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1 Introduction

Task-oriented dialogue (TOD) system aims to assist
users in accomplishing tasks ranging from weather inquir-
ies to schedule planninglll. It can be classified into two
approaches. The first is the end-to-end approach, which
directly maps the current dialogue context to the system'’s
natural language responsel2-5. These works often adopt a
sequence-to-sequence model and train in a supervised
manner. The second is the pipeline approach, which sep-
arates the system into four interdependent components:
Natural language understanding (NLU), dialogue state
tracking (DST), dialogue policy learning (DPL) and nat-
ural language generation (NLG), as shown in Fig. 1001,

Both of these methods have their own limitations and
advantages. The end-to-end approach is more flexible and
has fewer requirements for data annotations. However, it
requires a large amount of data and its black box struc-
ture provides no interpretation and little controll”. On
the flip side, the pipeline approach is more interpretable
and easier to implement. Although the whole system is
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Fig.1 An overview of a task-oriented dialogue system. All blue
parts represent the four components in the pipeline dialogue
system.
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harder to optimize globally, the pipeline approach is pre-
ferred by most commercial dialogue systemslfl. Our sur-
vey also falls under the pipeline category to investigate
and summarize the current progress of dialogue policy
learning. We will briefly introduce the different functions
of these four modules and then look deeper into the dia-
logue policy learning module.

Among these four modules, NLU aims to identify the
intentions and slots from the input sentence as the first
module that interacts directly with the user. Then, the
DST module represents all previous extracted intentions
and slots as an internal dialogue state. Next, the DPL
module performs an action to satisfy the user's intent giv-
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en the state as input. Finally, the NLG module trans-
forms and outputs the action in natural language form. In
this pipeline, DPL plays a key role in TOD as an inter-
mediate connection between the DST and NLG modules,
which directly affects the success of the dialogue
systemlS,

Recently, the progress in DPL has been significantly
facilitated by the development of reinforcement learning
(RL) algorithms811. Levin et al.l¥l are the first to treat
DPL as a Markov decision process (MDP) problem. They
outline the complexities of modelling DPL as an MDP
problem and justify the application of RL algorithms to
optimize the dialogue policy8l. Thereafter, the majority of
studies attempt to investigate and resolve the technical
issues that arise when applying RL algorithms to dia-
logue systems practicallyl® 12, 13, At the other end of the
spectrum, several researchers explored the use of super-
vised learning (SL) techniques in DPL[0, 11, 14716 The
main idea is to treat the dialogue policy learning as a
multi-class classification problem, with actions and states
acting as labels and inputs, respectively. However, SL
techniques have a notorious and unaffordable flaw since
they do not consider the future effects of the current de-
cision, resulting in sub-optimal behaviour(14l.

With the breakthroughs in deep learning, deep rein-
forcement learning (DRL) methods that combine neural
networks with RL have recently led to successes in learn-
ing policies for a wide range of sequential decision-mak-
ing problems. This includes simulated environments like
the Atari games[!7, the chess game Gol'8l, and various ro-
botic tasks(l% 20, Following that, DRL has received a lot
of attention and achieved promising results, mainly in
single-domain dialogue scenarios(2!-24. The neural models
can extract high-level dialogue states and encode complic-
ated and long language utterances. This was the biggest
challenge that early works faced[® 9. As the focus of DPL
research has slowly gravitated to more complicated multi-
domain datasets, many RL algorithms face scalability
problems(25].

Recently, there has been a flurry of works that focus
on ways to adapt and improve RL agents in multi-do-
main scenarios. Few works attempt to review the vast lit-
erature on recent applications of reinforcement learning
(RL) in DPL of TOD systems. Grassl surveyed the use of
RL in the four types of dialogue systems, namely social
chatbots, infobots, task-oriented, and personal assistant
botsl20l. However, the progress and challenges of using RL
in TOD systems were not well discussed. Similarly, Dai et
al.27 reviewed the recent progress and challenges of dia-
logue management, which only contained a limited dis-
cussion on RL methods in DPL due to its wide scope of
interest. Furthermore, RL dialogue systems often have
different settings in the five core RL elements, namely en-
vironment, policy, state, action, and reward. Previous
surveys did not consider the inconsistent settings of dif-
ferent systems, which resulted in an unfair comparison
among these systems.

In this survey, we describe the unique strengths of
previous works and categorize them based on the five ele-
ments of RL. Then we focus our discussion on three main
recent challenges of applying RL to DPL, namely explor-
ation efficiency, cold start problem, and large state-ac-
tion space. Most recent works using RL to optimize DRL
attempt to address these challenges. The procedure which
we use to shortlist these works for review is provided in
Appendix. The remainder of this paper is organized as
follows. In Section 2, we illustrate the problem definition
of DPL and elaborate on the challenges of using RL to
train a dialogue agent in TOD systems firstly. Then, we
introduce our methodology to characterize recent DPL
works. The methodology is motivated by the fact that the
key differentiating aspect of recently proposed methods
can be boiled down to the differences in these five funda-
mental elements of RL. In this case, it is easy and self-
evident to find similarities and differences between differ-
ent methods. Furthermore, this helps identify the key
component of each work that contributed the most to its
improvement. The state-of-the-art techniques of recent
DPL works categorized by the five RL elements are dis-
cussed in detail separately in Sections 3—-7. In Section 8§,
we discuss the current status of DPL research with RL.
In Section 9, we present the challenges in applying RL
dialogue agents in real-life scenarios and three promising
future research directions. Finally, we conclude the sur-
vey in Section 10.

2 Overview

2.1 Problem definition and annotations

Given a dialogue state that encodes the previous inter-
actions, the dialogue policy decides the next action to
perform. Fig.1 shows an example of a dialogue turn.
After DST updated the belief state with the location in-
formation, the policy decided to request the airline pre-
ferred by the user. The goal of DPL is to learn a dia-
logue policy that generates the satisfactory next system
action that answers the user’s query. DPL is often formu-
lated as an MDP problem, and RL is often used to optim-
ize the policyl6: 287331, Formally, an MDP is defined as a
five-element tuple (S, A, P, R, 7). S refers to the dia-
logue state space that holds the necessary information for
the policy to make a decision. A refers to the set of all
system actions. P(s’|a,s) refers to the transition model
S x AxS —[0,1] of the environment. R(s,a) is the re-
ward function S x A — R that provides an immediate re-
ward for each turn. v € (0,1] is the discount factor that
indicates the effect of future rewards. Sutton and Bartol34
provided a comprehensive introduction to RL methodolo-
gies.

A full turn of dialogue interactions can be viewed as a
trajectory (s1,a1,r1,S2,a2,7r2,---), which is generated by
the following process at each step as depicted in Fig.2.
First, the dialogue agent observes the current dialogue
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Fig.2 Framework of Markov decision process in DPL. At time

t, the system takes an action at, receiving a reward r; and a
terminate signal ¢ts and then transferring to a new state s¢41.

states s; € S and responds with an action a; € A. Second,
the environment! receives the action and transits to a
new state si+1 € S according to the transition model P.
Third, the environment provides a reward r; and termin-
ate signal ts after transiting to a new state. At each step
t, this process gives us a tuple (si,at,rt, S¢+1) which is
called a transition. The goal of the RL agent is to learn
an optimal deterministic policy 7w :S — A that maxim-
izes the value function, which is the expected total dis-
counted returns in a trajectory. It is formally defined as

Vi(s)=FE

T
¢
Z’y relso = 5:|

t=0

where « is the discounting factor and so is the initial
state. Equivalently, the policy can also maximize the Q-
function, which is defined as

Q" (s,a)=FE

T
¢
E Y're|so = s,a0 = a .

t=0

The value function can be derived from the Q-func-
tion by

V7™ (s) = max Q(s, a).

acA

2.2 Recent challenges in applying RL

Recently, neural models have started to have a suffi-
cient capacity to encode the long context in dialogues. It
has played a big role in recent DRL methods in dialogue
systems. However, moving towards more complicated dia-
logue scenarios have been difficult because the possible
combinations of states grow exponentially with the num-
ber of actionsB’l. More specifically, three major chal-
lenges appear and attract much attention: Exploration ef-
ficiency, cold start problem, and large state-action space.

Exploration efficiency. RL methods need to inter-
act with an environment to collect enough interactions
for training. In the dialogue system setting, the agent is
required to interact with real usersi36l, which is expensive
and time-consuming. In practice, the agent interacts with

1 Here, the environment is a user simulator.
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a rule-based user simulator(2l: 37, The exploration effi-
ciency depends on how closely the simulator resembles
human behaviour, which is not easy2® 38, It is laborious
to build a high quality and specialized user simulator for
each dataset.

Cold start problem. A poorly initialized policy may
lead to low-quality interactions with users in online learn-
ing settings(. Having rare successful experiences causes
the model to learn slowly in the beginning and discour-
ages real users from interacting with the system[40; 411,

Large state-action space. DPL for some complex
dialogue tasks, such as multi-domain involves a large
state-action spacel30: 42, The dialogue agent is required to
explore this large space and often takes many conversa-
tion turns to fulfil a task. The long trajectory results in a
delayed and sparse reward, which is usually provided at
the end of a conversation/29.

2.3 A method to characterize RL ap-
proaches

Recently, many researchers have been trying to tackle
the three aforementioned challenges. The RL system com-
prises five elements: Environment, policy, state, action,
and reward. Each work in DPL using RL can be summar-
ized by how it configures these five elements. This motiv-
ates us to characterize the recent approaches in RL dia-
logue agents based on the five elements of RL. Since dif-
ferent RL dialogue agents usually have very different con-
figurations of these five elements, it is difficult to com-
pare them and identify the key components contributing
to the improvement. Therefore, this survey breaks down
the recent work into these five elements and describes the
various configurations for each element separately. This
method allows us to identify the focal points of recent ad-
vancements in RL methods in DPL research. Table 1
provides an overview of the different RL methodologies
used in DPL.

3 Environment

In a typical scenario of a DPL, there are two speaker
roles: user and system. Most of the current methods are
single-agent that only model the system side, and treat
the user side as the environment[2!, 23, 33, 44, 47, 61, 63] Some
methods model two roles in n dialogues[?8, 6: 601 and some
works consider multi-person (more than two persons) dia-
logue. This section illustrates 1) different methods to
build a user simulator (i.e., the environment) and 2) ways
to model different agents simultaneously. The various
work mentioned in this section directly tackled the ex-
ploration efficiency problem by improving the quality and
efficiency of building a user simulator.

3.1 Single-agent/User simulator

Most previous works build a user simulator first and
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Simulator Annotations Expert demo
. Experience Reward
Model Dataset RL algorithm replay . Methodo- Belief Dialogue Supervised function
Granularity . 1L
logy state act buffer
TSLM3] Calendar Q-learning V Utterance level Rule-based y y v Other
RNN I:eward CamRes GP-SARSA Dialogue-act Agenda-based y Y Rew%}rd
shaping[44] level shaping
End-to-end . . Manually
RILJ45] 20 Question game DRQN N Utterance level Agenda-based N N v defined
Contlpuqus CamRes NAC v Dialogue-act Agenda-based N N v Ma‘nually
learning[2! level defined
Two-stage GPSARSA, Dialogue-act Manuall
training DSTC2 DA2C, TDA2C, N o & Agenda-based N N J dofime Y
DQNI22] DQN, DDQN eve enne
Option . Dialogue-act Manually
frameworkl46] Pydial HRL \/ level Agenda-based V V defined
BBQN21] Amazon movie- DON N Dialogue-act A da-based N N N Oth
ticket Q level genda-base ers
IPLDMES] DSTC2 REINFORCE, Dialogue-act v iti-agent v v N Manually
multi-agent level defined
CTCDSM7 Frames HRL R Dialogue-act Agenda-based y y V Mapually
level defined
TRACER, Dialogue-act Manually
oNACERY CamRes GPRL, TRPO v lovel Rule-based v v v V' efined
ac Dialogue-act Manually
39] -
cT DSTC2 DQN R level Agenda-based y y defined
Actor-critic/ Dialogue-act Manually
48] -
ACER CamRes TRPO/IS R level Agenda-based y Y v defined
ALDM[29] DSTC2 Policy gradient Elzll"g“‘a“ Multi-agent N N V AL-TIRL
Adversarial ~Amazon movie- i Dialogue-act
A2C30] ticket Actor-critic R level Agenda-based y y v V AL-IRL
; Amazon movie- Dyna-Q Dialogue-act Manually
31] s
bDQ ticket actor-critic v level World model v v v v defined
Amazon movie- T-HER/ Dialogue-act Manually
[40] -bas
HER ticket DQN S-HER level Agenda-based v v defined
. Dialogue-act Manually
[49] o ha
FDQN PyDial Feudal RL v lovel Agenda-based y y defined
Option . Dialogue-act ) Manually
framenorklsol Pydial HRL v lovel Agenda-based v V defined
D3Q1 Amazon movie- Dyna-Q v Utterance level World model N N v v Manually
ticket defined
52 Manually
SDNI52] Frames HRL v Utterance level Agenda-based v .
defined
Switch- Amazon movie- . Manually
DDQI ticket Dyna-Q v Utterance level World model y y \/ \/ defined
D3QI] Amazon movie- D N Utt level Agenda-based N N J N Manually
ticket yna-Q erance level Agenda-base defined
- DealOrNoDeal Manuall
LaRL[4 © MultiwoZ / REINFORCE Utterance level Data-driven \/ defined Y
Meta- . DQN/Dual Dialogue-act . Manually
DTQNI) MultiwOZ replay \/ level Agenda-based Y Y defined
WoLF- Dialogue-act/ . Manually
PHCI56] DSTC2 WoLF-PHC Utterance level Multi-agent v v defined
.-, Amazon movie- Dialogue-act Manually
_ [57] -
BCS-DDQ ticket Dyna-Q R lovel World model y y V' defined
GDPLIS] MultiwOZz PPO Dialogue-act ) da-based N N v AL-IRL

level
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Table 1 (continued) An overview of the configurations of recent works on DPL with RL approach

Simulator Annotations Expert demo
. Experience Reward
Model Dataset RL algorithm replay Granularit Methodo- Belief Dialogue L Supervised function
Y logy state act buffer
Amazon movie- T-HER/ Dialogue-act Manually
32 ~bas
LHUA[ ticket DQN SHER level Agenda-based v v defined
Act-VRNNBY  MultiwOZ ELBO N Eﬁfg“e‘m Agenda-based N N v Others
OPPA[) MultiwoZz DQN N Dialogue-act ) o 4abased N N Manually
level defined
GDPLw/o  \ritiwoz PPO, DQN N Dialogue-act 1o based N N AL-IRL
ALI61] level
A -criti Dial - M 11
MADPLI(62] MultiwOz ctor-critic, N talogue-act b 1ti agent N N N anualy
multi-agent level defined
. . Dialogue-act Manually
33
DQfDB3 MultiwOZ DQN v level Agenda-based V y v defined
. Dialogue- M 11
RoFL2 MultiwOZ DQN N lalogue-act 4 onda-based N N N N anualy

level

defined

interact with the single system agent using the simulator
to obtain a large number of simulated user experiences
for RL algorithms. Building a reliable user simulator,
however, is not trivial and often requires much expert
knowledge or abundant annotated datal62l. There are two
major methods to build a user simulator.

Agenda-based simulator. With the growing need
for the dialogue system to handle more complex tasks, it
is very challenging and laborious to build a fully rule-
based user simulator, which requires extensive domain
knowledge and expertise. An agenda-based simula-
torl37. 64-66] starts a conversation with a randomly gener-
ated user goal that is unknown to the dialogue manager.
It keeps a stack data structure (i.e., user agenda) during
the course of the conversation. Each entry in the stack
maps to an intention the user aims to achieve, and the
order follows the first-in-last-out operation of the agenda
stackl®”). An agenda-based simulator stores all the inform-
ation the user needs to inform and acquire. It acts ac-
cording to pre-defined rules. An example of a dialogue
and the corresponding agenda sequence are shown in
Fig.3. The Cj refers to the user constraints on the venue,
and Ry specifies the information of the venue required by
the user. Sys ¢ and Usr ¢ are the system response and user
utterance at turn ¢, respectively. A; is the user agenda at
turn ¢. Usrt is generated based on the intention(s)
popped from the top of the agenda stack A;. For ex-
ample, the user utterance at turn 1 (ie., Usr1) “I am
looking for a nice bar serving beer.” is based on the two
intentions “inform (type = bar)” and “inform (drinks =
bar)” popped from the user agenda at turn 1 (i.e., A4;).

Data-driven simulator. Another method to build a
user simulator is to utilize a sequence-to-sequence frame-
work. Its goal is to generate user responses (utterance or
dialogue actions) based on the current dialogue
context®8]. The dialogue context consists of historical dia-
logue content, dialogue goal, constraint status, and re-
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quest status. This method can be learned and optimized
directly from a large amount of human-human dialogue
corporal69-72],

Although the data-driven approach is able to con-
struct a user simulator without much engineering, it is
hard to evaluate the quality of a user simulator as it is
unclear to define how closely the simulator resembles real
user behaviours(™75. The gap between the user simulat-
or and humans renders dialogue policy optimization diffi-
cultl67],

3.2 Multi-agents

The goal of RL is to discover the optimal strategy
7*(als) of the MDP. It can be extended into the N-agents
setting, where each agent has its own set of states S; and
actions A;. In multi-agent reinforcement learning

(MARL), the state transition s = (s1,--,sny) —> s =
S1,000 58 epends on the actions taken all agents
! v) depend the acti taken by all agent
(a1,--+ ,an) according to each agent's policy m;(ai|s;)

where s; € Si, a; € A;. Similar to single-agent RL, each
agent aims to maximize its local total discounted return
Ri = Zt ’ytn,t.

Instead of employing a user simulator, it was demon-
strated that an user agent and dialogue agent learning
concurrently by interacting with each other can achieve
satisfactory performance in a negotiation scenario without
a rule-based simulator(l. Liu ang Lanel?8] made the first
attempt to apply MARL to the task-oriented dialogue
policy to learn the system policy and user policy concur-
rently. It optimizes two agents from the corpus by iterat-
ively training the system policy and the user policy with
the policy gradient method. Thereafter, WoLF-PHC was
applied within the MARL framework to the task-ori-
ented dialogue policy®l, which is based on Q-learning for
mixed policies to achieve faster learning. Following this
line of research, Takanobu et al.[62l extended the MARL
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type = bar
drinks = beer
area = central

name =
addr =
phone =

RD =

Sys 0 Hello, how may I help you?

in form(type = bar)

in form(drinks = beer)
inform(area = central)
request(name)
request(addr)
request(phone)

L bye()

Usr 1 I'm looking for a nice bar serving beer.

A =

Sys 1 Ok, a wine bar. What pricerange?
negate(drinks = beer)
inform(pricerange = cheap)
inform(area = central)
request(name)
request(addr)
request(phone)

bye()

Usr2 No, beer please!

Sys 2 A bar serving beer, correct?

af firml)
inform(pricerange = cheap)
inform(area = central)
request(name)
request(addr)
request(phone)

bye()
Usr 3 Yeah something cheap in the town centre.

Sys 3 Murphy's on Main Square serves cheap beer.

- request(phone)
e [ bye()

Usr 4 Ok, and what's the phone number?
Sys 4 The number is 796 69 94.

As = [ bye() ]
Usr 5 Thanks, goodbye!

Fig.3 A dialogue sample and agenda. Cp and Ry specify the
user’s constraints and the information required by the user. Sys 0
refers to the first dialogue initiated by the system. A¢, Usr ¢ and
Sys t are the agenda stack, user utterance, and system response
at turn ¢, respectively37).

framework to handle multi-domain dialogue by using the
actor-critic framework instead of dealing with the large
discrete action space in dialoguel62l. Recent work exten-
ded the traditional two-agent to three-agent, leading to a
smaller action space and faster learningl’7l. Another work
explored the MARL framework from a different perspect-
ivel™l. They use MARL in the policy committee frame-
work, where each policy decides an action on its own and

is combined by a gating mechanism.

4 Policy

In this section, we firstly divide different DPL meth-
ods into two categories: Model-free reinforcement learn-
ing and model-based reinforcement learning. Further-
more, the former method is divided into hierarchical rein-
forcement learning (i.e., HRL)[™: 801 and feudal reinforce-
ment learning (i.e., FRL)®Y. Noticeably, HRL and FRL
alleviate the large state-action space problem by decom-
posing the state-action into smaller ones, while the Deep
dyna-QBY models enhance the exploration efficiency by
modelling the environment dynamics. In addition, most of
these methods require warm-up before training, which al-
leviates the cold start problem. The details of the warm-
up method are discussed below.

4.1 Model-free RL-HRL

Solving composite tasks, which consist of several in-
herent sub-tasks, remains a challenge in the research area
of dialogue systems. For instance, a composite dialogue of
making a hotel reservation involves several sub-tasks,
such as looking for a hotel that meets the user’s con-
straints, booking a room, and paying for the room. HRL
decomposes complex tasks into several subtasks and
learns different policies for these subtasks from top to
low-levell46, 47, 50l As shown in Fig.4, the top-level policy
decides which option (i.e., subtask) w € Q should be
chosen, and the low-level dialogue policy selects the prim-
itive actions a € A to complete the subtask given by the
top-level policy. It is noted that a primitive action is an
action lasting for one time step, while an option is an ac-
tion lasting for several time steps. HRL can be further di-
vided into sub-domain or sub-goal hierarchical reinforce-
ment learning.

Dialogue policy
Extrinsic reward ¢
S, Top-level policy ()
© ~ g (wls)
‘ User S, e o
simulator

a

t Low-level policy (z,)——— Internal

a,~m, (als,) ~<——— evaluator
Intrinsic reward

i
n

a,

Fig. 4 The overview of two levels of policies in hierarchical
reinforcement learningl47]

Sub-domain. Some works used the options frame-
work[82] to solve the above problem with different approx-
imatorsl46: 471. However, each option (i.e., sub-task) and its
property (e.g., starting and terminating conditions, and
valid action set) had to be manually defined. Bacon et
al.[®3, 84 proposed a unified framework that integrated op-
tion discovery and achieved comparable performance with
manually defined options framework/50],
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Sub-goal. Instead of decomposing a task according to
the corresponding domain, it is also an option to divide a
complex goal-oriented task into a set of simpler subgoals.
The subgoal discovery network (SDN)P2 was proposed to
discover and exploit the hidden structure of the task to
enable efficient policy learning inspired by the sequence
segmentation modell83.

4.2 Model-free RL-FRL

Feudal reinforcement learning (FRL)®Y is another in-
teresting attempt to solve the large state and action
space problem. FRL decomposes a task spatially to re-
strict the action space of each sub-policy, whereas HRL
decomposes a task temporarily to solve a different sub-
task in a different time step(2”: 671. Casanueva et al.[49 are
the first to apply FRL to task-oriented dialogue systems
and decomposes the decision into two steps based on its
relevance with slots: A master policy is chosen to select a
subset of primitive actions in the first step, and a primit-
ive action is chosen from the selected subset at the second
step. The decisions in different steps use different parts of
the abstracted states. Furthermore, Casanueva et al.[s7]
showed that feature extraction could be learned jointly
with the policy model. It obtained a similar performance
with the handcrafted features in feudal dialogue manage-
ment.

In contrast to HRL, which decomposes a task into
temporally separated subtasks, FRL decomposes a com-
plex decision spatially7l. Although both HRL and FRL
can be used to address large dimension issues, both have
limitations. The decomposition in HRL often requires ex-
pert knowledge, while FRL does not consider the mutual
constraints between sub-tasks[27].

4.3 Model-based RL

Different from model-free RL methods, model-based
RL models the environment to decide the transition of
states, enabling planning for dialogue policy learningl6l.
Deep dyna-Q (DDQ)BU is the first deep RL framework
that integrates planning for task-completion DPL. It ef-
fectively leverages a small number of real conversations.
Specifically, the environment is modelled as a world mod-
el to mimic the real user response and to generate a simu-
lated experience. Recently, more DDQ variants have been
proposed to improve the quality of simulated experience
through adversarial trainingl®!l, active learningl®3, and hu-
man teaching[57.

4.4 Warm-up by imitation learning

Imitation learning (IL) enables the policy to learn
from the expert demonstrations without exploring the en-
vironment. Fig.5 shows the architecture of imitation
learning. The policy is first pretrained with the human
demonstrations. Then, the pretrained policy interacts
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with the environment to collect experiences for RL fine-
tuning. This leads to effective initialization in the warm-
up stagel88l. With limited warm-up steps based on a small
number of expert demonstrations, the learning speed of
the dialogue RL agent can be accelerated[2123, 28, 29, 31],
However, another line of work points out that IL re-
quires expert demonstrations and the transition dynam-
ics of the RL environment to have the same distribution,
which is often not the case in DPL[22 23], Thus, it is critic-
al to follow up on the IL with different RL methods[28 31,

User
simulator
al
Transition
(Sr’ as 1y, Sz+|)
Policy ~<~—————  Simulated
experience
Experience
replay
(s,a,r,s")
Human
o demonstration
Imitation
learning

Fig. 5 RL architecture of using imitation learning

5 State space

The dialogue state encodes the essential information
in the dialogue history for the dialogue policy to generate
the next system action. There are mainly three types of
state representations used in recent research, namely
multi-hot, distributed, and multi-modal representations.
This section explores the difference and effectiveness of
these state representations and how they tackle the large
state space problem.

5.1 Multi-hot representation

Most works using the multi-hot representation are
based on a belief vector. This vector concatenates the
one-hot vector based on the value for each slot[55: 58, 62, 89],
In addition to the belief vector, many of these works also
incorporate the one-hot vector of the current user action,
previous system action, database vector that indicates the
number of query results, the repeated times of the last
user action, etc.[’ 61, These multi-hot representations are
often simple to implement but require feature engineer-
ing. As the number of domains increases, the state space
grows exponentially with the size of the one-hot repres-
entation of the actions. Therefore, the large state space
problem exists in multi-hot representation.

5.2 Distributed representation

Some works avoid feature engineering by directly en-
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coding the wuser's utterances as state representa-
tions(28; 31, 45. 53, 901 Among these works, few adapt a feed-
forward network that takes the n-gram features of the
previous system response and the current user utterance
as inputBl 53, 91 Others use an long short term memory
(LSTM) networkl! to encode the utterances of both
parties28 451, The latter approach is able to further cap-
ture the turn-level dynamics instead of just the current
turn. By using a distributed representation, the state en-
coder and the policy network are jointly optimized to-
gether to achieve better performance. By utilizing the
neural work to encode the dialogue history into a com-
pact distributed representation, it can learn features that
are invariant of the domain and enables the representa-
tion to scale with the increasing number of domains.
Thus, the distributed representation can tackle the large
state space problem.

5.3 Multi-modal representation

Conversation involves multiple modalities, especially
in social media like Facebook? and WeChat?. For a dia-
logue system, understanding vision and language is one of
the ultimate goals for creating intelligent conversational
system92l. Zhang et al.[% 94 enrich the state representa-
tion with multi-modal information. Zhang et al.%! pro-
posed a framework to jointly learn the multi-modal dia-
logue state representation and the hierarchical dialogue
policy. It improved the task success rate and enhanced
the efficiency in an image guessing task. A later work in-
corporated sentiment representations in addition to im-
age representation into the state and fed it to the policy
as input(®4.

6 Action space

Most works treat the action space as a set of dialogue
acts. A dialogue act is specified by a dialogue act type
that indicates the type of action the user/agent is per-
forming, and a set of slot-value pairs that specify the im-
posed constraints%5l. There are two prominent problems
in the action space of TOD systems. First, most methods
can only predict a single dialogue act per turn. Second,
the action space is large in complex dialogue scenarios.
These two problems and the recent related research are
discussed in detail below. In addition, a stream of works
that use natural language as an action space and directly
generate a system response to the user by integrating
DPL and NLG is also covered.

6.1 Large action space

Chen et al.B% pointed out that having a separate set
of dialogue acts for each domain was not scalable as we

2 https://www.facebook.com/
3 https://www.wechat.com/

worked toward multi-domain large-scale scenarios. Multi-
domain dialogue scenarios involve a large action space
since it includes multiple domains, and each dialogue act
is represented as a (domain-action-slot) triple. The num-
ber of dialogue acts grows exponentially with the number
of domains. To alleviate this problem, Chen et al.3% pro-
posed a multi-layer hierarchical graph that exploited the
structure of dialogue acts. However, this work relies on
having the dialogue act annotations. Zhao et al.l’¥ took
another approach to treat the action space as a latent
variable and used an unsupervised method to induce an
appropriate action space from the data without having
the dialogue act annotations. They optimize the model
with RL by applying policy gradient methods in the lat-
ent action space. These works show promising results in
multi-domain dialogue scenarios with large action space.

6.2 Multiple dialogue action

Most works did not address the one-to-many property
of conversations where there might be multiple valid sys-
tem actions that satisfy the same user queryl: 97, An in-
telligent conversational agent should consider this multi-
action characteristic. Shu et al.%] formulated multiple ac-
tion dialogue policy learning as a sequence to sequence
problems and design a unique output format (e.g., contin-
ue, act, slots) to generate multiple actions per turn.
Zhang et al.%l proposed multi-action data augmentation
(MADA) framework to enable dialogue models to learn a
more balanced state-to-action mapping. Li et al.%7 mod-
elled the one-to-many property by retrieving multiple
candidate actions and selectively taking the candidates
into consideration when generating system action. On the
whole, these works enhance the expressiveness of the
model with the ability to generate multiple dialogue acts
in one turn.

6.3 Integrate DPL with NLG

At the other end of the spectrum, some researchers
explored integrating DPL and NLG by using the policy to
directly output utterance responses instead of dialogue
actions® 9. Wang et al.l’] treated dialogue act prediction
as another sequence generation problem along with the
response generation task. It used a share encoder to en-
code the previous utterances and fed it to the dialogue
act generator and the response generator separately.
While this work took a supervised learning approach,
Wang et all® modelled the hierarchical structure
between DPL and NLG using the options framework[$2 to
improve the comprehensibility of generated system utter-
ances. Both works demonstrated that by using natural
language as the action space, the model was able to gen-
erate a natural and realistic response by exploring the se-
mantic associations between dialogue acts and the out-
put utterance.
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7 Reward learning

Reward contains essential information which guides
the RL agent towards the goal. Most of the works adop-
ted manually designed reward functions that gave large
positive and negative rewards for success and failed dia-
logue, respectively, and a small negative turn level reward
to encourage shorter dialoguel22: 23, 31, 36, 40, 47, 48, 50-53, 63, 100],
However, the sparse reward signal of successes is one of
the reasons that RL agents learn slowly, especially in the
beginning stagels, 1011,

There are two streams of work that aim to learn a
denser reward to encourage faster learning and tackle the
cold start problem in RL, making use of the available ex-
pert demonstrations, namely inverse reinforcement learn-
ing (IRL) based methods and reward shaping. Figs. 6 and
7 show the pipeline of IRL methods and reward shaping,
respectively. IRL learns a reward function given the hu-
man demonstrations, which is used to provide a reward
for transitions in RL training, whereas reward shaping
provides an additional reward given the human demon-
strations to complement the environment reward.

User
51mu1at0r
Transition
(S, @ S1) Y
Slmulated Reward
Follie) p— experience r, function
Experience
replay
(s, a,r7,5")
Human Inverse RL
demonstration

Fig.6 An overview of inverse reinforcement learning

User

a, simulator Transition

l (S5 @p Sy
Poli Simulated Reward

olicy *———— . .
Experience EXPENENCE ™ Transition EDIT
replay (80 a1t F,y500)
(s,a,7,5")
Human
demonstration

Fig. 7 Reward shaping
7.1 Inverse reinforcement learning method

IRL refers to the problem of learning a reward func-
tion given the expert demonstrations!02. It is appealing
since designing a good reward function is tedious and dif-
ficult in complicated domains. As a result, it has attrac-
ted a lot of research work[8s, 88,103,104 Boularias et al.[103]

are the first to explore this idea in DPL to learn a re-
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ward function from a human expert in a Wizard-of-Oz
setting. They proposed a reward function which is a lin-
ear combination of feature vectors with unknown weights.
The weights can be first learned from the expert demon-
strations, and then the learned reward function is used in
RL. The learned reward function can provide meaningful
feedback to the policy, which helps it learn effectively, es-
pecially in the early stage. Another work explored learn-
ing a classifier to estimate the expert policy. The reward
function can be inferred by giving higher rewards R(s, a)
to those experts who agree more (i.e., higher P(a|s) in
the model)[43].

Despite the success of using IRL in the dialogue scen-
arios, IRL is often expensive to run, hindering it to scale
to complex dialogue scenarios(%]. In the RL community,
adversarial IRL (AL-IRL) is proposed to enhance the effi-
ciency of learning the reward from expert demonstra-
tions[109]. It avoided doing reinforcement learning in an in-
ner loop of a training procedure. Liu and Lanel ex-
plored AL-IRL in DPL and used the discriminator to dif-
ferentiate successful dialogues from unsuccessful ones.
The discriminator’s output which is the probability of a
given dialogue being successful, is used as the reward in
policy optimization. Extending this line of research,
Takanobu et al.’8] further combined AL with maximum
entropy IRL to learn the policy and reward estimator al-
ternatively.

7.2 Reward shaping

Reward shaping aims to incorporate domain know-
ledge into RL by introducing an extra reward in addition
to the reward provided by the environment. Ng et al.[107]
represented the reward shaping mathematically as the
difference of any potential function ¢(s) on two consecut-
ive states s; and s;+1. The potential-based reward shap-
ing does not affect the optimal solution of the MDP but
speeds up learning.

In DPL, many works took advantage of additional in-
formation to formulate the potential function. The earli-
est work took advantage of the availability of the evalu-
ation scores of the dialogues given by humans/l%]. The
potential function was inferred using distance minimiza-
tion inverse reinforcement learning. Ferreira and
Lefévre.l109 proposed learning an extra reward from the
social cues of the user. In this work, they mainly con-
sider the sentiment cues from the user-defined manually,
including the type of dialogue acts, number of slots filled,
agenda size, etc. While this method does not require ex-
tra annotated data, the manually defined features are not
scalable to other domains. Wang et al.l'0l took advant-
age of human demonstrations and used a multi-variate
Gaussian to pick the most similar state-action pair to
complement the main reward. They extended the poten-
tial function ¢(s) to ¢(s, a), which received the action as
an additional input. They used a multi-variate Gaussian
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to compute and picked the highest similarity between the
current state-action pair with the expert demonstrated
state-action pair as the potential function.

Overall, these papers highlight the benefit of using a
dense reward in DPL. An important difference between
the inverse reinforcement learning method and reward
shaping is that the former learns one single reward func-
tion, while the latter adds a reward function in addition
to the main reward provided by the environment.

8 Discussions

TOD systems demonstrate satisfactory performance in
many scenarios, including movie ticket bookingl47, res-
taurant enquiry, and even multi-domain scenarios/!10].
However, most of these techniques require tremendous ex-
pert demonstrations during training, as shown in Table 1.
Moreover, most of the works rely on automatic evalu-
ation through interacting with a simulator to validate the
improvements. These limitations restrain us from apply-
ing these techniques to TOD systems in real-world scen-
arios.

On the one hand, the availability of high-quality an-
notated training data poses a major obstacle in applying
TOD systems in real-world scenarios!!!1]. For some low-re-
source domains or complex tasks with significant costs to
collect data, it is difficult to develop a robust TOD sys-
tem with a limited budget. In this case, an effective and
resource-saving method such as transfer learning is neces-
sary[l12. On the other hand, the lack of solid evaluation
criteria for automatic assessment of dialogue quality
causes unstable optimization and performancelll9. For ex-
ample, the discrepancies between the behaviours of real
and simulated users inevitably lead to a sub-optimal dia-
logue policy. Most of the existing methods fail to general-
ize in an open and changing world (i.e., the real world)
due to these problems.

9 Future direction

With the progress of RL methods, the three chal-
lenges are alleviated by a variety of techniques intro-
duced in previous sections. The exploration efficiency is
improved by multi-agents reinforcement learning tech-
niques that learn the simulator without human interven-
tions and model-based approaches which learn the envir-
onment dynamics. The cold start issue is alleviated by re-
ward learning, which provides a more useful reward to
guide the dialogue agent to learn effectively. The large
state-action space problem is mitigated by HRL and FRL
that decompose a task into subtasks and different meth-
ods that model the state-action space in a more compact
manner.

Recent work demonstrated that TOD systems
achieved satisfactory performance in many scenarios, in-
cluding movie ticket bookingl47l, restaurant enquiry, and

even multi-domain scenarios!!%. However, most of these
techniques require tremendous expert demonstrations
during training, as shown in Table 1. Moreover, most
works rely on automatic evaluation through interacting
with a simulator to validate the improvements. These
limitations restrain us from applying these techniques to
TOD systems in real-world scenarios. As the objective of
a TOD system is to help users achieve their goals, future
research should aim toward applying TOD in a real-world
scenario. In this section, we elaborate on the two future
directions (i.e., data scarcity and reliability of evalu-
ation), as well as the latest work moving towards these
directions.

Data scarcity. There are many different real-world
dialogue scenarios such as restaurant booking, weather
queries and flight booking. It is extremely costly to ob-
tain a large amount of annotated data for different do-
mains. However, the most recent methods presented in
this survey often require a lot of expert demonstrations.
As a result, for a TOD system to be practical, techniques
and methods to learn a dialogue policy expeditiously and
effectively in domains that have scarce data should be de-
veloped. Domain adaptation and meta policy learning are
two effective and auspicious solutions to tackle this prob-
lem.

Reliability of evaluation. It is important to evalu-
ate the performance of a dialogue policy in accomplishing
human goals in different scenarios. Currently, the most
widely used way to evaluate a dialogue policy is by inter-
acting with a user simulator. However, there is often a
behavioural discrepancy between the user simulator and
the human user, as discussed in Section 3. Therefore, this
evaluation method does not correctly reflect how well a
dialogue policy can assist a human in completing his/her
tasks. Two promising future directions for tackling the
data scarcity problem and the key aspects of reliable
evaluation methods are described below.

9.1 Data scarcity problem

Domain adaptation. Domain adaptation or policy
transfer enables us to build a dialogue policy in a target
domain with scarce data provided with a large amount of
data in a source domain. In [113], they proposed a multi-
agent dialogue policy (MADP) which consists of some
slot-dependant agents that have shared parameters for
every slot. The shared parameters can be transferred to a
new domain for the common slots. Similarly, Ilievski et
al.l''ll matched the state space and the action space
between the source domain and the target domain even if
these actions/slots were never used in the source domain.
The parameters of the common slots and actions are used
in the target domain initially. However, different do-
mains do not necessarily have common actions or consist-
ent dialogue act naming. The PROMISE model is pro-
posed to learn the similarity between slots and actions of
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different domains(!!4. While these researches focus on do-
main adaptation between two domains, much work is re-
quired to adapt to multi-source domains.

Meta policy learning. To further extend the usage
of DPL to a real-world scenario, we consider situations
with even harsher data resource. In the previous section,
we leveraged the abundant data in a source domain. In
this section, the meta-learning paradigm tackles the situ-
ation in which all domains have scarce data. Recently, Mi
et al.l¥% adopted meta-learning in the NLG module in
the spoken dialogue system (SDS) pipeline. Inspired by
this work, some researchers proposed the deep transfer-
able O-network (DTQN), which leverages shareable fea-
tures across domainsl5®l. They further combine DTQN
with model-agnostic meta-learning/!16l with a dual-replay
mechanism to support effective off-policy learning, which
helps models to adapt to an unseen domain quickly. In
[57], they extended DDQ by incorporating budget-con-
scious scheduling to learn from a fixed, small amount of
interactions. A decayed Poisson process is used to model
the number of interactions allocated to each epoch, where
the total number of epochs is pre-defined. More work is
needed to explore efficient learning methods in TOD sys-
tems under the meta-learning paradigm.

9.2 Evaluation

In DPL research, Walker et al.0!l are the first to
present a general framework to evaluate the performance
of a dialogue agentB8l. They evaluate a dialogue from two
aspects. One is the dialogue cost which measures the cost
induced by the dialogue (e.g., number of turns), and the
other one is task success which evaluates whether the dia-
logue agent can successfully accomplish the task from the
user by comparing it with the user's goal. In practice, the
dialogue policy is often evaluated by having conversa-
tions with a simulated user with metrics, such as inform
F1, success rate, and Bleu scorell!”). The problem is that
the simulator does not resemble human conversation be-
haviour well, as discussed in Section 3. Therefore, there is
still a gap between human evaluation and simulated eval-
uation!17. Much work is needed to provide a universal
evaluation framework that can be used for any general
TOD system. Instead of comparing the dialogue act with
the simulated goal, a universal evaluation framework
should emphasize the overall satisfaction of a human
user. Such a framework should include, but not limited
to, ways to measure how natural or helpful is the re-
sponse of the dialogue agent to the user.

10 Conclusions

In this survey, we introduce the recent advances in
RL approaches used for DPL in TOD systems. We focus
on tackling three main challenges. Given the vast amount
of work in such areas in recent years, a method to cat-
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egorize these approaches is needed to identify the main
focal research directions in applying RL in DPL. We pro-
pose to categorize recent methods based on the five RL
elements and compare the different techniques in each
element. As the DPL community is moving to apply
TOD systems in real-world scenarios, the scarce data on
various dialogue scenarios and the reliability of evaluat-
ing dialogue agents will be the most prominent obstacles.
Three promising research directions that tackle these
obstacles are discussed.

Appendix
Procedure for shortlisting papers

We used a two-step procedure to shortlist relevant pa-
pers for review. In the first step, we used two tools to
search for relevant papers. The two tools were 1) AMiner*
which provides literature dated back to 1922 for a given
topic keyword, and 2) Connected papers®, to provide us
with a graph of strongly connected papers given a seed
paper. We used Aminer with the keyword “dialogue
policy” to search for papers within the last ten years.
Among the returned list of papers, we used each one as a
seed paper as input to Connected Papers and further se-
lected related papers from the provided graph. Then, we
went through the papers manually and selected those
that applied RL methods in the DPL of TOD systems as
the preliminary papers. In the second step, we reviewed
the references of the preliminary papers and picked relev-
ant ones.
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