhou, Z. Y. Wan, H. J. Wang, M. N. Wen, R. Z. Wu,[59]

Y. Wen, Y. D. Yang, W. N. Zhang, J. Wan. MALiB: A
parallel framework for population-based multi-agent rein-
forcement learning, [Online], Available: https://arxiv.org/
abs/2106.07551, 2021.

 P. Muller, S. Omidshafiei, M. Rowland, K. Tuyls, J.
Pérolat, S. Q. Liu, D. Hennes, L. Marris, M. Lanctot, E.
Hughes, Z. Wang, G. Lever, N. Heess, T. Graepel, R. Mun-
os. A generalized training approach for multiagent learn-
ing. In Proceedings of the 8th International Conference on
Learning Representations, Addis Ababa, Ethiopia, 2020.

[60]

 S. McAleer, J. Lanier, R. Fox, P. Baldi. Pipeline psro: A
scalable approach for finding approximate nash equilibria
in large games. In Proceedings of the 34th International
Conference on Neural Information Processing Systems,
Vancouver, Canada, pp. 20238–20248, 2020.

[61]

 J. Heinrich, M. Lanctot, D. Silver. Fictitious self-play in
extensive-form games. In Proceedings of the 32nd Interna-
tional Conference on International Conference on Ma-
chine Learning, Lille, France, pp. 805–813, 2015.

[62]

 H. T. Jia, Y. J. Hu, Y. F. Chen, C. X. Ren, T. J. Lv, C. J.
Fan, C. J. Zhang. Fever basketball: A complex, flexible,
and asynchronized sports game environment for multi-
agent reinforcement learning, [Online], Available: https://
arxiv.org/abs/2012.03204, 2020.

[63]

 E. Accinelli, E. J. S. Carrera. Evolutionarily stable
strategies and replicator dynamics in asymmetric two-pop-
ulation games. Dynamics, Games and Science I, M. M.
Peixoto, A. A. Pinto, D. A. Rand, Eds., Berlin, Germany:
Springer, pp. 25–35, 2011. DOI: 10.1007/978-3-642-11456-
4_3.

[64]

Qiyue Yin received the Ph.D. degree in
pattern recognition and intelligence sys-
tems from the National Laboratory of Pat-
tern Recognition (NLPR), Institute of
Automation, Chinese Academy of Sci-
ences (CASIA), China in 2017. He is cur-
rently an associate professor at CASIA,
China.
 His research interests include machine

learning, pattern recognition and artificial intelligence on games.
 E-mail: qyyin@nlpr.ia.ac.cn (Corresponding author)
 ORCID iD: 0000-0002-3442-6275

Tongtong Yu received the master′s de-
gree in computer science and technology
from Beijing University of Technology,
China in 2020. She is currently an engin-
eer at Institute of Automation, Chinese
Academy of Sciences (CASIA), China.
 Her research interests include machine
learning and artificial intelligence on
games.

 E-mail: tongtong.yu@ia.ac.cn

Shengqi Shen received the master′s de-
gree in control science and engineering
from Beijing University of Chemical Tech-
nology, China in 2018. He is currently an
engineer at Institute of Automation,
Chinese Academy of Sciences (CASIA),
China.
 His research interests include machine
learning, decision making in games.

 E-mail: shengqi.shen@ia.ac.cn

Q. Yin et al. / Distributed Deep Reinforcement Learning: A Survey and a Multi-player Multi-agent Learning Toolbox 19

http://dx.doi.org/10.1162/artl.1995.2.4.355
http://dx.doi.org/10.1162/artl.1995.2.4.355
http://dx.doi.org/10.1126/science.aao1733
http://dx.doi.org/10.1126/science.aao1733
http://dx.doi.org/10.1126/science.aam6960
https://arxiv.org/abs/2107.02850
https://arxiv.org/abs/2107.02850
http://dx.doi.org/10.16383/j.aas.c210547
https://arxiv.org/abs/2006.00979
https://arxiv.org/abs/2006.00979
https://arxiv.org/abs/1910.03552
https://arxiv.org/abs/1910.03552
https://arxiv.org/abs/2106.07551
https://arxiv.org/abs/2106.07551
https://arxiv.org/abs/2012.03204
https://arxiv.org/abs/2012.03204
http://dx.doi.org/10.1007/978-3-642-11456-4_3
http://dx.doi.org/10.1007/978-3-642-11456-4_3
http://dx.doi.org/10.1007/978-3-642-11456-4_3

Jun Yang received the Ph.D. degree in
control science and engineering from
Tsinghua University, China in 2011. He is
currently an associate professor with the
Department of Automation, Tsinghua
University, China.
 His research interests include multi-
agent reinforcement learning and game
theory.

 E-mail: yangjun603@tsinghua.edu.cn

Meijing Zhao received the Ph.D. degree
in pattern recognition and intelligence sys-
tems from Integrated Information System
Research Center, Institute of Automation,
Chinese Academy of Sciences (CASIA),
China in 2016. She is currently an asso-
ciate professor at CASIA, China.
 Her research interests include semantic
information processing, knowledge repres-

entation and reasoning.
 E-mail: meijing.zhao@ia.ac.cn

Wancheng Ni received the Ph.D. degree
in contemporary integrated manufactur-
ing systems from Department of Automa-
tion, Tsinghua University, China in 2007.
She is currently a professor at Institute of
Automation, Chinese Academy of Sci-
ences (CASIA), China.
 Her research interests include informa-
tion processing and knowledge discovery,

group intelligent decision-making platform and evaluation.
 E-mail: wancheng.ni@ia.ac.cn

Kaiqi Huang received the Ph.D. degree
in communication and information pro-
cessing from Southeast University, China
in 2004. He is currently a professor at Insti-
tute of Automation, Chinese Academy of
Sciences (CASIA), China.
 His research interests include visual sur-
veillance, image understanding, pattern re-
cognition, human-computer gaming and

biological based vision.
 E-mail: kqhuang@nlpr.ia.ac.cn

Bin Liang received the Ph.D. degree in
precision instruments and mechanology
from Tsinghua University, China in 1994.
He is currently a professor with the De-
partment of Automation, Tsinghua Uni-
versity, China.
 His research interests include artificial
intelligence, anomaly detection, space ro-
botics, and fault-tolerant control.

 E-mail: bliang@tsinghua.edu.cn

Liang Wang received the Ph.D. degree in
pattern recognition and intelligence sys-
tems from the National Laboratory of Pat-
tern Recognition (NLPR), Institute of
Automation, Chinese Academy of Sci-
ences (CASIA), China in 2004. He is cur-
rently a professor at CASIA, China.
 His research interests include computer
vision, pattern recognition, machine learn-

ing, and data mining.
 E-mail: wangliang@nlpr.ia.ac.cn

 20 Machine Intelligence Research

