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Abstract: With the application of mobile communication technology in the automotive industry, intelligent connected vehicles
equipped with communication and sensing devices have been rapidly promoted. The road and traffic information perceived by intelli-
gent vehicles has important potential application value, especially for improving the energy-saving and safe-driving of vehicles as well as
the efficient operation of traffic. Therefore, a type of vehicle control technology called predictive cruise control (PCC) has become a hot
research topic. It fully taps the perceived or predicted environmental information to carry out predictive cruise control of vehicles and
improves the comprehensive performance of the vehicle-road system. Most existing reviews focus on the economical driving of vehicles,
but few scholars have conducted a comprehensive survey of PCC from theory to the status quo. In this paper, the methods and advances
of PCC technologies are reviewed comprehensively by investigating the global literature, and typical applications under a cloud control
system (CCS) are proposed. Firstly, the methodology of PCC is generally introduced. Then according to typical scenarios, the PCC-re-
lated research is deeply surveyed, including freeway and urban traffic scenarios involving traditional vehicles, new energy vehicles, intel-
ligent vehicles, and multi-vehicle platoons. Finally, the general architecture and three typical applications of the cloud control system
(CCS) on PCC are briefly introduced, and the prospect and future trends of PCC are proposed.
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1 Introduction

The energy crisis, environmental pollution, and traffic
safety are the main concerns in the automotive industry.
Research on advanced vehicle control technologies is con-
sidered a potential measure to solve these problems. Pre-
dictive cruise control (PCC) is a type of intelligent con-
trol technology. In comparison with traditional constant
speed cruise control (CC) and adaptive cruise control
(ACC), the PCC technologies can help vehicles become
safer and more economical, as well as improve traffic effi-
ciency. The reason lies in their capacity to adjust eco-
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nomic speed adaptively and the fact that an additional
degree of freedom is available to pass-through urban in-
tersections more efficiently. The academic community
generally refers to PCC as a type of lateral and longitud-
inal predictive planning and control, that is, through the
control of vehicle driving states such as speed or lane-
changing, to complete driving tasks in a more efficient
and safe mannerll 2. Also, it is commonly acknowledged
that improvements in fuel economy and traffic efficiency
are closely dependent on the design of PCC strategies.
Related research notes that the performance of PCC is
closely related to many factors, e.g., static road informa-
tion, dynamic traffic information, powertrain configura-
tions, and prediction rangeB3-°l. However, the complexity
and uncertainty of the traffic environment often com-
promise the performance of the established PCC. There-
fore, how to study and optimize PCC technologies consti-
tutes a significant research subject.
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In recent years, with the rapid development of
autonomous driving and vehicle-connected technologies,
automobiles have seen great changes in intelligence and
connection. Intelligent connected vehicles (ICV) technolo-
gies have emerged to catalyze energy-saving and safety
for traditional and new energy vehiclesl®. ICV technolo-
gies provide novel ideas for the optimal design of PCC by
integrating wide-area road traffic information and im-
proving control architecture with the use of a cloud plat-
form. With advanced sensors and communication equip-
ment, vehicles can communicate with traffic participants
via vehicle to everything (V2X) technologies and ex-
change and share massive data of current traffic states
and vehicle operating datal”l, which is greatly essential for
researching PCC technologies.

PCC systems require numerous perceived information
and real-time computational support. The vehicle-side
platform suffers from weak computing power and incom-
plete sensed effect, which are notable reasons for hinder-
ing the industrial application of PCC. Recently, the emer-
gence of an intelligent connected vehicle cloud control
system (ICVCCS) provides a new solution to the above
problems. As shown in Fig.1, ICVCCS integrates vehicle-
road-cloud information and comprehensively utilizes real-
time and historical data of the traffic network. It can not
only realize cross-domain/long-time perception, but also
carry out the fast real-time calculation, which greatly re-
leases the vehicle-side calculation pressureltl. Therefore, it
is foreseeable that ICVCCS will be an important support
for the further improvement of PCC and open a novel re-
search field for it.

Most of the existing reviews focus on economical driv-
ingl® 191 energy-saving optimizationl'l: 121, energy manage-
ment['3] of vehicles, etc., but few scholars review the field
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of PCC. In addition, with the development of ICVCCS,
the advantages of ICVCCS-based PCC have been signific-
antly highlighted, but there is no exploratory research in
this field.

Based on the above analysis, this paper reviews PCC
in different scenarios, including urban roads and freeways,
and provides a comprehensive survey of PCC-related
methods and strategies. Moreover, in order to demon-
strate the advantages of ICVCCS-based PCC, three typ-
ical application kinds of research are briefly introduced in
this paper. Specifically, first of all, from the theoretical
level, a general overview of the PCC-relevant methodolo-
gies is given. Then, based on different scenarios, the re-
search status of PCC is investigated and summarized ex-
tensively. Finally, the future trends and key issues in
PCC, especially ICVCCS-based PCC, are proposed.

The remainder of this paper is organized as follows. In
Section 2, the related methodology of PCC is summar-
ized, including the construction of optimal problems
based on predictive information and the commonly used
solving methods. The PCC methods in freeways and urb-
an traffic scenarios are elaborated in Sections 3 and 4, re-
spectively. Section 5 introduces typical applications of
ICVCCS on PCC. The outlook and future trends on PCC
are elucidated in Section 6. Finally, the key conclusions
are given in Section 7.

2 Methodology of predictive cruise con-
trol

In this section, based on a review of existing ap-
proaches, a general mathematical model for the construc-
tion of optimization problems based on predictive inform-
ation is presented. Then, a summary of the commonly
used methods for solving PCC problems is introduced.

-
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2.1 Construction of optimal problems
based on predictive information

Excellent drivers are skilled at making optimal driv-
ing strategies based on complex traffic environments.
Based on the background of this problem, some scho-
lars(l: 14-16] have proposed the concept of PCC based on
optimization and control theory by predicting dynamic
and static traffic information in order to maximize the
potential of optimal driving.

Predictive cruise control has been studied for many
years. In the typical literature published in the past, Lat-
temann et al.l'4 used a 3-dimensional road map to con-
struct the optimal control problem of energy consump-
tion to adjust the cruise speed, and firstly defined it as
“predictive cruise control (PCC)”. In the next studies,
the scholars expanded on the concept. Asadi and Vahidilll
performed PCC by using signal phase information to
achieve optimal driving at intersections. Chu et al.[15 16]
further broadened the concept of PCC by incorporating
traffic flow and surrounding vehicle states into the in-
formation available for PCC while considering multiple
objectives, such as economy, safety, and comfort, in the
construction of the optimization model. Based on previ-
ous research on PCC, this paper summarizes the informa-
tion used in PCC as “predictive information”, which in-
cludes both static road information and dynamic traffic
information. Whatever information is used for PCC, the
core of the problem is how to use this information to con-
struct and solve the optimal control problem.

The predictive information available to PCC-equipped
vehicles is shown in Fig. 2.
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Fig. 2 shows that PCC can construct the optimal driv-
ing strategy using the above dynamic and static informa-
tion to achieve optimal driving under different objectives.
In the research of optimal driving strategy based on pre-
dictive information, the following three factors must be
taken into account.

1) Objective function: A numerical measurement used
to assess a vehicle's driving performance;

2) Vehicle model: It mainly includes vehicle dynamics
and energy consumption models;

3) Constraint set: It contains static road constraints,
dynamic traffic constraints, and vehicle performance con-
straints.

Through the summary of relevant methods, the gener-
al expression of the mathematical model is shown in
(1)l 14-19],

minJZ/(wlXC1+W2><C2+"'+wn><Cn)dt

s.t.
% = fvehicle(Z, u, t)
{Cyehicle | V1, V2, ,Va} ()
{Cstatic | S1, 52, ,Sn}
{Caynamic | D1, D2, -+, Dn}
¢ (zo,z7) =0

where ((.y is the optimization objective, w(.) is the weight
of each optimization objective; fyenicle () is the vehicle
dynamics model; « is the state variable, u is the control
variable, ¢ is the driving time; Cenicle is the vehicle
performance constraints, including engine power, torque,
speed, transmission ratio, brake pressure, vehicle acceler-

Dynamic traffic information

'
1
1
'
1
1
1
\

« g

[CD\ m
byl af-> = yd >

g B - gl >
4 ==
- | o 0" >

Fig. 2 Predictive information available to PCC-equipped vehicles

@ Springer



B. Gao et al. / A Review and Outlook on Predictive Cruise Control of Vehicles and Typical Applications Under -+- 617

ation, etc., which are represented by {Vi, Vo, -+, Vo},
respectively; Cstatic 18 the static road constraints,
including slope, curvature, speed limits, etc., which are
expressed by {S1, S2, ---, Sn}, respectively; Caynamic 1S
the predicted dynamic traffic constraints, including traffic
flow, signal phase, queuing number, and environmental
vehicle speed and distance, etc., which are expressed by
{Dy, Dy, --

initial and terminal boundary conditions.

-, Dy}, respectively; ¢ (-) represent the

The key to constructing a PCC problem is to estab-
lish the analytic function of the optimization objective,
state equation, and constraint set. The optimization ob-
jectives are safety, energy-saving, efficiency, comfort,
etc.20: 21] According to the number of optimization object-
ives, it can be divided into single-objective problems and
multi-objective problems. Generally, in vehicle control,
multiple optimization objectives are often transformed in-
to single-objective problems by weighting?2 23, In order
to adapt the weight factor according to the working con-
ditions, some scholars propose a cost function with vari-
able weight, which can improve the effect of optimal con-
trol. In addition, when determining the weight, some
scholars have also proposed some common methods, such
as fuzzy control?4, deep learningl?], genetic algorithm[26],
etc.

The state equation needs to obey the dynamic charac-
teristics of the vehicle. In order to pursue the simplicity
of the equation, the vibration characteristics and mechan-
ical deformation of the transmission system are generally
ignored?”. The constraint set, as shown in Fig.2, mainly
comes from the constraints of roads, traffic, and vehicles
themselves. The road constraints are limited speed, slope,
curvature, etc.!% 28] Traffic constraints mainly refer to
dynamic traffic information, including signal lights[29],
surrounding vehicle statusB% 31, traffic flowB2, queue
length33l, etc. The vehicle’s constraints include the char-
acteristics of the engine, transmission, braking and steer-
ing characteristics, etc.3% 35; the complex diversity of
these constraints makes it extremely difficult to solve
these problems.

2.2 Overview of solving methods

PCC problems based on predictive information are
generally converted into optimization problems in math-
ematics, and then solved by mathematical theory. The
solution method can be divided into analytic solution and
numerical solution according to the form of solution. The
calculus of variationsi36: 37 and Pontryagin's minimum
principle (PMP)B8 39 are commonly used to solve the
analytical solution. The constraints of the PCC problem
often include integer, nonlinear, and time-varying con-
straints, and the objective function and state equation are
mostly nonlinear functions, which is difficult to derive the
analytical solution by using the formula. At present, nu-
merical methods are used for solving PCC problems gen-

erally. Common numerical methods include dynamic pro-
gramming (DP)[40-42] pseudo-spectral method (PSM)[43. 4],
model predictive control (MPC)#% 46 reinforcement
learning (RL)[“7 48] heuristic algorithm (HA)M49 50 etc.

DP is a powerful tool for tackling optimization prob-
lems. Its core idea is to divide the optimization choice
problem into discrete and interrelated multi-step decision
problems. The fundamental problem is the “curse of di-
mensionality”. Storage and processing both expand rap-
idly for high-dimensional situations. To address this issue,
a great number of researchers have improved DP, result-
ing in the development of approaches such as adaptive
dynamic programmingl!l and approximate dynamic pro-
gramming[52].

PSM is a recently proposed effective solution method
for optimal control problems that can efficiently trans-
late these problems into nonlinear programming prob-
lems. In addition, PSM offers the advantage of having a
high convergence accuracyl®3l. This is extremely benefi-
cial for the real-time online solution of predictive optimal
control strategies.

MPC is similar to adaptive dynamic programming.
General steps include 1) prediction model, 2) receding ho-
rizon optimization, and 3) feedback correction. Based on
the prediction model, the state equation and the initial
state value are corrected with the use of feedback inform-
ation. The optimization period is determined in the reced-
ing horizon optimization, and the performance index is
used to design an optimal control problem. Finally, the
open-loop optimal control is solved, and the first control
value in the solution sequence is implemented in the sys-
tem.

RL-based predictive planning and control do not rely
on precise mathematical models of the systemP4. By con-
tinuously obtaining the rewards and updated status of
the decision from the external environment, the predic-
tion performance is improved, and the dimensional dis-
aster is averted to some extent. RL relies on the learning
of a large amount of sample information to improve the
accuracy of prediction, but due to the changeable traffic
scene, the amount of predicted information is huge and
irregular, which brings certain challenges to RL. As a res-
ult, it has certain limitations for the application of long-
term predictive planning and control.

Another type of solution is one that can be solved by
a heuristic algorithm by deforming the mathematical
model of the PCC problems properly. Heuristic al-
gorithms are a type of intelligent algorithm that simu-
lates human or natural behavior in order to seek the solu-
tion spacel®]. The heuristic algorithm has high solution
efficiency and strong applicability, but its solution can-
not guarantee optimality and cannot even explain the de-
gree of approximation to the optimal solution.

3 Predictive cruise control in freeway
scenarios

The freeway is a typical scenario for PCC applica-
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tions. In this scenario, the road's geometric features are
relatively simple, and the static road information of the
whole road network is relatively stable. In addition, the
vehicle driving state changes infrequently, and the traffic
flow varies evenly. Thus, the dynamic traffic information
is highly predictable. These features can make PCC
highly effective.

According to the different control objects (single and
multi-vehicle) and predicted information, this section of-
fers a survey and review of the current state of PCC tech-
nologies.

3.1 Predictive cruise using static road in-
formation

The information on slope and speed limit in static
road information has been widely used in PCC. However,
since PCC algorithms require high real-time performance
and robustness, most literature has not verified the al-
gorithm in real vehicles. Some algorithms for real vehicle
testing only consider single information (such as slope)
and do not thoroughly study the comprehensive impact of
multiple road information (such as slope, curvature, speed
limit, etc.) on the optimal control of the vehicle during
actual driving. Fully exploiting the static road informa-
tion is not only of great significance for reducing the fuel
consumption of fuel vehicles, but also has great potential
for designing the energy management strategy of hybrid
vehicles, which has become a hot research direction.

It is the most common practice to construct the slope-
based PCC algorithm by using the optimal control meth-
od. Lattemann et al.l4l studied the influence of roads on
vehicle fuel consumption and took the lead in construct-
ing the optimal control model of vehicle fuel-saving driv-
ing based on road slope information. The simulation res-
ults show that the economy of vehicle driving can be im-
proved by optimizing the vehicle speed. Hellstrom et
al.[36, 57 constructed a look ahead control algorithm based
on DP with fuel consumption and travel time as penalty
terms. The effectiveness of the algorithm is verified by
the heavy truck in Scania, with an average fuel-saving
rate of 5%. Furthermore, the team conducted a compre-
hensive theoretical analysis of the computational com-
plexity and numerical error of DP to improve the compu-
tational efficiency, which provided a new idea for the op-
timization calculation of the algorithm.

For the PCC application of static road information,
MPC has also been widely studied. Kamal et al.’8] used
the slope information, dynamics, and fuel consumption
model to construct the nonlinear model predictive con-
trol problem and solved the optimal control sequence.
The simulation results show that this method signific-
antly improves the fuel economy of the vehicle. With the
use of the high-precision map, Chu et al.l!sl constructed
slope-based PCC problem under the MPC principle.
Compared with traditional ACC, the average fuel-saving
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rate was 8.73 %. In order to reduce the computational
complexity of MPC, Guo et al.b% proposed a fast MPC
solution method. This method converts the nonlinear op-
timization problem into a two-point boundary value
problem based on the maximum principle and then uses
the characteristics of the controlled system to obtain the
analytical expression of the optimal control sequence un-
der the initial value of the co-state variable, which re-
duces the dimension and computational complexity of the
optimal control problem. MPC and optimization meth-
ods are often combined to meet the optimality and real-
time performance of algorithm design. Hellstrom/6% used
the rolling optimization principle of MPC and the optim-
al solution method of DP to design a look-ahead control
algorithm to realize the predictive fuel-saving control of
vehicles. This method is now widely accepted by scholars.

For hybrid vehicles, there are also a large number of
studies on predictive energy management using the ob-
tained static road information. Alzorgan(®l used the road
slope information to predict the future energy and power
demand, and then optimized the power distribution
between the internal combustion engine and the electric
drive system so that the hybrid power system could oper-
ate more effectively and finally achieve the effect of fuel
saving. Liu et al.[62] provided an integrated control meth-
od of the powertrain with the consideration of the driv-
ing mode into the entire loop with MPC. It effectively
achieves the energy transfer regulation strategy under dif-
ferent intentions of the driver, improving transmission ef-
ficiency by 8.92% and saving fuel consumption by 4.9%.
Based on MPC architecture, the predictive energy-saving
driving of hybrid electric vehicles is realized in [63]. It
uses the future slope information to predict the speed tra-
jectory and then uses DP to solve the optimal torque dis-
tribution to optimize energy utilization.

With the application of cloud service platforms, some
scholars have studied the PCC system based on the cloud
in order to make full use of the rapidity of cloud comput-
ing and map service. Ozatay et al.[64 developed predict-
ive speed planning algorithms based on cloud servers.
Through the destination set by the driver, the cloud plat-
form automatically obtains the road information, plans
the recommended speed of the vehicle, and sends it to on-
board controller so that the driver completes the speed
following control. The test results verify the effectiveness
of the proposed system and the fuel saving effect is obvi-
ous. Hou and Songl65 developed a predictive hierarchical
energy management strategy based on vehicle-cloud com-
munication, shown in Fig.3. Cloud uses traffic state in-
formation to predict future driving power demand and
solves the optimal energy management strategy based on
DP. At the vehicle level, an MPC algorithm is developed
to deal with the uncertainty of control and reduce energy
loss. The simulation results show that the proposed meth-
od is significantly better than the rule-based method, and
the average driving energy consumption is improved by
more than 40%. With the development of emerging tech-



B. Gao et al. / A Review and Outlook on Predictive Cruise Control of Vehicles and Typical Applications Under -+- 619

Predictive power demand sequence: Cloud level

Pdemand,DP (tv g 1l 000, Z+Ncyc)

Dynamic
programming

Measurements: & Reference values:
P jonanas SOC E temana» SOCpp
Power demand: i ' Vehicle level
Pomana ()
—_— MPC

1 1 UC command: /¢ or Py

[ Ba [ peme Jo—[ uc |

O O

Fig. 3 Structure diagram of predictive hierarchical energy
management strategy

nologies such as 5G communication and cloud computing,
a suitable combination of the predictive cruise algorithm
and the cloud system is considered an effective solution to
the current problems such as map and cost.

3.2 Predictive car following control

ACC is an extension of CC. The first generation of
ACC maintained the relative distance to the vehicle in
front by automatically adjusting acceleration and deceler-
ation, which improved the safety of the cruise control sys-
tem66],

However, with the continuous updating of technology,
scholars began to think about how to improve the eco-
nomy and comfort of the ACC while ensuring safety. To
some extent, when the economic goal is satisfied, most of
the comfort goals are also satisfied, but there is an obvi-
ous conflict for safety. Multi-objective optimization refers
to the difficulty of finding the best way to concurrently
satisfy all of the objectives while dealing optimally with
conflicting objectives(67].

Li et al.l’8] added acceleration to the quadratic cost
function and used a quadratic programming algorithm to
compute the optimal control law numerically. Moreover,
Li et al.[9 explored the fuel-saving mechanism of pulse-
and-glide operation by considering both the internal com-
bustion engine and step-gear transmission. The simula-
tion results show that the algorithm achieves fuel savings
of up to 8.9% compared to a linear quadratic controller
when coasting in neutral gear. A dual-mode control
strategy for unstable and stable conditions is proposed in
[70]. It significantly improves the robustness and comfort
of vehicle speed control and increases transmission effi-

ciency by 7.98% to 9.98%. Luo et al.l"ll effectively re-
duced fuel consumption and improved the following com-
fort by adding the variation of acceleration to the quad-
ratic cost function and limiting it with constraint. Zhang
and Ioannoul™ compared the difference between driver-
driven and ACC for trucks and the effect of different spa-
cing strategies on the following effectiveness. The find-
ings demonstrate that both driving techniques attract in-
sertions from surrounding lanes because of the potential
for big gaps between the truck and the passenger car in
front caused by the truck’s low power. These insertions
can cause additional disruptions that negatively affect
fuel economy and pollution.

Although these methods have achieved remarkable
results, they are all planned by the relative motion rela-
tionship between the front and rear vehicles, and the fuel-
saving potential has not yet been completed. How to use
future information or other information to plan the
vehicle speed and thus further improve the energy-saving
effect has become a hot topic of current adaptive cruise
control research, called the predictive adaptive cruise
problem.

Stanger and Rel™l constructed a fuel consumption
model as a polynomial of vehicle speed and acceleration
as a cost function, set upper and lower bounds on the fol-
lowing distance to ensure safety, and simulated the pro-
posed method to decrease fuel consumption by 16% over
the comparison PI control method. Schmied et al.[™¥ de-
veloped a second-order polynomial nonlinear autoregress-
ive model to predict the speed of the vehicle in front,
which further reduced fuel consumption. Although the
fuel-saving effect of this method is obvious, the point that
can not be avoided is that when the cruise function is
turned on, the current following distance may not be
within the upper and lower bound of its limited distance,
which makes the method unable to solve for a feasible
solution. Moser et al.[’®l developed a conditional linear
Gaussian model and trained it with actual measurement
data to estimate the probability distribution of the fu-
ture speed of the vehicle in front and introduced the pro-
cess of constructing the fuel consumption model.
Khayyam et al.l"fl used road data to calculate vehicle en-
ergy consumption under various dynamic loads, such as
wind resistance, slope, kinetic energy, and rolling friction,
and included a look-ahead strategy to predict future road
slopes. Simulation results show that the look-ahead ap-
proach effectively controls the vehicle speed and reduces
the average fuel consumption by 3%. Weissgmann et
al.l’7l used a given route and calculated the optimal speed
trajectory in advance using the DP algorithm by consid-
ering information such as speed limit, road gradient, and
travel time during the optimization process. The MPC
framework is used to control the traction of the main
vehicle so that the vehicle speed follows the energy-op-
timal speed trajectory as much as possible, and the simu-
lation shows that the method achieves high energy sav-
ings. However, the method is based on an offline solution
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and lacks the validation of practical applications. Turri et
al.[’8 used road slope information and the speed traject-
ory of the preceding vehicle to calculate the optimal en-
gine torque and gearing requirements. The optimal con-
trol problem is realized by DP, and a simulation compar-
ison of multiple longitudinal control strategies is per-
formed, and the results show that the method can achieve
fuel savings of 7%. Kamal et al.["% predicted the front
vehicle states for urban working conditions. The pro-
posed approach was evaluated by observing intersection
utilization, flow characteristics, and individual vehicle
fuel efficiency in a typical urban traffic signal intersec-
tion. In addition, Kamal et al.B% measured current road
and traffic-related information to predict the future state
of the vehicle ahead and maximize fuel economy by ad-
justing the safe headway or cruising at the optimal speed.

Today's ACC strategies are no longer limited to con-
sidering information about the vehicle in front, but in-
creasingly road traffic information, leading to further de-
velopment of the potential for safe, economical, and effi-
cient vehicle driving.

3.3 Predictive lane-changing control

The vehicle cruising and following behaviors dis-
cussed in the previous sections mainly focus on the con-
trol of longitudinal vehicle motion. However, in some
traffic scenarios, controlling the longitudinal speed alone
does not satisfy the vehicle travel optimization objectives.
For example, if there is a continuous low-speed vehicle in
front of the ego vehicle, the ego vehicle can only elimin-
ate the influence of the vehicle in front of it on its driv-
ing and achieve the desired driving speed by changing
lanes.

In recent years, various roadside units have become
increasingly popular and perfect with the advancement of
communication technology. The application of vehicle-
vehicle communication, vehicle-road communication, and
other communication technologies allows real-time in-
formation interaction between vehicles and vehicles,
vehicles and roadside units, and vehicles and cloud plat-
formsBl, which provides technical support for traffic state
prediction. Using traffic state prediction information,
vehicle lane-changing decisions and the lane-changing ex-
ecution process can be optimized to effectively improve
the safety and comfort of the vehicle during a lane
change.

Depending on the usage of the obtained prediction in-
formation, predictive lane-changing control can be di-
vided into two strategies: optimizing lane-changing de-
cisions using longer time domain prediction information
(e.g., more than 15s) and optimizing lane-changing exe-
cution using shorter time domain prediction information
(e.g., within 55s).

Predictive control of lane-changing decisions generally
does not focus solely on the action of lane-changing, but
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rather views lane-changing as a vehicle-driving maneuver
option. It usually constructs a driving optimization prob-
lem, then solves this optimization problem to obtain the
driving speed and lane-changing decision control se-
quence that optimizes the vehicle’s driving state in the fu-
ture.

One of the characteristics of the MPC method is that
it allows optimal control solutions considering both the
predicted information of the vehicle and the traffic
vehicles and the control system’s constraints82l. This ap-
proach is compatible with the goals of predictive lane-
changing decisions and has been widely used in related
research. Kamal et al.33] predicted the state of preceding
traffic vehicles and established a travel cost function for
the driving conditions of the controlled vehicle based on
an MPC framework. They then designed a two-layer op-
timization scheme to calculate the acceleration control se-
quence and the lane-changing moment decision sequence,
which optimizes the vehicle’s driving state. Finally, simu-
lation experiments have verified that the method enables
vehicles to anticipate lane-changing maneuvers when fu-
ture changes in traffic conditions are predicted. There-
fore, the average vehicle driving speed is higher and
smoother, improving driving efficiency and economy.
However, this method treats lane-changing execution as
an instantaneous process, and it also has limitations like
the road’s slope not being taken into account and the in-
ability to guarantee computational real-time. In addition,
the game theory approach has also been applied to the re-
search on optimal control of predictive lane-changing de-
cisions. Wang et al.l2l proposed an integrated control
method for lane-changing and car-following based on re-
ceding horizon control and dynamic game theory. They
designed a game problem that considers the behavioral
decisions of the ego vehicles under the influence of the ex-
pected behavior of surrounding vehicles and determines
the desired future lane sequence and acceleration se-
quence that minimizes a cost function reflecting future
bad driving conditions. The method can be applied to
non-cooperative scenarios (the controlled vehicles only
optimize their costs) and cooperative scenarios (the con-
trolled vehicles coordinate their decisions to optimize the
overall costs of a microscopic traffic flow). Six scenarios
were designed for simulation experiments. The results
show that the driving cost of the vehicles controlled by
this method is effectively reduced. However, when design-
ing the cost function, the cost of the lane-changing beha-
vior was set to a constant value, which ignored the differ-
ences between the lane-change scenarios and might affect
the optimality of the lane-changing decision.

Optimizing lane-changing decisions based on longer
time-domain prediction addresses the problems at the
strategic level in the vehicle driving process. However,
during the lane-changing process, the state of the sur-
rounding vehicles will directly affect the safety of the
lane-changing. In the high-speed lane-changing scenario,
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the states of the traffic vehicles may change significantly
in a short period84, and network delays can also seri-
ously affect the control stability and lane-changing tra-
jectory tracking accuracy of vehicles85. These situations
will directly threaten the safety of the vehicle lane-chan-
ging, which is a problem that cannot be taken into ac-
count in longer time-domain prediction. Therefore, many
existing studies have focused on the shorter period of the
lane-changing process. Safe and collision-free lane-chan-
ging can be achieved by predicting the state of surround-
ing traffic vehicles, optimizing and adjusting the lane-
changing trajectory planning, and tracking control.

Zhao et al.[86] transformed the collision avoidance path
replanning problem into a nonlinear quadratic program-
ming problem with velocity, angle, and angular velocity
constraints based on the MPC algorithm. The optimiza-
tion goal was to find the optimal path by minimizing the
deviation of the actual vehicle trajectory from the refer-
ence trajectory and avoiding obstacles. The experiments
demonstrate that the planned path could avoid obstacles.
Nevertheless, the method in this paper only considers
static obstacles and does not apply to dynamic obstacle
scenarios. Luan et al.8%] proposed an uncertain model ad-
aptive MPC algorithm to predict the control variables at
the next sampling time for reducing the effect of target
angle discontinuity considering the effect of random time
delay. And hardware-in-loop simulation proved the stabil-
ity and tracking accuracy of the algorithm.

Many of today's traffic vehicle state predictions use
deterministic prediction methods, which assume that the
predicted vehicle will move in a constant state over a lim-
ited time horizon. It would make the prediction results
biased and unable to cope with sudden changes in the
traffic environment. Therefore, it is necessary to consider
the prediction of future state uncertainty. Suh et al.[87
proposed a stochastic MPC method (SMPC) for lane-
changing motion planning and motion control of self-driv-
ing vehicles in complex driving environments. The prob-
abilistic motion characteristics of other vehicles were ana-
lyzed by collecting driving data on real roads. In the
vehicle state predictor, the possible positions of vehicles
and their error covariance in a finite time horizon are pre-
dicted by an extended Kalman filter (EKF). Based on
two indicators of safe time headway and safe distance,
the current traffic information and predicted traffic in-
formation was used to evaluate the risk of lane-changing
collision. And then, a safe driving area is established and
the desired driving speed is matched. The simulation ex-
periments reflected that the algorithm effectively im-
proved the success rate of lane-changing, and that the al-
gorithm robustness and lane-changing safety indexes were
better than those of deterministic prediction methods.
Experiments in real vehicles have verified that the meth-
od could control the vehicle to adapt to complex traffic
flow conditions under automatic driving conditions in
scenarios such as expressway ramp merging. Zhang et

al.B4 proposed a trajectory planning algorithm for high-
speed vehicles based on the trajectory prediction of the
preceding vehicle motion. The trajectory prediction of the
preceding vehicle based on the vehicle kinematic model
and combined with the driving intention was performed
by the unscented Kalman filter (UKF) method, and
Gaussian noise was added to reflect the uncertainty of
the prediction model. The relationship between the colli-
sion probability and the longitudinal position was calcu-
lated according to the predicted information. The Bessel
curve was used to adjust the trajectory shape of the lane-
changing, and the vehicle collision was effectively
avoided. However, this method uses a simple kinematic
model of the vehicle, which may not reflect the real-world
situation in predicting the vehicle’s motion state.

In summary, both of these predictive lane change con-
trol strategies can improve the performance of the vehicle
driving process in terms of efficiency, safety, and control
stability. The research on the optimization of the lane
change execution process based on predictive information
is relatively mature. However, research on the predictive
control problem of lane change decisions is still relatively
few and the predictive models used are fairly simple. In
addition, almost all of them are verified by simulation ex-
periments only. In future research, based on the powerful
computing capability of the cloud control system, a more
accurate predictive model can be considered, and there is
an opportunity to validate this algorithm in real vehicles.

3.4 Predictive cruise control of platoon

Predictive cruise control of the platoon (platoon-PCC)
can be used to further strengthen the benefit of cloud-
controlled PCC on the freeway. In the study of platoon-
PCC, researchers have idealized the problem of platoon
stability control, focusing instead on resolving the issues
of platoon effectiveness and economy.

Many countries and regions have now launched re-
search into heavy commercial vehicle platoon (HCVP)
technology due to its practical needs and the enormous
potential for energy efficiency. At present, most studies
focus on platoon speed control, especially for high-speed
scenarios in which platoon speed planning and prediction
can be achieved through the use of static and dynamic
traffic information. Furthermore, research indicates that
decreasing the distances between vehicles in a platoon re-
duces the overall air resistance of the platoon, which can
also reduce overall energy consumption. It has been
shown that when commercial vehicles are kept at a dis-
tance of 10 meters, 10%—-15% of fuel consumption can be
saved88l, but too close a distance between vehicles travel-
ing at high speed can pose significant safety risks due to
the time lag associated with sensing, communication, con-
trol, and actuator response. In light of this, a number of
researchers have focused their attention on the problem
of optimizing speed and distance control in platoon driv-
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ing in commercial vehicles based on road traffic data.

Currently, freeway scenarios mainly consider road
slope, curvature, and road traffic flow conditions to
design the platoon-PCC. Numerous studies have utilized
model prediction methods to deal with complex nonlin-
ear multi-objective platoon control systems due to their
technical characteristics and advantages. Zhai et al.[23]
proposed an economic collaborative look-ahead control
strategy (Eco-CLC) based on a distributed model predict-
ive controller (DMPC), which incorporates information
on the slope of the road ahead to plan the optimal speed
for the recommended platoon driving. Kamal et al.[%8] pro-
posed a model-based predictive economy driving system
for a platoon whose fuel consumption is highly affected
by the slope of the road. The system utilizes information
regarding the topography of the road, a vehicle dynamics
model, and energy consumption characteristics to calcu-
late the economy speed profile. The results indicate that
this control system can significantly reduce vehicle fuel
consumption. Zhai et al.89 proposed the Ecological co-
operative adaptive cruise control (Eco-CACC) system to
reduce the energy consumption of a heterogeneous vehicle
platoon. The model-based predictive control solved the
pilot vehicle control input optimization problem (CIO-
LV), which considers platooning control objective con-
straints and driving comfort. An improved particle swarm
optimization method is then used to quickly solve the op-
timal speed problem. The proposed Eco-CACC saves
6.35% of fuel in a heterogeneous vehicle platoon.

In addition to using the MPC strategy for platoon-
PCC, many academics have concentrated on the DP
method. It is a classic method for platoon-PCC that
achieves a global optimal solution. Turri et al.l% com-
bined road slope and real-time vehicle states to plan a
speed profile for optimal platoon energy consumption,
which can save 12% of energy consumption compared to
a traditional platoon. However, there is a dimensional dis-
aster in the DP of platoon energy-efficient driving, and
there are limitations in large-scale real-time applications.
To address this issue, Li et al.®l] proposed to study en-
ergy-efficient driving control based on optimal control
theory for simple platooning control. Compared to the
traditional DP, the computation is faster, the DP dimen-
sional disaster problem is avoided, and the energy-saving
potential of the truck platoon is improved.

Recent research has also focused on the construction
of hierarchical control architectures for platoon-PCC. On
the one hand, the upper layer performs decisions and
planning for the platoon, and its main task is the plan-
ning of the platoon's economic speed. On the other hand,
under the premise of ensuring the safety and stability of
the platoon, the lower layer controller completes the
policy following control based on the upper layer speed
planning. Guo and Wang/®8 investigated the speed plan-
ning and tracking control problem for HCVP on the free-
way. A hierarchical control concept is proposed, in which
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a path-optimal speed planning procedure is performed at
the upper layer and a speed tracking process is carried
out at the lower layer. Yang et al.%2l developed a novel
hierarchical Eco-CACC strategy in which the upper lay-
er makes use of road slope, curvature, and the current
platoon dynamics state (lateral and longitudinal) to plan
the driving speed, and a conventional platoon ACC fol-
low controller is performed in the lower layer. The experi-
mental result shows that this hierarchical strategy can
save more than 38.1% of energy consumption compared
to the conventional cruise control method. Maged et al.[%]
used optimal MPC as the upper-level speed planning to
improve the platoon vehicle spacing and reduce the en-
ergy consumption of the platoon further. Linear propor-
tional-integral-derivative (PID) is used as the lower-level
speed-following controller to control the power output of
each vehicle to achieve the optimal speed required. Un-
der the hierarchical control architectures for platoon-
PCC, two optimization models were proposed for connec-
ted and automated vehicles (CAVs) trajectory
planning®. The first model predicts the traffic state of
the freeway at future moments and optimizes the CAV
desired speed profile. The model embeds CAVs and hu-
man-driven vehicles (HVSs) in the traffic flow model and
optimizes them, taking full account of the effect of CAVs
on HAYV speed, thus reducing the energy consumption of
the platoon. Ma et al.l%! proposed a hierarchical energy-
efficient control architecture to reduce energy consump-
tion and travel time. The upper layer considers informa-
tion such as platoon length, signal phasing, road speed
limit, and traffic flow to calculate the optimal speed con-
trol sequence. The lower layer introduces time-domain
PCC to ensure safe vehicle spacing and to improve fuel
efficiency while tracking the reference speed.

In summary, platoon-PCC is mainly concerned with
platoon speed planning by combining static road slopes
and the current platoon state. The future cloud platform
can more efficiently solve the issue of platoon predictive
speed planning. The cloud can be used to combine static
and dynamic map information ahead to plan the speed of
the platoon. Therefore, cloud-based platoon-PCC has
enormous potential for energy-saving and improving the
safety and stability boundaries of platooning systems.

4 Predictive cruise control in urban
traffic scenarios

Urban road traffic is another important category of
application scenarios for autonomous and assisted driving.
The access rule and spatial-temporal constraints of inter-
sections in the urban traffic network, unlike the freeway
scenario, limit the continuous movement of vehicles on
arterial roads. With the switching of traffic light signals,
vehicles frequently experience braking and deceleration,
idling-start-stop, and high-torque acceleration processes,
which deteriorate energy consumption, ride comfort, and
traffic efficiency. Thanks to intelligent and connected
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technologies, the driving vehicle can obtain the dynamic
information of urban traffic networks in real-time. Utiliz-
ing this information can optimize the vehicle speed tra-
jectory, thereby lowering energy consumption and emis-
sions.

Intersections and expressway entrance ramps are typ-
ical scenarios for PCC applications. Therefore, the frame-
work of the review in this section is described in Fig. 4 be-
low.

4.1 Predictive driving control at a single
signalized intersection

Many academics are interested in the significant bene-
fits that can be brought to eco-driving and even traffic
safety by using signal light information for vehicle speed
trajectory optimization. Scholars have named such speed
planning differently, such as green light optimal speed ad-
visory (GLOSA)P6-91 economic-driving (Eco-Driving) at
signalized intersections[100-103] eco approach and depar-
ture (EAD)[95: 104,105 gtc. They all essentially rely on sig-
nal phase and timing (SPaT) information to complete a
non-stop through a signalized intersection. Limited by the
communication technology, most of the related studies
are based on dedicated short range communications
(DSRC) for vehicle speed guidance at signalized intersec-
tions. Katsaros et al.l%l designed the GLOSA method
based on DSRC and investigated the effect of communic-
ation distance on green light crossing optimization, verify-
ing that GLOSA can reduce vehicle speed fluctuations
and save travel time while improving traffic efficiency.
Also, by obtaining real-time information about the traffic
light through DSRC, Mandava et al.[1%] proposed an ar-
terial velocity planning algorithm to provide dynamic
speed recommendations to drivers, achieving the maxim-
um probability of encountering a green phase when a
vehicle passes through a signalized intersection. Speed
guidance in combination with DSRC has been practiced

Intersection

PCC in urban traffic
scenario

on real roads, Hao et al.[l97 demonstrated in a field exper-
iment in California, USA, that the proposed EAD meth-
od can save 6% of energy consumption and reduce
7%-18% of emissions when it is activated within the
DSRC communication range. However, the DSRC tech-
nique for obtaining real-time information about signals
has limitations. The finite communication range also nar-
rows the distance over which wvehicle speeds can be
planned. It leads to many studies only optimizing for the
upcoming intersection. Even the planning of consecutive
intersections is a receding horizon optimization of indi-
vidual intersections one by one, which is away from wide-
area optimal programming. Moreover, early studies were
mostly based on logical rules; e.g., Xia et al.[l9l] proposed
a sinusoidal optimization rule for acceleration and decel-
eration; Asadi and Vahidil!l passed through multiple con-
secutive intersections as much as possible with constant
economic speed; Rakha and Kamalanathsharmall® pro-
posed the rule of either uniform variable-speed or uni-
form speed driving to compare the fuel consumption of
different speed trajectories to determine the optimal eco-
nomic vehicle speed. The same shortcoming as using the
DSRC technique, the speed profile planned under rule-
based speed profile cannot guarantee its self-adaptability
and optimality for complex and changing scenarios.

As a result, more research has been carried out to op-
timize the eco-speed based on evolving mobile communic-
ation networks. Mahler et al.[l9] showed that wireless
communication technology using fourth generation and
long term evolution (4G/LTE) improved the accuracy of
SPaT data transmission, and in-vehicle GLOSA applica-
tion further reduced fuel usage by 9.5%. The successful
application of cellular networks in V2I breaks the commu-
nication distance constraint, allowing the vehicle to re-
ceive the SPaT for multiple future intersections on the
driving path. Furthermore, the mature development of
5G communication technology gives us a higher expecta-
tion for high real-time control of ICV.

Section 4.1. Predictive driving control at a
single signalized intersection

Section 4.2. Predictive driving control at
consecutive signalized intersection

Section 4.3. Multi-vehicle predictive
cooperative control at intersection

Section 4.4. Predictive merge control at

ramp junction

Fig. 4 Classification of PCC in urban traffic scenarios
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4.2 Predictive cruise control at consecut-
ive signalized intersections

Based on the development of communication techno-
logy, scholars have tried to solve the global optimal
vehicle speed trajectory at consecutive intersections us-
ing more sophisticated optimization algorithms to achieve
more integrated and diverse optimization objectives. Nun-
zio et al.[192] considered the restrictions of multiple traffic
lights and speed limits, reduced the optimization domain
with the pruning algorithm, and solved the analytical
solution of the energy-efficient trajectory using the optim-
al control method. Miyatake et al.109 numerically solved
the optimal control problem for minimizing the energy
consumption of electric vehicles at multiple signalized in-
tersections based on Bellman dynamic programming. Sim-
ilarly, Kamalanathsharma and Rakhalll% solved the op-
timal trajectory by proposing the multi-order DP al-
gorithm combined with the A* algorithm, which im-
proved solution speed and saved 19% of fuel consump-
tion and 32% of travel time for multiple signalized inter-
sections passage. DP has proven to be a valuable al-
gorithm for solving such problems[!'% 112, Though there is
a drawback to poor real-time performance, the optimal
results it solves are still used as a benchmark by other al-
gorithms. To avoid traversing the state space and con-
trol variable space, some scholars have tried to use heur-
istic algorithms to solve the problem. Luo et al.[''3 in-
vestigated the speed optimization of a hybrid electric
vehicle at consecutive intersections under intelligent
traffic system (ITS) and proposed a genetic algorithm to
solve the nonlinear optimization problem, which effect-
ively improved fuel economy and traffic efficiency. Sever-
al scholars, such as Seredynski et al.’7l, Zheng et al.['14]
and Zhi et al.l'5] have similarly used the genetic al-
gorithm to achieve the optimization goal of energy sav-
ing and emission reduction. In addition, MPCI, particle
swarm optimization[116l, and PMPI7 118 are also suit-
able for solving the speed optimization problem at consec-
utive signalized intersections.

However, it is not difficult to find that many current
studies solely consider the timing and phase of traffic
lights, ignoring the impact of dynamic traffic flow on
speed planning. To complete the optimization of control
under the viewpoint of the ego vehicle, it is necessary not
only to consider avoiding the nuisance caused to the
traffic flow behind the ego vehicle and the waste of pub-
lic road space resources because of its own continuous
lower speed driving, but also to consider the impact of
slow vehicles ahead or intersection queues on the econom-
ic vehicle speed trajectory planning and tracking control
of the ego vehicle. Schuricht et al.l'l9 are enlightening in
considering the effect of queue length at signalized inter-
sections. Their queue length estimation technique based
on induction loop sensor systems further improved the
fuel-saving potential of a single-vehicle at a single-inter-
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section by 28%. The algorithm proposed by Yang et
al.120 ysed the Lighthill-Whitham-Richard model to pre-
dict the queue length and dissipate time at the upcoming
intersection, which significantly smoothed the vehicle
speed trajectory and resulted in a further 11.4% fuel sav-
ings. He et al.121l and Wu et al.122, on the other hand,
obtained the real-time queue length through the arterial
traffic data collection system and solved the vehicle speed
trajectory using a multi-stage optimal control model.
However, they ignore the evolution of the traffic state,
such as the queuing and dissipation of vehicles at an in-
tersection, which will affect the driving performance of
the controlled vehicle.

In summary of the literature, single-vehicle PCC on
urban roads has been extended from single-intersection
planning to multiple consecutive intersections, and in ad-
dition, scholars have begun to focus on the impact of en-
vironmental vehicles on the control of ego vehicles in re-
cent years. Cloud control platforms can fuse wide-area
dynamic traffic information to provide vehicles with a
wider range and more rational decision-planning results,
thus improving vehicle performance. As a result, combin-
ing the cloud control platform for PCC at multiple inter-
sections will have a positive impact.

4.3 Multi-vehicle predictive cooperative
control at intersections

Predictive cooperative control of multi-vehicle using
traffic signals at intersection can also bring significant be-
nefits to urban traffic systems. Dependent on V2X com-
munication, cooperative adaptive cruise control (CACC)
can improve information-sharing capabilities, thereby en-
hancing overall traffic efficiency. CACC can also benefit
urban arterials by using appropriate algorithms to pre-
dict multi-vehicle behavior and optimize trajectories to
divide and reorganize vehicle platoons before and after
signalized intersections, thus maintaining small and safe
headway time spacing.

With the use of traffic light information, energy con-
sumption and pollutant emissions of multi-vehicle opera-
tion can be further reduced23-126l. Dong et al.123] pro-
posed energy-efficient cooperative adaptive cruise control
(Eco-CACC) based on V2X communication. An optimal
speed decision is made in a fuel-efficient driving frame-
work, and the algorithm also determines the optimal se-
quence of speed control for the platoon through a traffic
light intersection based on traffic light signals and road
speed limits. Yang et al.l!29 developed a novel Eco-CACC
that calculates fuel-optimized vehicle trajectories through
signalized intersections by ensuring that the last vehicle
in the platoon reaches the intersection stop line. The pro-
posed Eco-CACC system can save up to 40% of vehicle
fuel when the market penetration rate (MPR) of connec-
ted vehicles is 100%. Ma et al.[%! proposed an Eco-CACC,
which combines the advantages of energy-efficient driv-
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ing and follow-the-leader, resulting in an 8.02% improve-
ment in the economy compared to manual driving with a
constant acceleration strategy. In addition, a further
2.02% and 1.55% improvement in energy efficiency is
achieved when the MPC and intelligent driver model
(IDM) algorithms are used for the follow-along strategy.
Cui et al.'4 explored the effect of ACC/CACC on fuel
consumption and emissions at signalized intersections us-
ing the human driving model (HDM) following model.
The numerical simulation results show that ACC/CACC
has very high environmental benefits. Kamalanath-
sharma and Rakhal!?’l proposed that Eco-CACC enables
multiple vehicles to operate on a fuel-optimal trajectory.
Based on experimental validation, fuel consumption levels
were teduced by up to 30%. Du et al.l26] proposed a
coupled vehicle-signal control (CVSC) method to simul-
taneously optimize traffic signal timing and the traject-
ory of CAVs with the objectives of improving traffic effi-
ciency and energy-saving, respectively. When the CAV
penetration rate is greater than 40%, the method can save
6%—14% in fuel consumption and increase the average
vehicle speed by 1%-5%.

In addition to the problem of focusing on energy con-
sumption at intersections, the issue of intersection
throughput efficiency has also attracted the attention of
many scholarsl127-130, Liu et al.27] have developed a co-
operative signal control algorithm that uses a CACC
dataset collected by conventional fixed traffic sensors to
predict future traffic conditions. Average vehicle speeds
and miles traveled per gallon of fuel consumed can be in-
creased by more than 10% when CACC penetration
rate is 100%. Giinther et al.[28] proposed a method to op-
timize the behavior of multi-vehicles at signal intersec-
tions. The objective of the optimization is to reduce the
number of stopped vehicles bypassing the stop line. Laz-
ar et al.129 proposed the CACC for multiple vehicles
waiting at a red traffic light, thus starting to accelerate in
a coordinated manner after the traffic light turns green.
This coordinated initiation allows more vehicles to pass
through the intersection during the green light window
compared to manual driving. A decentralized CACC us-
ing V2X has been proposed in [116]. The algorithm im-
proves traffic efficiency and throughput at intersections
by reorganizing the vehicles around the intersection to
pass as a platoon. Bie and Qiul!3% proposed a CACC al-
gorithm that divides vehicles into connected vehicle pla-
toons while maintaining the highest traffic throughput
and the lowest disruption to mainstream traffic.

In summary, research has demonstrated that combin-
ing signal light information and traffic flow to predictive
cooperative control of multi-vehicle can significantly im-
prove urban transportation efficiency. Additionally, ICV
penetration rate has a profound impact on energy con-
sumption and efficiency improvements. Researchers will
study how to integrate rich road traffic information and
develop more efficient strategies for multi-vehicle forma-

tion in the future. By integrating rich road data, sensing,
and processing information about road traffic conditions
in real-time, the cloud platform supports multi-vehicle
formation decisions, as well as achieving a larger and
more efficient objective for road access. In the future, re-
search will focus on the combination of multi-vehicle col-
laboration at intersections and the cloud platform.

4.4 Predictive merge control at ramp junc-
tion

Urban and suburban expressway ramp entrances are
also typical scenarios of predictive planning and control.
By predicting the traffic situation and coordinating the
vehicle trajectory around the ramp zone, driving safety
and traffic efficiency can be significantly improved, and
fuel consumption and emissions can be further redu-
ced(13l], Predictive planning and control methods for ramp
merge zones can be divided into centralized and decent-
ralized!32l. The centralized predictive planning strategy
uses the central controller to collaboratively optimize the
optimal trajectory of each vehicle passing the ramp junc-
tion with the goal of global optimality. The decentralized
uses the obtained vehicle state information on the ramp
and the main road to optimize the driving trajectory of
the ego-vehicle, respectively. Two typical centralized and
distributed merging strategies are shown in Figs.5 and 6.
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Fig.5 Typical centralized architecture of ramp predictive
planning strategyl!33]
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Fig.6 An illustrative example of decentralized predictive
planning on ramp merging zonel!34

In centralized strategies, the optimal control problem
is often constructed as a global state optimization prob-
lem for all vehicles on the ramp and main road. Rios-
Torres and Malikopoulo[!33 planned the merging traject-
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ory of vehicles by constructing an unconstrained ramp
merging optimal control problem and derived its analytic-
al solution using Pontryagin’s minimum principle. Pei et
al.[136] proposed a DP-based efficiency calculation method
for quickly solving the optimization problem of vehicle se-
quence in ramp merge zones. The simulation results
demonstrate that the complexity of the algorithm is re-
duced while the global optimality is enhanced. Jing et
al.[133] formulated the cooperative game as a globally op-
timal merging problem to minimize the global payoff.
Then, the problem is decomposed into a multi-layer game
event, and the optimal merging sequence is determined
by predicting the minimum cost of merging behavior un-
der different strategies. Ding et al.l137] proposed a rule-
based coordination algorithm to solve the problem of the
optimal merging sequence with an approximate optimal
solution. Liao et al.138] built a digital twin model of ramp
cooperative control. The model is verified by vehicle-
cloud communication. The results show that compared
with the benchmark model without speed guidance, it sig-
nificantly improves the safety and fuel saving of ramp
entry.

Although the centralized strategy can perform global
optimization, the computational burden of the whole sys-
tem is large. When the traffic flow is large, and the num-
ber of lanes is large, it is difficult to guarantee the char-
acteristic of high real-time. In the distributed planning
strategy, the controlled vehicle plans its own trajectory
by sensing the state information of the surrounding
vehicle. Wang et al.[139 proposed a distributed collaborat-
ive planning method. After the sequence arrangement of
vehicles in the ramp control area, the speed and position
of the ego vehicles are controlled based on the distrib-
uted consensus-based merging method, which realizes safe
and efficient merging. Furthermore, the team verified the
ramp collaborative fusion system by building a 3D Unity
virtual simulation platform and compared it with the
hardware-in-the-loop of human drivers, which fully veri-
fied the superiority of the systeml[!34. In addition, Liao et
al.140 also used Unity to perform simulation validation of
a game theory based ramp merging strategy by building a
unity-SUMO integrated platform. In addition, in order to
improve the control accuracy, the MPC method is intro-
duced into the trajectory planning problem. In view of
the fusion sequence determined by the distributed archi-
tecture, Ntousakis et al.141] optimized the optimal traject-
ory of each vehicle in the fusion region and corrected the
existing signal disturbance by the MPC method. Com-
pared with the trajectory optimization model of ACC, the
advantages of the proposed method were verified.

In order to make full use of the advantages of decent-
ralized and centralized control methods, some scholars
have begun to design some hybrid systems and have prac-
ticed in multi-lane scenarios. Xiao and Cassandras(!4?]
firstly performed a global sequence arrangement for all
vehicles in the ramp area based on the FIFO principle.
Then, based on the distributed principle and merging or-
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der, the driving trajectories of all ego vehicles are calcu-
lated by constructing an optimal control problem with
the goal of minimizing travel time and energy consump-
tion. In [143], a hybrid control system combining central-
ized and distributed control was designed for the coordin-
ation between the main road and ramp vehicles. The sys-
tem divides the space on the main road of a multi-lane
expressway into moving slots, and the vehicle merging
problem is transformed into the allocation of vehicle slots.

To sum up, many scholars have made a lot of contri-
butions to the predictive planning and control of on-ramp
merging in recent years. However, most of the problems
have been simplified, and the control of on-ramp conver-
gence considering multi-lane and mixed traffic needs to be
further developed. In addition, most of the verification
methods either only perform offline simulations of soft-
ware or perform hardware-in-the-loop in real environ-
ments, and there are relatively few methods that can be
verified in real traffic.

5 Typical applications of ICVCCS-
based PCC

5.1 General architecture of ICVCCS-
based PCC

The efficient operation of predictive cruise systems
needs the support of road maps and computing power.
The cloud platform has powerful computing resources to
meet the real-time operation of the system. In addition,
the cloud platform can be interconnected with the map
server, and the map call and update are convenient.
Therefore, with the development of wireless communica-
tion technology, the design of the system architecture us-
ing cloud platforms is considered an important solution
for further development of the PCC system.

Based on the PCC research cases in different scenari-
os investigated above, some scholars have tried to optim-
ize the PCC system by using the vehicle-cloud two-layer
structure. Li et al.l8l proposed an energy-saving cruise sys-
tem based on the cloud control system. The cloud plat-
form performs high-intensity computing power, and the
vehicle platform performs command control, thus realiz-
ing the full utilization of the advantages of the vehicle-
cloud. The real vehicle experiment proves the feasibility
and effectiveness of the system architecture. Likewise,
Ozatay et al.lf4 also place intensive computing in the
cloud. The cloud calculates the optimal speed according
to the destination set by the vehicle. The test results
show that the system can achieve 5%-15% fuel savings
compared to the benchmark system.

In short, the hierarchical architecture is basically used
to reconstruct the PCC system. The PCC algorithm is ar-
ranged in the cloud to realize the fast operation of the al-
gorithm and map service. Then, the predicted optimal
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control sequence is sent to the vehicle by wireless commu-
nication. The vehicle side analyses and controls the con-
trol sequence to achieve safety, energy-saving, and effi-
ciency.

By analyzing the functions of vehicle-cloud in the ex-
isting literature, the hierarchical architecture of the PCC
system is proposed based on the concept of the cloud con-
trol system, as shown in Fig.7. Based on the ICVCCS ar-
chitecture, the predictive cruise system is split according
to the cloud control base platform (CCBP) and applica-
tion platform (CCAP). In addition, in the cloud control
platform, PCC needs a real-time operation, so it is ar-
ranged on the edge cloud with high real-time operation.
CCBP mainly provides map services for the PCC system,
including a static map and a local dynamic map. It
should be noted that due to the changeable traffic state,
the edge cloud needs to monitor the real-time road traffic
situation according to the roadside sensing unit and gen-
erate a local dynamic traffic map. Different types of PCC
algorithms are arranged in CCAP, such as predictive fuel-
saving control, multi-vehicle collaborative control, and
These al-
gorithms call the required map information from CCBP

predictive speed planning at intersections.

in real-time as needed. CCAP sends the calculated optim-
al control strategy to the vehicle through wireless com-
munication based on the edge cloud to realize the hier-
archical PCC of the vehicle-cloud.

5.2 Predictive energy-saving cruise con-
trol

Road slope is widely used in PCC. This section briefly
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introduces the design of a cloud-based predictive energy-
saving cruise control system (CPCC) based on the
ICVCCS architecture for energy-saving driving. In addi-
tion, in order to verify the effectiveness of the system, re-
al vehicle experiments with a total of more than 6 000 km
are carried out by using trucks with different weights.

The realization of the CPCC system needs to analyze
the function between vehicle and cloud reasonably in or-
der to ensure the effective use of their respective advant-
ages. The strengths of a cloud control platform (CCP) are
that it has powerful computing and data integration abil-
ities. In addition, CCP can provide convenient and real-
time updated map services. Therefore, it would be a great
solution to deploy the energy-saving cruise (ESC) al-
gorithm and map in CCP. The vehicle platform mainly
parses the control commands sent by the cloud and mon-
itors the cruise state based on state transition conditions
constantly. The schematic diagram of the vehicle-cloud
layered architecture is shown in Fig. 8.

The ESC algorithm calculates the optimal speed for
future driving by obtaining road slope information from
the map dataset. Then, the speed command is sent to the
vehicle side via the 4G/5G network. After receiving the
information in the cloud, the Telematics BOX (T-BOX)
is analyzed and sent to the power system controller to
realize the speed following control. Moreover, the real-
time running data of the vehicle is also synchronously up-
loaded to the cloud to realize the closed-loop iterative
control.

The test road is 36km from the Yiyuan to Zhuge ser-
vice area on the G22 freeway in Shandong, China. The
system server is located in Beijing. The change of road el-
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evation is shown in Fig.9, which can meet the slope re-
quirement of the algorithm test.
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Fig.9 Height variation of the experimental road

Due to the large amount of experimental data, this
section only shows some test results of 49 tons of heavy
trucks, as shown in Table 1.

The experimental results show that the fuel-saving
rate of the proposed CPCC system is 2%—6% compared
with CC, with little difference in travel time, which veri-
fied the reliability and validity of the CPCC system.

5.3 Predictive lane-changing control of the
platoon

For the predictive lane-changing control of the pla-
toon in the freeway scene, a vehicle-cloud layered control
strategy is designed: The cloud is the decision-making
layer. Based on the long-term prediction of real-time
traffic conditions and the platoon operation status, the
longitudinal speed and lateral lane-changing strategies are
generated, then send them to the platoon; the platoon is
the execution layer. The trajectory planning and track-
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Table 1 Partial experimental results

Dist Fuel Fuel-savi
Mode Item 1SYANCe  Time (s) consumption v viug
(km) (L) rate (%)
1 36 1833 14.572 -2.45
2 36 1822 14.168 -5.16
3 36 1811 14.042 -6.00
CPCC
4 36 1851 14.309 -4.22
36 1841 14.302 -4.26
6 36 1870 14.044 —5.99
cc  Average g4 1845 14.938 Baseline

value

ing control are carried out in accordance with the cloud’s
strategy, and the platoon’s movement status is uploaded,
forming a closed-loop vehicle-cloud collaborative control.

The platoon's predictive lane-changing control system
has two communication topologies: the communication
topology between the platoon and the cloud and the com-
munication topology within the platoon. The communica-
tion topology between the platoon and the cloud adopts
the direct-connected star topology, which is used to up-
load the platoon’s movement status in real-time and send
cloud decision-making. The communication topology
within the platoon is the predecessor-leader following to-
pology, which is used for platoon control.

To verify the proposed predictive lane-changing al-
gorithm, a two-lane condition is designed. As shown in
Fig. 10, the left lane is the fast lane with a speed limit of
120km/h, and the right lane is a slow lane with a speed
limit of 100km/h. There is a slow car (blue car) 800
meters ahead of the controlled platoon (yellow car), and
it gradually affects the driving of vehicles behind it.

Fig. 10 Simulation conditions

The designed working conditions are simulated using
the microscopic traffic flow simulation software SUMO,
and the simulation step is 0.5s. The predictive lane-chan-
ging algorithm was compared to a baseline using the IDM
car-following model and the LC2013 lane-changing
modell44. Among them, the sampling interval of the pre-
dictive lane-changing algorithm is 0.5s, and the perform-
ance of prediction 30 steps and prediction 60 steps are
tested, respectively. The speed, acceleration, and lane of
the leader of the platoon are shown in Fig.11.

In Fig.11, the blue dotted line represents the platoon
using the IDM car-following model and the LC2013 lane-
changing model, the red dot-dash line represents the pla-
toon using the predictive lane-changing algorithm with a
prediction horizon of 30 steps, and the solid green line
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Fig. 11  Simulation result diagram

represents the platoon using the predictive lane-changing
algorithm with a prediction horizon of 60 steps. The
speed and lane curve shows that due to the influence of
the slow vehicle ahead, the platoon that does not use the
predictive lane-changing algorithm will have a greater
speed attenuation. The platoon using the predictive lane-
changing algorithm can predict the impact of the slow
vehicle on the platoon, implement acceleration/decelera-
tion, and lane change in advance, the speed is basically
not attenuated, and the driving efficiency is higher. From
the acceleration curve, it can be seen that the platoon’s
acceleration with the predictive lane-changing algorithm
changes more smoothly, providing better driving comfort
and being more friendly to the surrounding traffic flow
environment.

5.4 Predictive cruise control at signalized
intersections

For predictive cruising of cloud-based signalized inter-
sections, the designed traffic signal system needs to up-
load phase and timing information to the cloud in real-
time, which is different from the previous literature that
uses V2I technologies to transmit SPaT information to
vehicles. We believe that vehicle decision-making and
planning functions should be moved to the cloud and that
SPaT, which is useful for driving at signalized intersec-
tions, should also be uploaded there. Furthermore, the
road information (e.g., road grade, speed limit) provided
by the high-precision map and the self-vehicle informa-
tion uploaded by the ego vehicle are also essential in the
velocity planning process. In the cloud, we also need to

utilize the traffic status changes sensed by the roadside
devices and the surrounding vehicle information, which is
beneficial for us to predict queuing situations at intersec-
tions. After weighing the multi-objective optimization,
the cloud will eventually issue the optimal vehicle traject-
ory to the ego vehicle, which will be tracked by the driver
or vehicle control system.

Following the development of a predictive cruising
framework for urban continuous signalized intersections
based on the cloud control system, a simulation scenario
of passing through three consecutive intersections was
built, as shown in Fig.12. Combined with the character-
istics of the IDM car-following model, a queue length pre-
diction model is proposed based on the traffic shockwave
theory, which calculates the queue length, the farthest
distance of the queue, and the queue dissipation timell20],
The queue dissipation time is equivalent to the red-light
phase time extended by the corresponding length, taken
into account in our velocity planning algorithm. Taking
electric vehicles as the research object, we combine longit-
udinal vehicle dynamics, energy consumption model, and
braking energy recovery strategy to solve the optimal
vehicle velocity profile using the DP algorithm.

Preceding car

Fig. 12 Simulation scenario diagram

A scene where an environmental car is driving in front
of the controlled vehicle is designed, and the speed plan-
ning based on DSRC technology (300m communication
distance) is compared with our proposed cloud-based pre-
dictive cruise control, as shown in Fig. 13.

It can be seen from Fig. 13 that the proposed PCC al-
gorithm accurately predicts the queuing situation at the
intersection ahead. Through the prediction of the dissipa-
tion time, the interference of the queue to the ego vehicle
is effectively avoided. Benefiting from the planned velo-
city profile by acquiring SPaT information, the CCS-
based car controls the speed tracking to 10m/s or less
without causing too much speed fluctuation. The plan-
ning result avoids unnecessary hard decelerations/acceler-
ations before and after the stop line, just like the driving
trajectory exhibited by the preceding car, which is the
main reason for the huge energy consumption. The DSRC
technology, on the other hand, cannot predict the
changes in traffic state and provide information to the
vehicle about the traffic dynamics; therefore, the DSRC-
based car inevitably follows the queue due to the stagna-
tion of the preceding car. Ultimately, as shown in Table 2,
the vehicle based on cloud-supported PCC saves 60.02%
energy consumption compared to the preceding vehicle
and 43.97% energy consumption compared to the vehicle
using DSRC vehicle-road collaboration technology.

@ Springer



630

1600

1400 (— — 7

1200 ,/ E

1000 r / 1

800 | , 1

Distance (m)

600 / b

400 J/ 1

200 7 1

0 1 1 1
0 50 100 150 200

(a) Space-time trajectory

20 T T T

15 F o 4

L \ , 4
10 | [ / \ [

Velocity (m/s)

0 50 100 150 200
(b) Vehicle speed curve

0.3

o1t 7 1

Energy consumption (kW-h)
\
\
\

0 50 100 150 200
Time (s)

(c) Energy consumption

Fig. 13  Simulation results of three continuous intersections

Table 2 Performance on all vehicles

Comparative object Travel time (s) Waiting time (s) Cost (kW-h)

CCS-based 140.8 - 0.1105
DSRC-based 137.6 2.7 0.1972
Preceding car 137.4 29.5 0.276 4

Moreover, it significantly reduced intersection waiting
time and congestion.

6 Outlook and future trends

6.1 PCC in freeway scenarios

Useful and predictable road traffic information is the
key to improving the decision-making, planning and con-
trol effect of the PCC system. The relatively stable
change of vehicle behavior and driving state on the free-
way is the primary scenario for PCC to demonstrate its

@ Springer

Machine Intelligence Research 20(5), October 2023

capabilities. The road geometry information contained in
the static map data has been fully incorporated into the
PCC. However, in actual vehicle operation, various real-
time dynamic traffic information, such as traffic flow, am-
bient vehicle driving states, and accidents, have a sub-
stantial impact on PCC, but PCC has not completely ex-
ploited these data. Therefore, in the future, it is neces-
sary to extensively study the impact of dynamic traffic
environment on PCC. Furthermore, the strategy of PCC,
obtained by using static map information, is adjusted in
real-time based on time-varying dynamic traffic. There
are some specific optimization scenarios, such as overtak-
ing driving based on global traffic state, optimal lane se-
lection, optimal speed planning based on traffic flow pre-
diction, etc.

However, as the information applied to PCC becomes
increasingly comprehensive, the design of PCC algori-
thms becomes more complex, which poses a great chal-
lenge to the performance of the on-board controller.
Therefore, it is necessary to combine artificial intelli-
gence, cloud computing, wireless communication, and
other technologies to provide more reliable and rapid sup-
port for the operation of the PCC system, which will be a
new subject to study how to apply these technologies to
PCC systems.

6.2 PCC in urban traffic scenarios

First, the single-vehicle driving control should be ex-
tended to the full road traffic system with the purpose of
maximizing traffic efficiency. Therefore, multi-vehicle and
traffic signal cooperative control will be essential re-
search fields. Second, new energy vehicles, with more ad-
vanced connected technologies, are an important carrier
and more urgent demand side for predictive energy-sav-
ing driving. Due to the limited capacity and cost of on-
board power batteries, it is difficult to support a higher
level of driving range. While based on the intelligent con-
nected technologies, the predictive cruise enables a longer
driving range equivalently without increasing the cost of
a single-vehicle battery, which is obviously of great value
to the high-efficiency and energy-saving goals for future
intelligent vehicles and intelligent transportation. Con-
sequently, urban energy-saving driving should be tilted
from research on traditional fuel vehicles to new energy
vehicles. Third, the promotion of ICV is crucial for PCC.
More precise vehicle speed control brings better energy-
saving effects, and a higher ICV penetration rate will lead
to higher system gains, which has been verified in [120)].

Finally, we would like to point out that the cloud con-
trol system can better support us in realizing the de-
cision-planning-control of vehicles in urban traffic scenari-
0s. The cloud platform can not only sense the changes in
traffic state at several future intersections, but also col-
lect information about surrounding vehicles. This way of
real-time information mapping will help us to accurately
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predict the variety of traffic flows and then adjust our
driving strategy. At the same time, the powerful compu-
tational scheduling capability of the cloud platform will
help us to use more complex optimization algorithms,
handle more dynamic information about vehicles, coordin-
ate conflicts with surrounding vehicles, and guarantee the
safety of service vehicles. Therefore, our subsequent re-
search will be carried out in conjunction with the cloud
control platform to a greater extent.

6.3 PCC based on ICVCCS

The design goal of the cloud control system is to real-
ize interconnection and collaborative control by integrat-
ing intelligent transportation with intelligent vehicles.
The cloud control platform not only solves the diffi-
culties of limited vehicle prediction range and real-time
calculation, but also greatly reduces the hardware cost of
vehicle terminals. In addition, in the three-tier four-level
cloud control architecture, the edge cloud, the regional
cloud, and the central cloud can realize different predict-
ive cruise system functions. For example, the edge cloud
can support the cruise control of vehicles in a small
range, the regional cloud can realize the collaborative pre-
dictive cruise of large-scale multi-vehicle groups, and the
central cloud can manage the data of PCC users and op-
timize the PCC algorithm based on the historical PCC
data. Therefore, it is foreseeable that the ICVCCS-based
PCC will be an inevitable trend and will be used as an
important auxiliary application for high-level autonom-
ous driving.

7 Conclusions

This paper provides a comprehensive and systematic
review of the research methods and advances related to
predictive cruise control of vehicles in freeway and urban
traffic scenarios. Based on the principle of cloud control
systems, the general architecture of cloud-controlled pre-
dictive cruise control is proposed, and three typical ap-
plications are introduced. A summary is as follows.

1) PCC problems are often modelled as optimization
problems with predictive information as a dynamic and
static constraint. Due to the complexity of the problem,
only numerical solutions can be taken, and commonly
used solutions include DP, PSM, MPC, RL, HA, etc.

2) The use of static road information for predictive
cruise control in highway scenarios can mostly be done in
real-world experiments and can be promoted in the in-
dustry. However, for driving behaviors that require PCC
planning using dynamic traffic information, such as fol-
lowing and lane changing, the models constructed suffer
from many assumptions and simple considerations due to
the unpredictability and complexity of the traffic state,
and therefore only exist in the simulation stage, with few
people having completed real-world testing and verifica-
tion. For platoon PCC research, the difficulty lies in bal-

ancing optimal predictive driving and platoon stability
control, and there are also problems with heterogeneous
platoons that are difficult to model. A hierarchical con-
trol architecture is often used, with decision-making,
planning and control effect at the top and platoon stabil-
ity control at the bottom.

3) In urban traffic scenarios, PCC is used at intersec-
tions and ramps. At signalized intersections, the green
wave passing is mostly used as the main control object-
ive, taking into account factors such as queue length and
dissipation time, traffic flow density, surrounding vehicle
status, etc. The problems are similar to those of the high-
way scenario, where the unpredictability of the traffic en-
vironment limits the effectiveness of the control. Predict-
ive cooperative control of multiple vehicles using traffic
information at signalized intersections can further im-
prove the efficiency of urban traffic, but cooperative
multi-vehicle control strategies are still a difficult prob-
lem. At the ramp, PCC studies the predictive optimal
ramp merging problem. At present, it is often studied in
accordance with the strategy of collaborative control,
which is divided into centralized, distributed, and hybrid
method. The difficulty lies in solving the cooperative con-
trol strategy under a large number of lanes, different per-
meability, and traffic density.

4) The general architecture of PCC based on ICVCCS
is proposed and three typical applications, such as en-
ergy-saving, lane-changing, and speed-planning at inter-
sections, are given. The effectiveness of the proposed
method is verified by real vehicle experiments and simu-
lation tests. Based on those examples, the advantages of
ICVCCS-based PCC are demonstrated, and new ideas for
the development of PCC are given.
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