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Abstract: In the past few years, the emergence of pre-training models has brought uni-modal fields such as computer vision (CV) and
natural language processing (NLP) to a new era. Substantial works have shown that they are beneficial for downstream uni-modal tasks
and avoid training a new model from scratch. So can such pre-trained models be applied to multi-modal tasks? Researchers have ex-
plored this problem and made significant progress. This paper surveys recent advances and new frontiers in vision-language pre-training
(VLP), including image-text and video-text pre-training. To give readers a better overall grasp of VLP, we first review its recent ad-
vances in five aspects: feature extraction, model architecture, pre-training objectives, pre-training datasets, and downstream tasks.
Then, we summarize the specific VLP models in detail. Finally, we discuss the new frontiers in VLP. To the best of our knowledge, this is

the first survey focused on VLP. We hope that this survey can shed light on future research in the VLP field.

Keywords: Vision and language, pre-training, transformers, multimodal learning, representation learning.

Citation: F. L. Chen, D. Z. Zhang, M. L. Han, X. Y. Chen, J. Shi, S. Xu, B. Xu. VLP: A survey on vision-language pre-training.
Machine Intelligence Research, vol.20, no.1, pp.38-56, 2023. http://doi.org/10.1007/s11633-022-1369-5

1 Introduction

Making machines respond in ways similar to humans
has been a relentless goal of AI researchers. To enable
machines to perceive and think, researchers propose a
series of related tasks, such as face recognition, reading
comprehension, and human-machine dialogue, to train
and evaluate the intelligence of machines in a particular
aspect. Specifically, domain experts manually construct
standard datasets and then train and evaluate relevant
models on them. However, due to the limitations of re-
lated technologies, it is often necessary to train on a large
amount of labelled data to obtain a better and more cap-
able model. The recent emergence of pre-training models
based on the Transformer structurelll has alleviated this
problem. They are first pre-trained via self-supervised
learning that typically exploits auxiliary tasks (pre-train-
ing objectives) to mine supervision signals from large-
scale unlabelled data to train the model, thereby learning
universal representations. Then, they can achieve surpris-
ing effectiveness by fine-tuning with only a tiny amount
of manually-labelled data on downstream tasks. Since the
advent of BERTH in natural language processing (NLP),
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various pre-training models have sprung up in the uni-
modal field, such as vision transformer (ViT)P in com-
puter vision (CV) and Wave2Vecl in speech. Substan-
tial works have shown they are beneficial for down-
stream uni-modal tasks and avoid training a new model
from scratch.

Similar to the uni-modal field, there is also a problem
of less high-quality labelled data in the multi-modal field.
The natural question is, can the above pre-training meth-
od be applied to multi-modal tasks? Researchers have ex-
plored this problem and made significant progress. In this
paper, we focus on mainstream vision-language pre-train-
ing (VLP), including image-text and video-text pre-train-
ing. VLP mainly learns the semantic correspondence
between different modalities by pre-training on large-scale
data. For example, in image-text pre-training, we expect
the model to associate “dog” in text with what “dog”
looks like in images. In video-text pre-training, we expect
the model to map objects/actions in the text to
objects/actions in the video. To achieve this goal, the
VLP objects and model architecture need to be cleverly
designed to allow the model to mine the associations
between different modalities.

To give readers a better global grasp of VLP, we first
comprehensively review its recent advances and focus on
five significant aspects:

Feature extraction. This section includes the pre-
processing and representation methods of image, video,
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and text in VLP models (see Section 2).

Model architecture. We introduce the architecture
of the VLP models from two different perspectives:
Single-stream versus dual-stream from multi-modal fu-
sion perspective and encoder-only versus Encoder-de-
coder from the overall architectural design perspective
(see Section 3).

Pre-training objectives. Pre-training objectives are
the core of VLP, mainly used to guide the model to learn
vision-language associated information. We summarize
typical and characteristic pre-training objectives divided
into completion, matching, temporal, and particular types
(see Section 4).

Pre-training datasets. Data is critical for VLP. We
briefly introduce mainstream corpora for VLP and their
specific sizes (see Section 5).

Downstream tasks. Various tasks require a cooper-
ative knowledge of both vision and language. We discuss
the basic details and goals of these tasks (see Section 6).

Then we summarize the specific state-of-the-art
(SOTA) VLP models in detail (see Section 7). Finally, we
conclude the paper and have broad discussions on new
frontiers in VLP (see Section 8).

Although there are many surveys on pre-trained lan-
guage modelsl® ¢ and pre-trained vision models!”], to the
best of our knowledge, this is the first survey focused on
VLP. We hope that our survey can help researchers bet-
ter understand this field and inspire them to design bet-
ter models.

2 Feature extraction

This section describes how VLP models preprocess
and represent an image, video, and text to obtain coun-
terpart features.

2.1 Feature extraction

2.1.1 Image feature extraction

OD-based region features (OD-RF's). Most previ-
ous work810 on VLP utilizes pre-trained object detect-
ors to extract visual features. The most commonly used
object detection model is Faster R-CNNI[!1 with bottom-
up attentionl!?l. It is designed to identify objects belong-
ing to certain classes and localize them with bounding
boxes. By using the Faster R-CNN, VLP models obtain
the OD-based Region feature embedding V = o1,
02, ,0r] of an image with k selected regions. Each re-
gion feature o; is a 2 048-d Region-of-Interest (Rol) fea-
ture with its bounding box. The bounding box is defined
by the coordinates of the bottom-left and top-right
corners of the region. VLP models use bounding boxes to
construct 5-d vectors, and the vector is embedded into a
high-dimensional representation (2 048-d) named visual
geometry embedding. The OD-RFs are obtained by
adding the OD-based Region feature embedding with its
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visual geometry embedding. Although ODFs have
brought impressive performance, extracting region fea-
tures can be time-consuming. To relieve this problem, the
pre-trained object detectors are usually frozen during pre-
training, which can limit the capacity of VLP models.

CNN-based grid features (CNN-GFs). VLP
models(!3; 14 extract visual features by utilizing convolu-
tional neural networks (CNNs) to obtain the grid fea-
tures. On the one hand, VLP models can train the CNNs
end-to-end by using the grid features[!d directly. On the
other hand, VLP models can also first discretize grid fea-
tures using a learned vision dictionary and then feed
them into the cross-modal module.

ViT-based patch features (ViT-PFs). Inspired by
ViTB: 16 VLP models reshape the image I; € RTXWx¢
into a sequence of flattened 2D patches I, € RNX(P2XC),
where (H, W) is the resolution of the original image, C is
the number of channels, (P, P) is the resolution of each
image patch, and N = HW /P? is the resulting number of
patches, which also serves as the effective input sequence
length for the transformer. An input image I; is encoded
into a sequence of embeddings: {vcs,v1, - ,vn}, where
Ucls 18 the embedding of the [CLS] token.

2.1.2 Video feature extraction

A video clip is denoted as M frames (images). VLP
models!'”> 18] extract the frame features using the method
mentioned above. The two most commonly used features
are CNN-GFs and ViT-PFs. For CNN-GFs, VLP models
first use ResNet[!9 pre-trained on ImageNet20l or Slow-
Fast2ll, and I3D[22 pre-trained on Kinetics[23l to extract
2D and 3D visual features for each video frame. These
features are concatenated as visual features and fed
through a fully-connected (FC) layer to be projected into
the same lower-dimensional space as token embeddings.
For ViT-PFs, a video clip V; € RM*XHXWXC congists of M
frames of resolution H x W, where M =1 for images.
Following the protocol in ViT and Timesformer, the in-
put video clip is divided into M x N non-overlapping
spatio-temporal patches of size P x P, where N =
HW /P2
2.1.3 Text feature extraction

For the textual features, following pre-trained lan-
guage models such as BERT[2, RoBERTal24, AIBERTI25,
and XLNet26, VLP modelsl® 27, 28 first segment the in-
put sentence into a sequence of subwords, and then, in-
sert a start-of-sequence token and an end-of-sequence
token at the beginning and the end of the sequence to
generate the input text sequence. Text input representa-
tions are computed via summing the corresponding word
embedding, text position embedding, and text type em-
bedding.

2.2 Feature representation

To make full use of uni-modal pre-trained models,
VLP models can send the visual or text features to a

@ Springer



40

transformer encoder(l. Specifically, VLP models utilize
the standard transformer encoder with random initializa-
tion to generate the visual or textual representation. In
addition, VLP models can utilize a pre-trained visual
transformer to encode the ViT-PFs, such as ViT and
DeiT29. VLP models can use a pre-trained textual trans-
former to encode the textual features, such as BERT. For
simplicity, we name this transformer Xformer.

3 Model architecture

In this section, we introduce the architecture of the
VLP models from two different perspectives: 1) single-
stream versus dual-stream from a multi-modal fusion per-
spective, and 2) encoder-only versus encoder-decoder from
the overall architectural design perspective.

3.1 Single-stream versus dual-stream

The single-stream architecturel® 30, 31 refers to that
the text and visual features are concatenated together,
then fed into a single transformer block, as shown in
Fig.1(a). The single-stream structure utilizes merged at-
tention to fuse multi-modal inputs. The single-stream ar-
chitecture is more parameter-efficient, as the same set of
parameters is used for both modalities.

Dual-stream architecture. The dual-stream archi-
tecturel32 33 refers to that the text and visual features are
not concatenated together but sent to two different trans-
former blocks independently, as shown in Fig.1(b). These
two transformer blocks do not share parameters. To
achieve higher performance, cross-attention (as shown by
the dotted line in Fig.1(b)) is used to enable cross-modal
interaction. To achieve higher efficiency, there can be also
no cross-attention between the visual transformer and
textual transformer blocks.

3.2 Encoder-only versus encoder-decoder

Many VLP models adopt the encoder-only architec-
ture, where the cross-modal representations are directly
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fed into an output layer to generate the final outputs. In
contrast, other VLP models advocate using a trans-
former encoder-decoder architecture, where the cross-
modal representations are first fed into a decoder and
then to an output layer.

4 Pre-training objectives

This section introduces how we pre-train VLP models
by using different pre-training objectives, which are cru-
cial for learning the universal representation of vision-lan-
guage. We summarize the pre-training objectives into
four categories: completion, matching, temporal, and par-
ticular types.

1) Completion is to reconstruct the masked element
by leveraging the unmasked remainders to understand
the modality (see Sections 4.1-4.3).

2) Matching is to unify the vision and language into a
shared hidden space to generate universal vision-lan-
guage representation (see Sections 4.4-4.6).

3) Temporal is to learn good representation by re-
ordering the disrupted input sequence (see Section 4.7).

4) Particular types consist of other pre-training ob-
jects, such as visual question answering and visual cap-
tioning (see Section 4.8).

Now we introduce the most used pre-training object-
ives.

4.1 Masked language modeling

Masked language modeling (MLM), which was first
proposed by Taylor4 in the literature, is widely known
because the BERT model adapted it as a novel pre-train-
ing task. To model language conditioned on vision, MLM
in VLP models is similar to MLM in pre-training lan-
guage models (PLMs) but predicts the masked textual
tokens not only by the rest of the textual tokens but also
by the visual tokens. Empirically, VLP models following
BERT randomly mask each textual input token with a
probability of 15% and replace the masked one by using a
special token [MASK] 80% of the time, a random textual

# M x 1 M %
[ Feedforward } [ Feedforward }

f f

Cross-attention

Cross-attention

Self-attention

\ Ol Kt T )

Textual features

Self-attention

ot kit

Visual features

(b) Dual-stream architecture

Illustration of two types of model architectures for VLP



F. L. Chen et al. / VLP: A Survey on Vision-language Pre-training

token 10% of the time, and the original token 10% of the
time to perform masking. The formal definition is as fol-
lows:

LyeMm = —E(y w)~p 10g P(Wm | Wy m, v) (1)

where v denotes the vision, w denotes the textual tokens,
wy, denotes the masked textual tokens, w\,, denotes the
remaining textual tokens, and D denotes the training
dataset.

4.2 Prefix language modeling

Prefix language modeling (PrefixLM)[* is unified in
MLM and language modeling (LM). To make the model
simultaneously have a good understanding and genera-
tion ability, PrefixLM is proposed to facilitate the model
with solid generation capability that enables text-in-
duced zero-shot generalization without fine-tuning. Pre-
fixLM differs from the standard LM such that it enables
bi-directional attention to the prefix sequence and only
conducts autoregressive factorization on the remaining
PrefixLM  under the
(seq2seq) framework not only enjoys the bidirectional

tokens. sequence-to-sequence
contextualized representation as in MLM but also can
perform text generation similar to LM. The formal defini-
tion is as follows:

Lprefix M = —E(v,w)~p log P(w>r, |lw<rp, ) (2)

where Tp denotes the length of the prefix sequence.
4.3 Masked vision modeling

To have a good understanding of vision or generate
images/videos given text, like MLM, masked vision mod-
eling (MVM)B0 samples vision (image or video) regions
or patches and usually masks their visual features with a
probability of 15%. VLP models need to reconstruct the
masked visual features given the remaining visual fea-
tures and all the textual features. The masked visual fea-
tures are set to zeros. Because visual features are high-di-
mensional and continuous, VLP models propose two vari-
ants for MVM.

Masked features regression. Learns to regress the
model output of masked features to its original visual fea-
tures. VLP models convert the model output of the
masked features to a vector of the same dimension as the
original visual features first and apply L2 regression
between the original visual features and the vector. The
formal definition is as follows:

LM = E(v,w)n D f (Vm|0\m, w) (3)
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fom|v\m, w) = Z 1h(v3) = O(vrm)) I3 (4)

where h(vﬁn) denotes the predicted vision representation
and O(v},) denotes the original vision representation.

Masked feature classification. Learns to predict
the object semantic class for the masked features. VLP
models first feed the output of the masked features into
an FC layer to predict the scores of object class, which
further goes through a softmax function to be trans-
formed into a prediction normalized distribution. Note
that there is no ground-truth label. There are two kinds
of methods to train VLP models. One is that VLP mod-
els take the most likely object class from the object detec-
tion model as the hard label (with probability 0 or 1), as-
suming that the detected object class is the ground-truth
label for the masked features, and apply cross-entropy
loss to minimize the gap between the prediction and
pseudo-class. The other is that VLP models utilize a soft
label as a supervision signal, which is the raw output
from the detector (i.e., a distribution of object classes),
and minimize the Kullback-Leibler (KL) divergence
between two distributions. The formal definition is as fol-
lows:

LvvM = E(w,w)~ D f(Um [ V\m, ). (5)

We use the object detection output from Faster R-
CNN and take the detected object category as the label
of the masked region:

fl (’lJm"l}\m,'IU) = Z CE(C(U;’L) — g1 ('U:n)) (6)

where g1(vl,) is the detected object category and K
denotes the number of vision regions.

We avoid this assumption by using a soft label as a
supervision signal, which is the raw output from the de-
tector:

f2(Vm|v\m, w) = Z Dxr(é(vn) — g2(vr,))  (7)

where g1 (vin) is the detected object category distribution.
4.4 Vision-language matching

Vision-language matching (VLM)B3 is the most com-
monly used pre-training objective to align vision and lan-
guage, which aims to project vision and language into the
same space. In the single-stream VLP models, they use
the representation of the special token [CLS] as the fused
representation of both modalities. In the dual-stream
VLP models, they concatenate the visual representation
of the special visual token [CLSy] and the textual repres-
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entation of the special textual token [CLSr] as the fused
representation of both modalities. VLP models feed the
fused representation of both modalities to an FC layer
and a sigmoid function to predict a score between 0 and
1, where 0O indicates that vision and language are mis-
matched, and 1 indicates that vision and language are
matched. During training, VLP models sample positive or
negative pairs from the dataset at each step. The negat-
ive pair is created by replacing the vision or text in a
paired sample with randomly samples selected from oth-
er samples.

4.5 Vision-language contrastive learning

Vision-language contrastive learning (VLC)B3 also
aims to align vision and language. Different VLM, VLC
predicts the matched vision-language pairs from N x N
possible vision-language pairs given a batch of N vision-
language pairs. Note that there are N2 — N negative vis-
ion-language pairs within a training batch. VLP models
use the visual representation of the special visual token
[CLSy] and the textual representation of the special tex-
tual token [CLSr] to denote the aggregated representa-
tion of the vision and language, respectively. VLP mod-
els compute the softmax-normalized vision (image or
video)-to-text similarity and text-to-vision similarity and
leverage cross-entropy losses over vision-to-text and text-
to-vision similarities to update themselves. The similar-
ity is often implemented by dot products. The formal
definitions are as follows:

gy (s ) /1) .
P (1) Zle exp(s(I,Tm)/T) ®)

20 _ exp(s(T, Im)/T) 9
Pm (T) Zi\;{:l exp(s(T, Im)/T) ( )

1 v v
Lvic = §E(I,T)~D[CE(Z/ 2t (I))+
CE(y™",p™"(T))] (10)

where I, T denotes the images and texts, s(-) denotes the
similarity function, 7 denotes the temperature coefficient,
y*?', and y'” denote the labels of vision2text retrieval

and text2vision retrieval.

4.6 Word-region alignment

Word-region alignment (WRA)B is an unsupervised
pre-training objective to align vision regions (vision
patches) and words. VLP models utilize optimal trans-
port to learn the alignment between vision and language.
Empirically, VLP models use the IPOTB0 algorithm to
approximate the optimal transport (OT) distance since
the exact minimization is computationally intractable.
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After solving minimization, the OT distance serves as the
WRA loss to train VLP models. The formal definition is
as follows:

T K

Lwra = Terzr}i(%,w Z > Ty - c(ws, v)) (11)

i=1 j=1

where c(w;,v;) is the cost function evaluating the
distance between w; and w;, T €Ill(a,b)={T¢€
R™*¥|T1,, = a,T"1, = b}, a and b are Dirac function

coefficients centered on w; and v;.
4.7 Frame order modeling

To better model the timing of the video, VLP models
randomly disrupt the order of some input frames and
then predict the actual position of each frame. Frame or-
der modeling (FOM)B is modeled as a classification task
in practice.

4.8 Particular pre-training objects

To better adapt to downstream tasks, VLP models
sometimes use the training objects of some downstream
tasks, such as visual question answering (VQA)[12 37, 38],
and visual captioning (VC)B% 401 as pre-training object-
ives. As for VQA, VLP models take the fused representa-
tion mentioned above, apply an FC layer, and use the
transformed representation to predict the classification
over predefined answer candidates. In addition to VLP
models tackling the task as classification over predefined
answer candidates, VLP models can also directly gener-
ate answers in their original text format. As for VC, to
reconstruct the input sentence to endow VLP models
with the generation capability, VLP models employ an
auto-regressive decoder to generate a corresponding tex-
tual description of the image or video.

Note that due to space limitations, we only introduce
some popular pre-training objectives. We omit some spe-
cific pre-training objectives such as grounding referring
expression (GRE), image-conditioned denoising autoen-
coding (IDA)M4) text-conditioned image feature genera-
tion (TIFG)M, object detection (OD)M2l] and aligned
Kaleido patch modeling (AKPM)M43l. Moreover, we put
masked action prediction into the category of MVM.

5 Pre-training datasets

Pre-training datasets are significant for the success of
cross-modal representation learning. The quality and the
size of pre-training datasets sometimes overwhelm the im-
portance of training strategies and algorithms. Hence, a
detailed description of several widely used pre-training
datasets is necessary. Table 1 shows statistics of some
popular pre-training datasets for VLP.

Since VLP includes image-language pre-training and
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Table 1 Details of some popular pre-training datasets for VLP. Names of some datasets are abbreviated for the convenience of
subsequent descriptions. FLKR represents Flickr30k, and HT100M represents HowTo100M.

Dataset # Images # Image-text pairs Duration (hrs) # Clips # Videos
SBUMI 875K 875K - - -
FLKRI3] 29K 145K - - -
COCO46] 113K 567K - - -
VGH] 108K 5.4M - - -
VGQAKT 108K 1.8M - - -
VQALS 83K 444K - - -
Matterport3D[49] 104K 104K - - -
FashionGen[30] 260K 260K - - -
CC3Mb1 3M 3M - - -
GQAD? 82K 1M - - -
LAITI3] 10M 10M - - -
CcC12MB4 12M 12M - — -
ALIGNI53) 1.8B 1.8B - - -
Kinetics400[23] - - 817 306K 306K
TVQAIBS - - 461 22K 925
HT100M/56] - - 134K 136 M 1.2M
WebVid2MI57] - - 13K 2.5M 2.5M

video-language pre-training, we roughly divide pre-train-
ing datasets into two main categories. In later sections,
we provide more details about representative pre-train-
ing datasets for each category. It is worth noting that no
matter which category pre-training datasets belong, they
differ in size and sources across different research. In
most works, the pre-training datasets for VLP are con-
structed by combining public datasets across different
cross-modal tasks or scenarios. However, other works,
such as VideoBERT], ImageBERTI5, ALIGN[S], and
CLIP16], conduct pre-training with self-constructed data-
sets. These self-constructed datasets are usually larger
than most public datasets, but might contain more noise.

5.1 Datasets for image-language pre-train-
ing

For image-language pre-training, the most widely used
data form is image-text pairs. Most image-language pre-
training datasets consist of a large number of image-cap-
tion pairs. SBUMY and Flickr30k45 are collected from
Flickr and labelled with human-generated annotations.
COCOM consists of images with five human-generated
captions filtered with special procedures to guarantee the
quality of images and annotations. CC3MB! and
CC12MP4 are constructed by crawling images and their
alt-text HTML attributes from the Internet and annotat-
ing these pictures with filtered descriptions. Due to the
looser filtering strategies, CC12M contains more noise
than CC3M. Another data source is the visual question

answering task. Many image-language datasets are organ-
ized as structured data in the context of visual question
answering. The representative large-scale dataset is the
visual genome (VG)[7. VG contains rich information in
its structured data form. Its region-level descriptions and
question-answer pairs are frequently used in the study of
image-language pre-training. Besides VG, VQAM8 and
GQAP? are also popular datasets of visual question-an-
swer pairs. Compared with VGA, GQA further alleviates
systematic biases.

The datasets mentioned above are suitable for most
common scenarios. There are also some datasets designed
for special cases. Matterport3D49 consists of RGB-D im-
ages of building-scale scenes annotated with labels for
classification and segmentation. Fashion-Genl" contains
fashion images paired with item descriptions generated by
professional stylists.

5.2 Datasets for video-language pre-train-
ing

Compared to image-language pre-training datasets,
video-language pre-training datasets are usually more
time-consuming and more difficult to collect and process.
These inconveniences restrict the development of the
community and the scale of pre-training. Datasets for
video-language pre-training cover different scenarios
and sources. Most of them, such as Kinetics-400123], How-
Tol100MB5, and WebVid-2MDB7, are collected from the In-
ternet and processed with different procedures. These
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kinds of videos are usually accompanied by subtitles, thus
providing weak or strong alignments between video clips
and text. Although those subtitles sometimes might be
too weak to align modalities, they still provide useful in-
formation, especially for the pre-training on large-scale
datasets. Another source of video-text pairs is television
programs. TVQABS! is a video-language pre-training data-
set generated from television shows. These television
shows are collected and converted to a dataset comprised
of many dialogues for understanding the videos and re-
cognizing semantic concepts in videos.

Considering the diversity of the sources and the form-
ation of these datasets, researchers apply different an-
notation and processing procedures. For example, Kinet-
ics-400[23] consists of many action-related videos annot-
ated with action classes. For other datasets[38 56, 571 the
accompanying captions/subtitles of video clips or the
class of concepts in videos are usually processed and used
as annotations.

6 Downstream tasks

As shown in Fig.2, a diverse range of tasks requires
cooperative knowledge of vision and language. In this sec-
tion, we introduce the fundamental details and goals of
these tasks.

Visual question answering (VQA).B7 5961 Giv-
ing a visual input (image or video), VQA represents the
task of correctly providing an answer to a question. It is
usually regarded as a classification task where the model
predicts the most suitable answer from a pool of choices.
To obtain an accurate performance, it is important to in-
fer logical entailments from images (or videos) based on
the question posed.

Visual reasoning and compositional question
answering (GQA).[52 62 63 GQA is an upgraded ver-
sion of VQA and aims to advance research on the visual
reasoning of natural scenes. The images, questions, and
answers in its dataset have matching semantic represent-
ations. The advantage of this structured representation is
that the distribution of answers can be more uniform, and
we can analyze the model's performance from more di-
mensions. Compared with the single evaluation metric
(e.g., accuracy) of traditional VQA, GQA includes multi-
dimensional evaluation metrics: consistency, validity,
plausibility, distribution, and grounding.

Video-language inference (VLI).[6: 64, 65 Given a
video clip with aligned subtitles as a premise paired with
a natural language hypothesis based on the video content,
a model needs to infer whether the hypothesis is entailed
or contradicted by the given video clip.

Visual entailment (VE).[66-68] In the VE task, the
image is the premise, and the text is the hypothesis. Its
goal is to predict whether the text is an “Entailment Im-

age”. There are three labels, Entailment, Neutral, and

1 https://visualcommonsense.com/leaderboard/
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Contradiction.

Visual commonsense reasoning (VCR).[69-71
VCR is the task of inferring common sense information
and cognitive understanding by a machine when it sees
an image. It exists in the form of multiple-choice ques-
tions. For a question about the image, there are several
alternative answers. The model must choose an answer
from several answers and then select the reason for choos-
ing this answer from several alternative reasons. Thus,
VCR can be divided into two tasks, including question
answering (selecting the best answer from a pool of ex-
pected answers to the question) and answer justification
(providing the rationale behind the given answer). You
can follow VCR's leaderboard! to track VLP’'s latest
ideas.

Natural language for visual reasoning (NL-
VR).["2. 7] NLVR is a subtask of the broader VCR cat-
egory, limited to the classification paradigm. The input of
the NLVR task is two images and a text description, and
the output is whether the corresponding relationship
between the images and the text description is consistent
(two labels: true or false). It is typically different from
VQA due to longer text sequences covering various lin-
guistic phenomena.

Grounding referring expressions (GRE).[74 76
The GRE task aims to localize certain regions (e.g., ob-
jects and persons) in an image given a referring expres-
sion, where the main challenge is to comprehend and
align various types of information from a visual and tex-
tual domain, such as visual attributes, locations, and in-
teractions with surrounding regions. Specifically, the
model can output a score for each region, and the region
with the highest score is used as the prediction region.

Category recognition (CR).43 CR refers to identi-
fying the category and sub-category of a product, such as
{HOODIES, SWEATERS}, {TROUSERS, PANTS},
which are vital attributes for describing a product and
are useful in many real-life applications.

Multi-modal sentiment analysis (MSA).[80 MSA is
aimed to detect sentiments in videos by leveraging multi-mod-
al signals (e.g., vision, language, etc.). It predicts the affective
orientation of an utterance as a continuous intensity variable.

Vision-language retrieval (VLR).FE!"84 VLR in-
volves understanding both vision (image or video) and
language domains with appropriate matching strategies.
It includes two subtasks, vision-to-text, and text-to-vis-
ion retrieval, where vision-to-text retrieval is to fetch the
top-most relevant text description from a larger pool of
descriptions as per vision and vice versa. VLR is widely
used in domain-specific searches, multiple search engines,
and context-based vision retrieval design systems.

Visual captioning (VC).[40: 85 86] VC aims to gener-
ate semantically and syntactically appropriate text de-
scriptions for a given visual (image or video) input. Gen-
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erating relevant and explanatory captions for a visual in-
put requires not only a rich knowledge of the language,
but also a consistent understanding of scenes, entities,
and their interactions that appear in the visual input.

Novel object captioning at scale (NoCaps).s" 88
NoCaps extends the VC task to test a model's capability of
describing novel objects from the Open Images dataset,
which are unseen in the training corpus.

Visual dialogue (VD).[8992 The specific task in VD
is the following: Given an image, a dialog history consist-
ing of a sequence of question-answer pairs, and a natural
language follow-up question, the goal for the task is to re-
spond to the question in free-form natural language (e.g.,
generate an answer). VD is the visual analogue of the
Turing Test.

Multi-modal machine translation (MMT).[93-9]
MMT is a two-fold task of translation and text generation,
translating text from one language to another with addi-
tional information from other modalities, e.g., images. The
additional visual features aim to remove ambiguities that
may arise in straightforward text machine translation and
help retain the context of the text descriptions. The multi-
modal representation space facilitates robust latent repres-
entations to complement the inherent semantic information
preserved by visual and linguistic embeddings, respectively.

Vision-language navigation (VLN).%9% VLN is
a grounding language task for an agent's locomotion as it
sees and explores real-world dynamics based on linguistic
instructions. Like generation tasks, it is typically seen as
the task of sequence-to-sequence transcoding. However,
VLN has unique characteristics. It usually has longer se-
quences, and the dynamics of the problem are quite dif-
ferent since it is a real-time evolving task. Its main chal-
lenge lies in understanding the environment and making
confident decisions during exploration.

Optical character recognition (OCR).[%: 100] OCR
generally refers to extracting handwritten or printed text
from images (such as street signs and photos of products)
as well as documents (articles, bills, invoices, financial re-
ports, etc.), which includes two parts: text detection

Illustration of downstream tasks in VLP

(similar to regression) and text recognition (similar to
classification).

In addition, there are some image-related downstream
tasks for evaluating the image-text pre-training models,
including semantic segmentation(!%: 1921 and object detec-
tion(103, 104]

stream tasks for evaluating the video-text pre-training

There are also some video-related down-

models, including action classification (AC)[58], action seg-
mentation (AS)[1%] and action step localization (ASL)[00],

Recently, Changpinyo et al.54 scaled up pre-training
data for VLP tasks and benchmarked its effectiveness
against Conceptual Captions 3M on multiple down-
stream tasks with an emphasis on long-tail visual recogni-
tion. Rethmeier and Augenstein!07 studied the perform-
ance of pre-trained model on a challenging long-tail task
and analyze the resulting long-tail learning capabilities
under zero-shot, few-shot, and full supervision conditions
to explore the performance influence of model size and
self-supervision signal amount.

7 SOTA VLP models

Image-text VLP models. VisualBERT, known as
the first image-text pre-training model, uses the visual
features extracted by Faster R-CNN, concatenates the
visual features and textual embeddings, and then feeds
the concatenated features to a single transformer initial-
ized by BERT. Many VLP models/!3; 30, 53, 108] follow a,
similar feature extraction and architecture as Visual-
BERT while adjusting the pre-training objectives and
pre-training datasets. Recently, VDBERT[% modelled
the common implicit vision-language alignment in vision
and language by pre-training on large-scale image-text
pairs via transfer learning(l10, 111, VLMO[12l leverages
patch embeddings for image and word embeddings for
text and feeds the concatenated embeddings into a single
transformer with modality experts, and achieves an im-
pressive performance. METERI33] explores how to use a
uni-modal pre-trained model and proposes a dual-stream
architecture model to handle the multimodel fusion,
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which achieves the SOTA performance in many down-
stream tasks. The summary of mainstream image-text
VLP models is shown in Table 2.

Video-text VLP models. VideoBERT?8], known as
the first video-text pre-training model, extends the BERT
model to process videos and texts simultaneously. Video-
BERT uses the pre-trained ConvNet and S3D[33 to ex-
tract video features and concatenate them with textual
word embeddings to feed into a transformer initialized
with BERT. ConvNet and S3D are frozen when training
the VideoBERT, which indicates the approach is not end-
to-end. Recently, inspired by ViT, CLIP4Clipl7 and
CLIP2Videol!8! first process video clips into frames and
get patch embeddings according to the method of ViT
processing images for each frame. CLIP4clip and
CLIP2Video optimize themselves in an end-to-end man-
ner and achieve SOTA performance. The summary of
mainstream video-text VLP models is shown in Table 3.

8 Conclusions and new frontiers

In this paper, we provide the first VLP survey. We re-
view its recent advances from five aspects: feature extrac-
tion, model architecture, pre-training objectives, pre-
training datasets, and downstream tasks, and summarize
the specific SOTA VLP models in detail. We hope that
our survey can help researchers understand VLP better
and inspire new work to advance this field. In the future,
based on existing works, VLP can be further developed
from the following aspects:

Incorporating acoustic information. Most previ-
ous work on multi-modal pre-training emphasize the joint
modeling of language and vision but ignore the informa-
tion buried in audiol!37. 138]. Although the semantic in-
formation in audio might intersect with language, audio
could provide extra emotion information, acoustic bound-
ary information, etc. Moreover, pre-training with audio
makes the model capable of downstream tasks with
acoustic inputs. Until now, joint modeling and represent-
ation across text, vision, and audio is still an open prob-
lem left for further investigation. Several cutting-edge
works have shed light on the future of this research field.
Unlike previous VLP models, VATT!39 takes the raw au-
dio as input and learns the multi-modal representations
with the noise contrastive estimation (NCE). Differing
from VATT, OPT[I40 learns the cross-modal representa-
tions across text, image, and audio jointly with various
multi-level masking strategies, and it is also capable of
generating text and images. Some other works, such as
AudioCLIP141] and MERLOT Reservell42, also shows
their unique approaches to learning the cross-modal rep-
resentations over three modalities.

Knowledgeable and cognitive learning. Al-
though the existing VLP models have achieved remark-
able performance, their essence is to fit large-scale multi-
modal datasets. Making VLP models more knowledge-
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able is important for future VLP. For input vision and
text, there is rich related external common sense world
knowledge and illustrative situational knowledgell43],
which can be used to augment the input and accelerate
the model training and inference. The solution to this
problem requires unified cognitive model architectures,
knowledge-guided pre-training objectives, and the sup-
port of interacting with new knowledge.

Prompt tuning. Currently, fine-tuning is the domin-
ant method to transfer the knowledge of VLP to down-
stream tasks. However, as the scale of the model in-
creases, each downstream task has its fine-tuning para-
meters, leading to parameter inefficiency. Moreover, the
diverse downstream tasks also make the design of the pre-
training and fine-tuning stages cumbersome, leading to a
gap between them. Recently, prompt tuning has been
getting more and more attention in NLP. By designing
discrete or continuous prompts and using MLM for spe-
cific downstream tasks, these models could: 1) reduce the
computational cost of fine-tuning the enormous amounts
of parameters; 2) bridge the gap between pre-training and
fine-tuning. Prompt tuning is a promising way to stimu-
late the linguistic and world knowledge distributed in
PLMs. In the next step, it can be improved and trans-
ferred to multi-modal scenarios, breaking the traditional
paradigm and solving the pain points of VLP[44],

Model compression and acceleration. Model com-
pression and acceleration is an essential approach to im-
prove the efficiency of VLP models. In this case, large
models are compressed to small ones to meet the need for
faster inference and deployment on various real-life scen-
arios such as resource-constrained devices. In general
PLMs, model compression and acceleration is a hot topic,
and specific methods include parameter sharingl2®, model
pruning!45], knowledge distillation[!46], and model quantiz-
ationl'47l. Recently, knowledge distillation has been used
to compress VLP models!!48], but other methods, such as
pruning and quantization of VLP models, remain to be
explored. Furthermore, a data-efficient VLP paradigm is
constructed!!49. However, only a few efforts are currently
focused on improving the efficiency of VLP models, leav-
ing much room for exploration.

Out-of-domain pre-training. Despite the signific-
ant progress achieved by VLP models, part of their suc-
cess can be traced back to the introduction of in-domain
pre-training datasets used in both pre-training and down-
stream tasks. The out-of-domain pre-training will be an
essential research direction, that is, VLP models transfer
the learned knowledge and representation into down-
stream tasks with unknown data distributions. To mitig-
ate the distribution biases between pre-training and fine-
tuning, DeVLBert32 is proposed to perform intervention-
based learning. It borrows the idea of the backdoor ad-
justment from the research area of causality and designs
several neural-network based structures for Bert-style
out-of-domain pre-training.
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Table 2 The summary of mainstream image-text VLP models. The number of downstream tasks determines whether the
model is generic or domain-specific VLP. FE: Feature extraction. PT: Pre-training. Emb: Embedding. SC in datasets
column: Self-constructed or self-collected. MTL in datasets column: All datasets for multi-task learning in

corresponding work. See other abbreviations in datasets column in Table 1.

Model Domain Vision FE  Language FE Mullclt;s_i]:)]zda] Decoder PT objectives PT datasets Downstream tasks
VisualBERT) Image OD-RFs Emb Single-stream  No MLM+VLM COCO GRE+NLVR+VC
R+VQA
ViLBERTI® Image OD-RFs Emb Dual-stream No MLM+VLM+MVM COCO+VG VLR+NLVR+VE
+VQA
LXMERT!!113] Image OD- Xformer Dual-stream No MLM+VLM+MVM+ COCO+VG+VQA GQA+NLVR+
RFs+Xformer VQA +GQA+VGQA VQA
B2T2(114] Image CNN-GFs Emb Single-stream  No MLM+VLM CC3M VCR
Unicoder-VLI[3] Image OD-RFs Emb Single-stream  No MLM+VLM+MVM CC3M+SBU VLR+VCR
VL-BERT!108] Image OD-RFs Emb Single-stream  No MLM+MVM CC3M GRE+VCR+VQA
VLPB1 Image OD-RF's Emb Dual-stream  Yes MLM+LM CC3M VC+VQA
UNITERB Image OD-RFs Emb Single-stream No MLM+VLM+MVM+ COCO+VG+SBU GRE+VLR+NLV
WRA +CC3M R+VCR+
VE+VQA
12-IN-1[115] Image OD-RFs Emb Single-stream  No MLM+MVM MTL GQA+GRE+VC+
NLVR4VE+VQA
VisDial-BERTI16]  Image OD-RF's Emb Dual-stream No MLM+VLM+MVM CC3M+VQA VD
ImageBERTI[53] Image OD-RFs Emb Single-stream  No MLM+VLM+MVM  LAIT+CC3M+ VLR
SBU
PREVALENTM7  Image CNN- Xformer Single-stream  No MLM+MVM Matterport3D VLN
GFs+Xformer
XGPTHY Image OD-RFs Emb Dual-stream  Yes MLM+IDA+VC+ CC3M VC+VLR
TIFG
InterBERI[!18] Image OD-RFs Emb Single-stream  No MLM+VLM+MVM COCO+CC3M+ VLR+VCR
SBU
PixelBERT[!19] Image CNN-GFs Emb Single-stream  No MLM+VLM COCO+VG VLR+NLVR+
VQA
OSCARI! Image OD-RFs Emb Single-stream  No MLM+VLM COCO+SBU+CC3 GQA+VC+VLR+
M+FLKR+VQA+ NLVR+NoCaps+V
GQA+VGQA QA
VLN-BERT!!20] Image OD-RF's Emb Dual-stream No MLM+VLM+MVM CC3M VLN
FashionBERT[!21]  Image Xformer Emb Single-stream  No MLM4+VLM+MVM FashionGen VLR
VILLAI22] Image OD- Xformer  Single-stream  No MLM+VLM+MVM COCO+VG+CC3 GRE+VLR+NLV
RFs+Xformer M+SBU R+VCR
+VE+VQA
ERNIE-ViL[123] Image OD-RFs Emb Single-stream  No MLM+MVM CC3M+SBU GRE+VLR+VCR
+VQA
RVL-BERT![124] Image OD-RFs Emb Single-stream  No MLM+VLM+MVM CC3M VC+VQA
VinVL[27 Image OD-RFs Emb Single-stream  No MLM+VLM COCO+CC3M+SB GQA+VC+VLR+
U+FLKR+VQA+ NLVR+NoCaps+V
GQA+VGQA QA
VL-T50125] Image OD-RFs Emb Single-stream  Yes MLM+VLM+VQA+ COCO+VG+VQA GQA+GRE+VC+
GRE+VC +GQA+VGQA MMTHNLVRAVC
R+VQA
ViLT(126] Image ViT-PFs Emb Single-stream  No MLM+VLM COCO+4+VG+SBU  VLR+4+NLVR+
+CC3M VQA
ALIGNI3] Image CNN-GFs Xformer Dual-stream No VLC ALIGN VLR
Kaleido-BERT43] Image CNN-GFs Emb Single-stream No MLM+VLM+AKPM FashionGen CR+VC+VLR
MDETRI42] Image Xformer Xformer  Single-stream Yes OD+MLM+VLC COCO+VG+FLK GQA+VQA
R+GQA
SOHO!27] Image CNN-GFs Emb Single-stream  No MLM+VLM+MVM COCO+VG VLR+NLVR
+VE+VQA
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Table 2 (continued) The summary of mainstream image-text VLP models. The number of downstream tasks determines whether the
model is generic or domain-specific VLP. FE: Feature extraction. PT: Pre-training. Emb: Embedding. SC in datasets
column: Self-constructed or self-collected. MTL in datasets column: All datasets for multi-task learning in
corresponding work. See other abbreviations in datasets column in Table 1.

Multi-modal

Model Domain Vision FE Language FE fusion Decoder PT objectives PT datasets Downstream tasks
E2E-VLPI[128] Image CNN-GFs Emb Single-stream  Yes OD+MLM+VLM COCO+VG VC+VLR+NLVR
+VQA
Visual Parsing1291  Image Xformer Emb Single-stream  No MLM+VLM+MVM COCO+VG VLR+VCR+VE+
VQA
CLIP-ViLI130] Image CNN-GF's Emb Single-stream  Yes MLM+VLM+VQA COCO+VG+VQA VE+4+VLN+VQA
+GQA+VGQA
ALBEFI[35] Image Xformer Xformer Dual-stream No MLM+VLM+VLC COCO+VG+CC3 VLR+NLVR+VQ
M+SBU A
Sim VLM Image CNN-GFs Emb Single-stream  Yes PrefixLM ALIGN VC+NLVR+VE+
VQA
MURALI31] Image CNN-GFs Xformer Dual-stream No VLC CC12M+ALIGN VC+VLR
VLMO[12] Image ViT-PFs Emb Single-stream  No MLM+VLC+VLM COCO+4+VG+CC3 VQA+4NLVR+
M+SBU VLR
METERB3] Image Xformer Xformer Dual-stream No MLM+VLM COCO+4+VG+CC3 VLR+NLVR+
M+SBU VE+VQA
X-VLMI28] Image Xformer Xformer  Single-stream  No MLM+VLM+VG COCO+4+VG+CC3 VLR+NLVR+
M+SBU VE+VQA
TCLI[132] Image Xformer Xformer  Single-stream  No MLM+VLM+TCL COCO+VG+CC3 VLR+NLVR+
M+SBU VE+VQA

Table 3 The summary of mainstream video-text VLP models. The number of downstream tasks determines whether the model is
generic or domain-specific VLP. FE: Feature extraction. PT: Pre-training. Emb: Embedding. SC in datasets column:
Self-constructed or self-collected. MTL in Datasets column: All datasets for multi-task learning in

corresponding work. See other abbreviations in the datasets column in Table 1.

Model Domain Vision FE = Language FE Mullclt;s_i]:)]zda] Decoder PT objectives PT datasets Downstream tasks
VideoBERTI58] Video CNN-GFs Emb Single-stream  No MLM+VLM+MVM SC AC+VC
CBTI105] Video CNN- Xformer  Single-stream  No VLC Kinetics AC+AS+VC
GFs+Xformer
UniVLI[106] Video CNN-GFs Xformer Dual-stream  Yes MLM+VLM-+VC HT100M AS+ASL+MSA+V
C+VLR
HEROIBS Video CNN- Xformer  Single-stream No MLM+4+VLM+MVM+ HT100M+TV  VC+VLI+VQA+V
GFs+Xformer FOM LR
MMFT-BERT!34  Video OD- Xformer Single-stream  No VQA TV VQA
RFs+Xformer
ActBERTI133] Video OD-RFs+CNN Emb Single-stream  No MLM+VLM+MVM HT100M AS+ASL+VC+VQ
A+VLR
CLIPNE] Image CNN/Xformer Xformer Dual-stream No VLC SC OCR +AC etc.
/Video
Frozen[57] Video ViT-PFs Emb Dual-Stream  No VLC WebVid2M+CC3M VLR
Region- Video ViT-PFs Emb Dual-Stream No VLC WebVid2M+CC3M VLR
Learner(136]
CLIP4Clipli7 Video ViT-PFs Emb Dual-Stream No VLC WebVid2M+CC3M VLR
CLIP2Videol8] Video ViT-PFs Emb Dual-Stream No VLC WebVid2M+CC3M VLR

Advanced model

architecture. Nowadays, trans-

former-based architectures make great progress in VLP.

Is such a structure the optimal structure for VLP? We

note that the recently popular diffusion modell!5% for im-

age generation has succeeded greatly. Some resear-

chers(!51] also extend the diffusion model to controllable

@ Springer

text generation. So, whether the diffusion model can be

used in VLP? It may be a question worth exploring in the

future. Moreover, neural networks themselves are in-

spired by neuroscience, and we can explore next-genera-

tion VLP frameworks with support from other disciplines.

The inspirations from mathematics include the frame-
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work of non-Euclidean space manifold and how to put
some geometric priors into the modell!52 153 which are re-
latively new research directions. Research on the energy-
efficient spiking neural networks(l%4156] in the brain-in-
spired field may also provide insights into the explora-
tion of novel VLP architectures.
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