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Abstract: In the past decades, artificial intelligence (AI) has achieved unprecedented success, where statistical models become the
central entity in AI. However, the centralized training and inference paradigm for building and using these models is facing more and
more privacy and legal challenges. To bridge the gap between data privacy and the need for data fusion, an emerging Al paradigm feder-
ated learning (FL) has emerged as an approach for solving data silos and data privacy problems. Based on secure distributed AlI, feder-
ated learning emphasizes data security throughout the lifecycle, which includes the following steps: data preprocessing, training, evalu-
ation, and deployments. FL keeps data security by using methods, such as secure multi-party computation (MPC), differential privacy,
and hardware solutions, to build and use distributed multiple-party machine-learning systems and statistical models over different data
sources. Besides data privacy concerns, we argue that the concept of “model” matters, when developing and deploying federated models,
they are easy to expose to various kinds of risks including plagiarism, illegal copy, and misuse. To address these issues, we introduce
FedIPR, a novel ownership verification scheme, by embedding watermarks into FL. models to verify the ownership of FL. models and
protect model intellectual property rights (IPR or IP-right for short). While security is at the core of FL, there are still many articles re-
ferred to distributed machine learning with no security guarantee as “federated learning”, which are not satisfied with the FL definition
supposed to be. To this end, in this paper, we reiterate the concept of federated learning and propose secure federated learning (SFL),
where the ultimate goal is to build trustworthy and safe Al with strong privacy-preserving and IP-right-preserving. We provide a com-
prehensive overview of existing works, including threats, attacks, and defenses in each phase of SFL from the lifecycle perspective.
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1 Introduction ageNet(”, which is essentially based on a centralized data

model. From e-commerce to online video, based on histor-

In recent years, artificial intelligence (AI) has made ical data, recommender systems can analyze user prefer-

great progress in many commercial applications, includ-
ing computer vision[: 2, natural language processingl 4,
recommender systemsl® 6, etc. However, behind the su-
per-fast development, the drawbacks of traditional AI ap-
proaches are also revealed, which are that they rely heav-
ily on the availability of large-scale and high-quality data
but do not provide a mechanism for securely obtaining
and using it. For example, the development of computer
vision benefited from large-scale public datasets like Im-
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ences precisely and recommend the most relevant items
to users. In biology, by training on publicly available data
consisting of 170 000 protein structures from the protein
data bank (PDB)BIl, AlphaFold, developed by DeepMind,
achieved high accuracy predictions of protein struc-
turel® 10, These examples are all centralized data-driven
computation systems, and they require that data
scattered across multiple devices be first uploaded to a
central database before being used for training the statist-
ical models.

Centralized data fusion for AI modeling is facing more
and more legal and ethical challenges. In practice, data is
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often spread across multiple end devices and held by dif-
ferent individual users or organizations, data in different
locations is heterogeneous in form and distribution. Fus-
ing the data into a central database inevitably increases
privacy leakage risks. With the increasing awareness of
privacy concerns, governments are strengthening data
privacy laws to prevent privacy leakage, such as general
data protection regulation (GDPR) in the EUMI, Califor-
nia consumer privacy act (CCPA) in the USA[2 data se-
curity law (DSL) in Chinal3l. On the other hand, due to
uniqueness and rarity, the value of data is also a chal-
lenge that cannot be neglected, its value will disappear
gradually whenever data can be shared and copied,
simply because no organization is willing to share data
without benefit.

In order to eliminate the drawbacks caused by data
fusion, Google proposed a new training paradigm, called
federated learning (FL)(4 to address data challenges.
The original FL requires model parameters, not raw
training data sets, to be exchanged between multiple
devices during the whole training process, which can
greatly mitigate data privacy risks. However, existing
works have shown that vanilla FL without protection on
exchanged model parameters may not always provide
strong security guarantees. Zhu et al.'5) demonstrated
that the original training data can be recovered from
gradients. Phong et al.[l6l showed that even a small por-
tion of original gradients can expose information about
local data. Besides, beyond the training stage, vanilla FL
is also vulnerable to various kinds of attacks during the
entire FL lifecycle, which includes the following steps:
data preprocessing, training, evaluation, and deploy-
mentsll7. For example, data can be poisoned in the pre-
processing stagell8l. Membership inference attacks can oc-
cur in the model deployment phasel!9. It is thus import-
ant to emphasize that security guarantees are an essen-
tial part of FL system design.

Moreover, as statistical models are the central entit-
ies in AI, multiple assets that include the training data,
hardware, and human expertise, are involved when devel-
oping and deploying FL models in practice. This makes
“model management” a critical issue. To prevent models
from being misused or plagiarized without authorization,
we reinforce awareness of model intellectual property and
introduce IP-right-preserving mechanism for models in
federate learning. In this paper, we realize federated mod-
el IPR protection by embedding watermarks into deep
neural network (DNN) model parameters, achieving good
results in practice.

In summary, the true spirit of federated learning lies
in its ability to provide strong privacy-preserving and
model IP-right preserving, to distinguish it from vanilla
FL, we call it secure federated learning (SFL). In con-
trast to many existing FL. works that only provide very
weak or no security guarantees, we emphasize that the
principle of SFL should receive more attention in both in-
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dustry and academia. This article gives a comprehensive
overview of key aspects of SFL, including existing works
on both security guarantees throughout the entire life-
cycle and model IP-right protection. In the rest of the
article, we will use federated learning (FL) and secure
federated learning (SFL) interchangeably and refer to fed-
erated learning systems that employ certain security
mechanisms unless stated otherwise.

1.1 Related works

In the FL literature, Yang et al.20 21l introduced the
categorizations of FL and extended the scope of feder-
ated learning to include also vertical federated learning
(VFL) scenarios. Kairouz et al.l'7l discussed the FL pro-
gress and presented several challenging problems for fu-
ture directions. Li et al.22] discussed the unique charac-
teristics and challenges of federated learning.

Several existing security-related surveys are published
with similar motivations to ours. For example, Lyu et
al.[23] discussed the threats to federated learning. Boua-
cida and Mohapatral24 conducted a comprehensive sur-
vey on the security issues and defense strategies under
the FL setting. Mothukuri et al.[?5) summarized common
threat models faced by the FL system and provided cor-
responding defense strategies.

Recently, Liu et al.26l analyzed the security issues
throughout the multi-phase of the FL execution, which
includes the data and behavior auditing phase, training
phase, and predicting phase, this survey covers more
scopes and scenarios about FL security. However, their
discussions mainly focus on horizontal federated learning
(HFL), nor do they discuss how to protect IP-right is-
sues of federated learning.

1.2 Contribution

Compared to the previous works, the main contribu-
tions of our paper are as follows:

1) We reiterate the core concept of secure federated
learning and emphasize that security guarantees should
cover the entire FL lifecycle, which includes the follow-
ing steps: data preprocessing, model training, evaluation,
and deployment.

2) We provide a general SFL architecture, which cov-
ers both HFL and VFL scenarios, and we summarize ex-
isting works on threats, attacks, and defense in each
phase throughout the entire lifecycle.

3) We view the model intellectual property right as an
important part when building a secure FL system, and
provide detailed implementations on how to protect fed-
erated models’ IPR.

2 Overview of secure federated learning

In this section, we discuss the definition and system
architecture of secure federated learning.
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2.1 Security guarantees

We first clarify our definitions of security, which in-
volves five security aspects as shown in Fig. 1.

Model IP-right

’ G$ Model structure

Model performance nﬂ' ‘

Fig. 1 Protected objects of secure federated learning

Keeping private training datasets safe. There are
two different levels of approaches that meet the require-
ment, the simplest one is to keep local data sets on
devices locally, but security is not sufficient enough. An-
other high-level approach is to be able to provide secur-
ity protocols to deal with model inversion attacks and
prevent raw data sets being stolen.

Keeping model parameters safe. As aforemen-
tioned, the attacker can reconstruct original data sets by
model inversion.

Keeping model structure safe. This is not a re-
quired field, in the VFL setting, each participant holds a
partial model while the global model structure is un-
known. However, in the HFL setting, in most cases, the
global model structure is pre-defined, and anyone who
participates in the FL system knows the global model
structure in advance.

Keeping model performance intact. In most
cases, there is a trade-off between privacy loss and util-
ity lossi27, how to balance security and model perform-
ance is a challenging and open problem.

Keeping the model IP-right safe. FL involves col-
laboration among multiple parties, where the concept of
“model” becomes important, to this end, IP-right-pre-
serving is required to prevent model assets from being
stolen.

2.2 Definition

SFL refers to secure collaborative distributed machine-
learning methods and architectures that satisfy the fol-
lowing conditions:

1) They provide a security mechanism to protect
data/model security and user privacy using tools that in-
clude but are not limited to: multi-party computation
(MPC)28: 291 differential privacy (DP)B% 31 and encrypt-
based solutions (can be either software-based encryption
solution such as homomorphic encryption (HE)BZ or

hardware-based solutions such as trusted execution envir-
onment (TEE)[B3-35).

2) There are clearly defined threat models as well as
corresponding provably correct defense strategies, with
the purpose of providing and clarifying the security scope
of federated learning throughout the entire lifecycle.

3) They also include methods to protect the IP-rights
of the trained models, with the purpose of preventing the
model from being plagiarized.

2.3 Architecture

In this section, we introduce the key components that
constitute SFL system architecture. Without loss of gen-
erality, we assume there are three participants to jointly
train and use a statistical model. A typical SFL architec-
ture is as shown in Fig. 2.

In Fig.2, we show secure HFL (Fig.2(a)) and secure
VFL (Fig.2(b)) respectively. At a high level, the general
SFL architecture consists of the following three compon-
ents:

Component 1: Distributed machine learning
(DML). Under the FL scenario, collaborative training
among multiple devices is realized based on distributed
machine learning framework. However, unlike traditional
DML, there are several key differences between FL and
DML:

1) FL is motivated by data privacy and security,
while DML is motivated by large-scale computation.

2) Participants of FL can be either individuals or or-
ganizations, while DML is a multi-node system, each par-
ticipant is a compute node in a single cluster or data cen-
ter.

3) FL allows different participants to have different
configurations (like data distribution, data size, hardware,
network, etc.). In contrast, DML is more stable, the con-
figurations of each node are almost the same.

4) FL requires incentive mechanisms to encourage
more participants to participate in FL ecosystem, while
DML does not require any such mechanism.

Component 2: Security protocol. Security is at
the core of federated learning. However, as aforemen-
tioned, vanilla FL can be vulnerable to different kinds of
attacks throughout the lifecycle.

To mitigate the risks caused by adversarial attacks, a
series of secure operation steps would be pre-negotiated
by multiple participants, the goal is to complete the task
requirements without compromising data privacy. We call
these pre-negotiated and secure operation steps are secur-
ity protocols.

In summary, security protocols can be either based on
traditional privacy-preserving computation, such as MPC,
DP, and HE, or algorithm-based approaches, such as
modifying the training loss function, and model aggrega-
tion improvement.

Component 3: Model IPR protection. Conceptu-
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(a) Secure horizontal federated learning
Fig. 2

ally, IPR refers to all rights associated with models
owned by an entity, anyone cannot be used unless au-
thorized. The motivation for Model IPR can be boiled
down to the following reasons:

1) Since multiple models are involved in the training
phase, whenever failures happen, to locate where the re-
sponsibility lies, it is critical to be able to trace back to
the original creators of models.

2) FL models are of high commercial value, it is neces-
sary to prevent adversaries from plagiarizing, misusing,
and re-distributing valuable FL. models without legal per-
mission.

3) Incentive mechanisms are essential parts of the FL
ecosystem, based on the principle of “more pay for more
work”, IPR can let the FL. manager know the contribu-
tions of different models.

3 Security of federated learning life-
cycle

In the following sections, we first briefly review the
concept of federated learning lifecycle and then summar-
ize the potential security risks at each stage, respectively.

FL is a distributed learning paradigm, in which the
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(b) Secure vertical federated learning

The architecture of secure federated learning

process is typically initiated by a party based on a specif-
ic application purpose. For example, a financial company
wants to update the risk prediction model by jointing
with multiple financial institutions for this purpose.
Kairouz et al.ll7 discussed the lifecycle of a model in fed-
erated learning, based on that, we claim that there are
four phases that are susceptible to various kinds of at-
tacks, as shown in Fig. 3.

Preprocessing. Participants first identify the prob-
lems and requirements to be solved with FL. There are
two major tasks at this stage. The first one is data pre-
processing, according to the task requirements, engineers
first transform raw training data sets to make them suit-
able for building machine learning models, in most cases,
each client will generate and store the data independ-
ently, data preprocessing could be done locally. However,
in some cases, additional data need to be maintained and
downloaded from the server-side. The second step is to
prepare the initialized model, to this end, the client will
send an instruction to the server to request the global
model.

At this stage, malicious modification of training data
sets, such as mislabeling, noising, and poisoning, are the
most significant security threat and affect subsequent

3. Evaluation 4. Deployment

Inference

1
Inference

1 —
-
1

. '

Feedback \\.

Real-world application

Threat phases of federated learning lifecycle adapted from [17]
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processes.

Federated model training. Based on the distrib-
uted architecture, multiple participants collaboratively
train a share global model while keeping the training data
sets on the device locally.

The model training phase is vulnerable to various
kinds of attacks, including poisoning attacks, backdoor
attacks, byzantine attacks, etc.

Federated model evaluation. Model evaluation is
the process of using different evaluation metrics to evalu-
ate a machine learning model’s performance, and feed-
back to determine whether to stop training or not. Mod-
el evaluation can be done either on the server or on the
local client.

The potential security risks at this stage mainly come
from evasion attacks (a.k.a. adversarial examples)36-39
the goal is to fool the model to make the wrong output
by carefully perturbing the training examples.

Deployment. The final step is to select the updated
model and integrate it into the real-world application to
make practical business decisions.

The potential security risks at this stage come from
three aspects, i.e., evasion attacks, model inference at-
tacks, and model plagiarism.

Fig.4 summarizes the security risks of different stages
throughout the entire lifecycle.

4 Security of preprocessing

In the context of federated learning, the training data
sets are generated and stored locally, which makes it hard
to be stolen by other parties. However, if the client is
controlled by a malicious user, the local data sets can be
modified arbitrarily, and then the polluted data affect the
following training step. In this section, we discuss the
possible threats, attacks, and corresponding defenses dur-

Data
preprocessing

Model
training

SFL

Model
evaluation

Model
deployment

ing the preprocessing stage.
4.1 Client-side attacks

If a participant is controlled by a malicious user, he
(or she) can modify the data at will before the training
phase, including mislabeling, noising, and poisoning. Low-
quality samples impair model training and reduce the
model’s performance.

In general, the impacts of client-side attacks at pre-
processing stage rely heavily on the number of malicious
clients. Due to the client-selection mechanism of feder-
ated learning[49, there is no guarantee that a malicious
client will be selected at each round, or even if selected
but not frequently, model aggregation can cancel the
backdoor model's contribution. Besides, from the client’s
perspective, the percentage of polluted data in the over-
all training sample is also a critical factor that affects the
attack.

Defense. The selection mechanism of federated learn-
ing is a natural defense strategy. Improving the selection
mechanism with adaptive strategy®l: 42 rather than ran-
dom choices, can further reduce the loss caused by mali-
cious clients.

Anomaly detection to identify malicious clients is an-
other effective approach to defend against client-side at-
tacks in the preprocessing phases. For example, with a
pre-trained model, the FL. manager can check the train-
ing datasets to filter out potential adversarial attackers.

4.2 Server-side attacks

Another possible threat is that the attacker controls
the central server, which orchestrates the training pro-
cess and holds the additional data and the global model.
Server-side attacks usually occur in HFL, the attacker

Data poisoning

Poisoning attacks

Gradient attacks

Evasion attacks

Inference attacks

Model plagiarize

Fig.4 An overview of security risks at different stages
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can modify the data or the global model parameters
whatever he/she wants, and then distribute the fake data
or global model to the selected clients for training.

The server-side attack is harder to defend against
than client-side attacks, in the worst case, the server can
distribute the fake data or global model to all the clients,
which makes it equivalent to all participants being mali-
cious.

Currently, there is still no good strategy to defend
against server-side attacks, that's why in most FL literat-
ure, the central server is required to be trusted. Another
solution is to use TEE as a trusted third partyl43 44],
which provides the code and data's confidentiality and in-
tegrity guarantees.

5 Security of model training

Attacking in the model training phase is the main re-
search area of federated learning security, the adversary
can attack the model training procedure in the following
ways.

1) In the HFL setting, the attacker can either control
the central server or clients, or eavesdrop and steal the
transmitted parameters (Fig.5(a)).

2) In the VFL setting, the attacker can either control
the passive party or the active party, or eavesdrop and
steal the transmitted parameters (Fig.5(b)).

In the following subsections, we discuss the threats,
attacks, and corresponding defense strategies in the train-
ing phase. According to the capabilities of the adversary,
we classify model training attacks into gradients attacks
and poisoning attacks.

5.1 Gradient inversion attacks and de-

fenses

5.1.1 Gradient inversion attacks

The goal of gradient inversion attacks is to recon-
struct or recover the sensitive information from the
shared gradients.

Hitaj et al.[% discussed the GAN-based attack to gen-
erate label-specific prototypical samples from gradients,

Server . E

AW,

A || @

] ]

Client Client Client

(a) Potential privacy leakage risks in HFL
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which are meant to be private to other clients. However,
their approach is limited and only works when labels
among multiple parties are overlapping.

Zhu et al.ll proposed deep leakage from gradients
(DLG), DLG does not require a GAN model and addi-
tional information other than gradients, the key idea of
which is to optimize the synthetic gradients as close as to
the original gradients, which makes the synthetic data
close to the real training data when the optimization is
done. However, DLG is susceptible to convergence and la-
bel consistency problems, to this end, Zhao et al.[46] pro-
posed improved DLG (iDLG), which guarantees to ex-
tract the ground-truth labels from the shared gradients.

Geiping et al.[*l proposed inverting gradients to recov-
er the original input image, by setting the loss function to
cosine similarity with the total variation (TV) norm.
Compared to DLG/iDLG, inverting gradients performed
well even on deep and non-smooth models.

Wang et al.l48] proposed self-adaptive privacy attack
from gradients (SAPAG), which sets distance measure as
Gaussian kernel-based of gradient difference. Zhu and
Blaschkol9 proposed R-GAP, which provides a recursive
procedure to recover data from gradients.

The above attacks are mainly applied in HFL scenari-
os, recently, Jin et al.5%l proposed catastrophic data leak-
age in vertical federated learning (CAFE), to perform
large-batch data leakage attacks with improved data re-
covery quality under the VFL setting.

We summarize some common gradient inversion at-
tack approaches in Table 1 for reference.

5.1.2 Defense against gradient inversion attacks

Several defense strategies have been proved feasible
with respect to defending against inversion attacks.

Encrypted gradients. One straightforward ap-
proach is to encrypt the gradient, which makes the gradi-
ent values unavailable without secret keys. For example,
Hardy et al.’2l showed how to use Taylor approximation
to approximate the loss function, which enables the train-
ing process of FL can be executed under the encrypted
setting. Phong et al.l'6l proposed using homomorphic en-
cryption to encrypt the gradients before sending.

However, encryption-based solutions are vulnerable to

Active party

AW, AW,

e

Passive party Passive party

(b) Potential privacy leakage risks in VFL

Fig. 5 Three different ways to threaten the training procedure
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Table 1 An overview of existing works on gradient inversion attacks adapted from [50]

25

Methods Approach Adversary control Supported scenarios
Deep models under the GANI3] GAN-based Client HFL
5 Minimize L2 distance between dummy  Central server (HFL) / Active party
15]
DLG gradients and original gradients (VFL) HFL, VFL
{DLG46] Minirniz.e L2 distan?e.between.dummy Central server (HFL) / Active party HFL, VFL
gradients and original gradients (VFL)

Inverting gradients[47] Cosine similarity and TV norm Central server HFL
SAPAGMHE] Gaussian kernel-based distance Central server HFL
R-GAPM] Recursive gradient loss Central server HFL

CAFEI] L2 distance; TV norm; Internal Passive party VFL
representation norm
GGLBY GAN-based Central server HFL

suffering from efficiency problems, how to balance safety
and efficiency is still a challenging problem. For example,
Zhang et al.l33 proposed an efficient HE solution, called
BatchCrypt, for cross-silo federated learning, which can
significantly reduce the communication overhead caused
by encryption.

Gradient compression. Gradient compression is an
approach to obfuscate the model structure. Specifically,
gradient compression can be either pruning or sparsifica-
tion, since part of the gradients is missing, making the re-
covered images far away from the original datal4.

Noisy gradient methods. Unlike encryption-based
solutions, the noise-based solution is to perturb the gradi-
ent by adding noise to the gradient to achieve differen-
tial privacy. Since time-consuming operations such as en-
cryption and decryption are unnecessary, the noise-based
solution is more efficient in practice.

For example, McMahan et al.l%] introduced a new al-
gorithm, called DP-FedAvg, for user-level differentially
private training of large neural networks under federated
settings. Wei et al.[56] proposed a general framework com-
bining FL with differential privacy, by adjusting differ-
ent amounts of noise to ensure distinct protection levels.

However, noise-based solutions require the algorithm
to carefully adjust the noise generation to keep the per-
formance of the model, such as model accuracy, intact.
Otherwise, performance may be badly compromised. As
shown in [27], how to balance safety and utility is still a
challenging problem.

5.2 Poisoning attacks and defense

5.2.1 Poisoning attacks

According to the attacker’s goal, we classify poisoning
attacks into the following two categories.

1) Targeted attacks, or backdoor attacks, aim to re-
duce the model’s performance on those examples with cer-
tain features while maintaining good performance on the
rest of the other examples. In most cases, poisoning at-
tacks not only require data modification in the prepro-

cessing phase, but also require properly designing the
training algorithm to achieve the goal.

Take image classification as an example, the attacker
wants the model to misclassify images with specific pat-
terns (vertical red stripe at the upper-left corner (Fig.6 (a)),
yellow background (Fig.6 (b))) to an attacker-chosen
classi0l while the main task is not compromised.

Bagdasaryan et al.l40] leveraged the model replace-
ment approach to make backdoor attacks more persist-
ent. Xie et al.l’7 further introduced distributed backdoor
attacks, where a global backdoor trigger is decomposed
into multiple local patterns, each of which is embedded
into the training datasets of different malicious clients.
Huang®8 discussed how to achieve backdoor attacks un-
der the dynamic environment.

2) Unlike targeted attacks, untargeted attacks aim to
degenerate the model performance. For example, Feng et
al.b9 proposed the DeepConfuse framework, which uses
an autoencoder to add imperceivable noises to the train-
ing data, so that the polluted data confuse the corres-
ponding classifier trained on it, and make the wrong out-
put when feeding with new clean data.

Byzantine attacks are another type of untargeted at-
tack, Hu et al.l%0 proposed a method called weight attack,
the key idea is lying the attacker's data set size so that
model weight is changed when executing model aggrega-
tion. Fang et al.6!l proposed local model poisoning at-
tacks, which manipulate the local models uploaded from
the compromised devices to the central server during the
training process
5.2.2 Defense against poisoning attacks

FL provides numerous security protocols to defend
against poisoning attacks during model training.

Byzantine-robust aggregation, which aims to im-
prove the classical FedAvg algorithm(4l and provide se-
cure and robust aggregation to mitigate byzantine at-
tacks. Yin et al.[62l proposed median and trimmed mean
aggregation to remove abnormal local models. Blanchard
et al.l03 proposed the Krum aggregation rule, a byz-
antine-resilient algorithm for distributed stochastic gradi-
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(b) Yellow background

Fig. 6 backdoor example

ent descent (SGD), which provides a convergence guaran-
tee even though multiple byzantine workers exist. Xie et
al.04 proposed Zeno aggregation rule for synchronous
SGD, at least one honest worker is enough to ensure good
defense performance.

FL with MPC has widely been studied. For ex-
ample, Dong et al.[63 combined secret sharing with dis-
tributed machine learning to achieve a high-level security
guarantee without compromising model performance.
Kanagavelu et al.[¢ proposed to adopt MPC to achieve
privacy-preserving model aggregation for FL.

Like encryption-based solutions, MPC-based solutions
are vulnerable to suffering from efficiency problems. It is
important to regard MPC as a set of technologies (or
primitives), including but not limited to secret sharing
(SS)91) oblivious transfer (OT)67 and garbled circuits
(GC)68], ITmproving the efficiency of MPC depends largely
on the breakthroughs of low-level primitives.

Hardware solution. TEEs have many different im-
plementations with different forms, including Intel’s
SGXI[69: 7] Arm's TrustZonel™ 72, and AMD SEVI7]
each varying in its ability to offer privacy protection.
Combining TEE with FL has been applied in many ap-
plications. For example, Mo et al.[3] proposed DarkneTZ
to mitigate attacks against the neural network, and then,
they further designed a general FL framework for mobile
systems to protect user privacyl™. Huang et al.l44 pro-
posed a new hybrid federated learning architecture, called
StarFL, by combining TEE, MPC, and satellites for
smart urban computing.

Besides, encryption-based and noise-based solutions
which describe in Section 5.1.2 are also feasible solutions
to defend against poisoning attacks.

6 Security of model evaluation

Evasion attacks, or adversarial examples, aim to evade
the model by adjusting samples during the inference
phase, in general, these samples are carefully perturbed so
that they are indistinguishable to the human eye while
the network fails to identify the image contents.

@ Springer

Model evaluation is used to evaluate a model's per-
formance, and feedback to determine whether to stop
training or not, the attacker can deceive the federated
model’s evaluation output by constructing adversarial test
examples. According to the attacker’s capabilities, eva-
sion attacks can be divided into the following two cat-
egories.

Gradient-based attacks. This type of approach re-
quires the attacker access to the model's gradients in ad-
vance. Goodfellow et al.39 proposed fast gradient sign
method (FGSM), which uses the gradients of the loss
with respect to the input image to create a new image
that maximizes the loss. Kurakin et al.[®® improved
FGSM by computing adversarial examples iteratively.
Carlini and wagner.["0 proposed C&W algorithm, a novel
powerful attack approach that can defeat defensive distil-
lation.

Confidence scores. This type of approach does not
require knowing the model's gradients in advance, in con-
trast, they use the outputted classification confidence to
estimate the gradients, and then perform a similar optim-
ization step as gradient-based attacks above.

Chen et all”l proposed zeroth-order optimization
(ZOO) to directly estimate the gradients of the targeted
model for generating adversarial examples. Ilyas et al.["]
proposed the variant of natural evolution strategies
(NES) to fool the classifier under three realistic settings:
the query-limited setting, the partial information setting,
and the label-only setting.

In general, defense against evasion attacks is much
harder, we summarize some common ideas of existing
works as follows(™].

Adversarial training. An intuitive idea is to build a
robust model which includes adversarial samples during
the training process. For example, Moosavi-Dezfooli et
al.B% built more robust classifiers by fine-tuning the ad-
versarial examples. Goodfellow et al.39 built robust mod-
els by mixing the adversarial objective with the classifica-
tion objective as regularizer.

However, in most cases, it is unlikely to know all pos-
sible adversarial samples in advance, adversarial training
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is a remedy afterward solution.

Knowledge distillation. Papernot et al.8l pro-
posed defensive distillation, by using the knowledge distil-
lation technique to train the model and hide the gradient
between the logits layer and softmax outputs, so that it is
impossible for the attacker to generate adversarial ex-
amples from network gradients.

Anomaly detection. Another approach is to detect
abnormal examples, for example, Metzen et al.[2 detec-
ted adversarial examples by using a detector subnetwork
attached to the main classification network. Grosse et
al.[83] empirically validated the hypothesis that adversari-
al examples can be detected using statistical tests before
they are fed to the machine learning model.

7 Security of model deployment

Model deployment is the last step of the lifecycle,
which aims to apply the machine learning models into
practice. There are three potential risks in this phase:
evasion attacks, model inference attacks, and model plagi-
arize. Evasion attacks have been discussed in Section 6,
in Sections 7 and 8, we discuss the two remaining threats.

The purpose of model inference attacks is to infer
sensitive information by accessing models multiple times.
Model inference attacks can be divided into the following
three classes.

Label inference attack. Label inference attacks are
more likely to occur in vertical federated learning scenari-
os. In VFL, the active party holds the data matrix and
the class labels, while the passive parties keep the data
matrix only. Label inference attacks happen when the
passive party is controlled by the attacker, the goal is to
infer the labels held by the active party.

Fu et al.®4 presented three types of label inference at-
tacks against VFL: the direct label inference attack, the
passive label inference attack, and the active label infer-
ence attack. Liu et al.B% proposed batch label inference
and replacement attacks to recover labels in the VFL set-
ting with HE-protected communication.

Feature inference attack. Like label inference at-
tack, feature inference attack usually occurs in the VFL
setting, where features are partitioned and held by differ-
ent parties, the goal is to infer the sensitive feature in-
formation held by other parties.

Luo et al.86l proposed a feature inference attack meth-
od on model predictions in VFL, where the active party
attempts to infer the feature values of new samples which
belong to the passive parties

Membership inference attack. Unlike the previ-
ous two types of inference attacks, membership inference
attack usually occurs in the HFL setting, where members
are partitioned and held by different parties. Given a
data record and the black-box model, the attackers try to
determine if the record is in the model’s training dataset
via model outputs.

Pustozerova and Mayer[87 discussed membership infer-
ence attacks in the setting of sequential federated learn-
ing. The promising approach is to distort the resulting
model by injecting a certain amount of noise to their
training data, or directly perturbating the model para-
meters. To achieve a similar result is to apply differential
privacy on the learning output/87.

Defense against model inference attacks are also
widely studied, the defensive strategies discussed in the
previous phase also apply to defend against inference at-
tacks, such as differential privacy to obfuscate the model
output, and encryption-based solution for masking model
structure. Besides, controlling query frequency is also a
promising approach to preventing malicious queries.

The final security risk is model plagiarism. FL. models
can be deployed on any device, which makes them out of
control and is susceptible to various kinds of attacks such
as plagiarizing and misusing. As a new research direction
of federated learning, it is necessary to discuss this part
in-depth, we explain the detailed implementation in Sec-
tion 8.

8 IP-right protection of federated learn-
ing models

While preserving the training data privacy is of para-
mount importance for FL, it is also a critical issue to pre-
vent adversaries from plagiarizing, misusing, and re-dis-
tributing valuable FL models without legal permissions
from legitimated owners of models!7.

8.1 Challenges

Machine learning methods that allow ownership veri-
fications of valuable models, especially large deep neural
network models, have been successfully demonstrated by
either detecting feature-based signatures embedded into
models[88; 89 or verifying designated labels for backdoor
samples that are injected into the models during the
training stagels? 9.

These methods are adopted and extended to the feder-
ated learning settingl®h 921, in which the following chal-
lenges are properly addressed to allow each participant to
verify their respective ownerships of and contributions to
the global model.

First, in order for each participant to embed their own
feature-based signatures, the global federated model must
have sufficient capacity to embed a potentially large set
of (binary) signatures without compromising original
model performances. Theoretical analysis and empirical
investigation in [92] demonstrated that, as long as the
total bit-lengths of embedded signature do not exceed a
threshold that is proportional to the deep neural network
size, it is possible to embed signatures without introdu-
cing significant loss of original model performances. Also,
potential conflicts between signatures embedded by differ-
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ent participants should also be considered, and luckily,
such conflicts lead to negligible losses in the confidence of
ownership verification as demonstrated in [92].

Second, in order for each participant to embed their
private signatures, the aggregation of federated models
should not disclose signatures embedded into individual
models. Moreover, these feature-based signatures should
be verified in a private manner for instance without dis-
closing the feature extraction matrix, etc. It was demon-
strated by [92] that private embedding and verification
are achievable.

Third, for backdoor-sample-based ownership verifica-
tion, one must ensure the persistence of backdoor samples
when submitting the local models for aggregation. This is
because plenty of aggregator-side defensive methods have
been proposed with the aim to filter out backdoor
samples from the global modell62 63 93], Again, Li et
al.2l showed that negligible losses in the confidence of
ownership verification were caused by the adoption of de-
fensive methods. Thus, the embedded backdoor samples
turn out to be very persistent.

The protection of IPR for FL models is an important
step in the whole life-cycle of federated training. This
step is part of an auditing process in which a variety of
requirements for federated model management must be
fulfilled. For instance, one may wonder whether a trained
generative model has been misused to generate fake im-
ages or videos. This line of research work has been invest-
igated in non-federated settings/9496l,

Note that model IP-right protection cannot be solved
by existing blockchain-based methods. When a model is
collaboratively built by multiple participants, the model
has not been entered into any blockchain yet.

8.2 Protection of deep neural network
ownership using digital watermarks

In the past, digital watermarks were widely utilized to
safeguard the ownership of multimedia assets such as im-
agesl97 98] videos9% 1001 audiosll01-103] or functional
designs104. However, the recent progress in deep learning
has expedited various technology corporations to launch
machine learning as a service (MLaaS) as one of the busi-
ness models. Therefore, in order to protect and encour-
age creativity, it is necessary and urgent to provide IP-
right-preserving.

In general, the IPR of deep models can be protected
by various digital watermarking methods, which can be
categorized into two schools according to respective work-
ing modes, namely, the black-box solutions using trigger
setsl90, 105] and the white-box solutions relying on unique
detectable features(s8 106, 107, The main idea of water-
marking is to embed identification information (i.e., a di-
gital watermark) into the model in question without com-
promising model performances for the original task. For
trigger-set-based methods, such watermarks are encoded
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by specific input-output data samples, which are referred
to as the trigger set. Ownership of the model in question
is verified by the repeated detection of trigger-set
samples, and due to the exponentially low probability
that an innocent model will exhibit the same behavior by
chance. On the other hand, feature-based methods em-
bed designated watermarks into parameters of deep neur-
al networks (DNNs) using a carefully designed transform-
ation matrix. In this case, the detection of designated wa-
termarks validates ownership.

The first effort due to Uchida et al.®8] proposed to
protect ownerships of DNNs in a white-box manner, by
embedding designated watermarks into DNNs without
compromising host network performances for the original
task. Uchida et al.38] also demonstrated that the detec-
tion of designated watermarks was robust in the face of a
variety of removal attacks, including model fine-tuning
and pruning. However, their method was constrained in
that it required access to all of the network weights in
question to extract the embedded watermarks. In order to
mitigate the white-box constraint, Merrer et al.[l%8 pro-
posed a trigger-set-based solution which embedded water-
marks in the classification outputs of CNN models by us-
ing adversarial samples (trigger sets). This method was
advantageous in that it allowed designated watermarks to
be verified remotely by repeated submitting trigger set
samples to a service API, thus without requiring access to
the network's internal weights parameters. Later, Adi et
al. demonstrated that an embedded watermark as such
can be treated as an intentional backdoor, and a theoret-
ical analysis of performance under different scenarios was
provided in [90]. One common theme in follow-up works
such as [106, 107] have been focused on how to embed ro-
bust watermarks (or fingerprints) that are persistent to
various removal attacks, including watermark overwrit-
ing, model fine-tuning and pruning of neural network
models in both black box and white box settings. More
recent works[8% 105 are proposed to deal with another type
of attacks on watermarks, i.e., ambiguity attacks. The
most unique feature of solutions illustrated in [89, 105]
(also summarized in Fig.7) lies in the fact that the infer-
ence performance of a DNN model in question will either
remain intact if a valid passport is presented, or be signi-
ficantly deteriorated otherwise. By taking advantage of
this unique feature of the passport-based approach, own-
ership verification become both robust to removal at-
tacks and resilient to ambiguity attacks. Moreover, desig-
nated binary signature can be simultaneously embedded
into the scale factors of a passport layer, which provides
strong guarantees and resilience to ambiguity attacks.

Aiming at the IP protection of generative adversarial
networks (GANs), Ong et alll®! demonstrated a feasible
solution as summarized in Fig.8. Later, Lim et al.[1% also
demonstrated IP protection for recurrent neural net-
works (RNNs). On both occasions, the generic water-
marked framework proposed by [108] for DNNs is not
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Fig. 7 Overview of the proposed passport-based protection framework (reprinted with permissions from [89])

readily applicable to GANs and recurrent neural net-
works (RNNs), since the input source for GANs can be
either a latent vector or an image, and the output of
GANSs is a synthetic image rather than a classification la-
bel. While for RNNs, the input and output for RNNs are
sentences.

D
Normal outputs

Protected
generative models

12 PR
Watermarked outputs

T'r“igger inputs

Fig. 8 Overview of the proposed GANs protection framework
(reprinted with permissions from [109])

For the protection of GAN-type models, Ong et al.[109
proposed a protection framework by embedding the own-
ership information into the generator of GAN. In a black-
box scenario, they proposed to induce the generator to
output a designated watermark at an assigned location of
the synthesized image, when given a trigger input (see
Fig.8). This special behavior is enforced into the model
by using an appropriately designed regularization term in
the training of GAN. In a white-box scenario, Ong et
al.'9 proposed to use a modified sign-loss of [89] where
the sign of scaling factors encodes meaningful security in-
formation, e.g., company name. The ownership verifica-
tion was successfully demonstrated on three GANs vari-
ants, namely, deep convolutional generative adversarial
network (DCGAN)[IM super-resolution using a generat-
ive adversarial network (SRGAN)2 and CycleGAN[13,

For RNN models, which were designed to take images
as inputs and output meaningful image captions accord-
ing to image contents, Lim et al.l'%l proposed a novel
RNN ownership verification method whose main features

are summarized as follows. First, two different embed-
ding were adopted to embed a designated watermark (or
secret key) into the RNN cell. Second, the ownership was
then verified by comparing the designed image captions
for a specific input image. Third, a secret key was embed-
ded into the hidden memory of RNN such that a forged
key will immediately yield an unusable image captioning
model in terms of poor-quality outputs. This protection,
in the same vein of passport-type of protection in [89]
prevents the infringement of RNN models proactively.

8.3 Protection of deep mneural network
ownership under federated setting

In federated learning, there are several IPR infringe-
ment cases. Firstly, during the training stage, multiple
clients have access to the global model, thus in the mod-
el-deployment stage, the trained model may be illegally
redistributed to an un-authorized party outside the feder-
ated-learning system. Secondly, some free-rider parties
participate in federated learning merely for stealing the
federated model, they dissimulate participation to the
training process but without actually contributing any
data for FL, which means they infringe the intellectual
property rights of benign clients. Those two IPR infringe-
ment cases highlight that there is a strong demand and
motivation for federated model IP protection. In this
way, several watermarking methods for FL come as a
remedy for the aforementioned loopholes.

Recently, a watermarking scheme named WAFFLEN!
was proposed to protect FL model, this method assumes
that the trustworthy central server is the owner of the FL
model and clients have no ownership over the joint-
trained federated model. WAFFLE method introduces a
model re-training step at the server side, server embeds
backdoor-based watermarks(®) into the aggregated model.
In the ownership verification stage, the central server
claim ownership through black-box access to the trained
model with the prescribed watermarks.

Li et al.? considered the FL IPR protection problem
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in a more general semi-honest FL setting, and proposed
FedIPR signature/watermark embedding scheme. In
FedIPR, each party is the owner of the federated learn-
ing model, during the training stage, each party keeps its
own secret watermarks, and embeds secret watermarks
into the local model on the client-side, and afterward, the
local models are aggregated into a global model. In the
verification stage, each party can verify the ownership of
the global model by looking for its own watermark em-
bedded in the global model. Note that this verification
process is kept secret for each party and independent of
other parties’ watermarks. In this way, unauthorized
parties outside FL cannot claim ownership of the feder-
ated learning model. Moreover, free-riders who do not
embed watermarks during the training cannot claim legit-
imate rights of the global model.

This FedIPR setting is rather challenging because the
signature embedding process on the client-side must be
kept secret, and the global model needs to have sufficient
capacity to embed each party’s watermarks at the same
time. On the technical side, Li et al.l%2 propose both
backdoor-based watermarks and feature-based water-
marks, specifically, they propose adversarial samples as
the backdoor-based watermarks to embed in the local
model, and adopt a secret matrix to embed feature-based
signatures into the batch-norm layers. In the verification
stage, each party can verify the ownership of the global
model independently. FedIPR has provided theoretical
results for the capacity of client-side secret watermarks,
and FedIPR is evaluated in both image classification
tasks and natural language inference tasks with both con-
volution network and transformer-based architectures.

The engineer or researcher of a federated learning
framework might benefit from the model IP protection.
This is crucial as the development of the DNN costs a
massive amount of money, data and computing resources.
The IP protection methods will encourage the innova-
tions of DNN model and protect the legitimate right of
model owner, even in the worst scenario that the attack-
er can access the model without the owner’s acknowledg-
ment. In short, the FedDNN model protection benefits
the AI society especially for securing their advantage in
the open market.

8.4 IPR research direction

Model intellectual property protection is an open
question in secure federated learning, challenges come
from the following perspectives:

Watermarking protocols. It is necessary to design
secure and trustable protocols for federated learning mod-
el protection, a schemel®l was proposed in which the
model server is responsible for watermark embedding and
only the server can verify ownership over the model,
whereas Li et al.%?] proposed that each client can embed
private watermarks and claim ownership of the model
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without revealing watermarking information to other
parties. We believe that ownership verification protocols
combined with more security mechanisms are a compel-
ling need for trustable and secure verification.

Watermarking embedding methods. Previous
federated model watermarking methods can be divided
into feature-based methods® 907921 and backdoor-based
methods[10% 110, The feature-based watermarks need to be
extracted with white-box access to the model parameters,
which is unrealistic in practice. The backdoor-based wa-
termarking methods are highly related to backdoor learn-
ing, which is an important perspective and can motivate
more related research. Especially in federated learning, it
remains to be investigated how many private water-
marks can be embedded into the same global model.

Watermark robustness. Another important chal-
lenge for federated model watermarking is the robustness.
On one hand, various training strategies like differential
privacy, homomorphic encryption and secure aggregation,
etc. are adopted for data securityl52 54755, 65, 66]  those
strategies modify the training process thus may remove
the watermarks; on the other hand, the model adversary
may apply removal attacks or model extraction attacks to
remove the watermarks/l!47116l, Combining those two
risks, the watermark robustness is a crucial issue for fed-
erated model IP protection.

In general, model IP protection is a non-negligible is-
sue when applying federated learning into practice. Al-
gorithms and protocols will be the core of the research on
federated model IP protection.

9 Open-source frameworks for federa-
ted learning

Developing a federated learning framework from
scratch is very time-consuming, especially in industrial.
An excellent FL framework can facilitate engineers and
researchers to train, research and deploy the FL model in
practice. In this section, we summarize some commonly
used open-source frameworks in Table 2.

Besides, other famous FL frameworks include
FedML[126; 127 Fedlearner(!28], Flower[129, PaddleFLI30],
PowerFLI[131, Leafl32], Sherpa.All!33], PyVerticalll34,

10 Conclusions

Privacy-preserving computing (PPC) is one of the act-
ive and influential research areas in both industry and
academia. As the frontier research direction of PPC, FL
has received considerable attention in recent years. This
article gives a comprehensive survey on key components
of SFL, including definition, architecture design, and
threat models faced by FL. Besides, we wish that the IP
protection perspective illustrated in this paper will lead
to model IP protection in more FL settings. We believe
that secure federated learning will bring about a new
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Table 2 Commonly used open-source FL frameworks

Framework Affiliation Industrial /Research Security protocols
Federated Al technology enabler (FATE)[117] WeBank Industrial purpose MPC, DP, HE
Tensorflow federated (TFF)[118,119] Google Research purpose MPC, DP, HE
PySyft120,121] OpenMined Research purpose DP, MPC
Open federated learning (OpenFL) 122, 123] Intel Industrial purpose TEE
IBM federated learningl124] IBM Industrial purpose DP, MPC
Clarall2s] Nvidia Industrial purpose TEE

mindset and toolbox in developing large-scale Al systems,
and help to address open problems that hinder wide ap-
plications of SFL in a larger variety of use cases, such as
secure and legal data exchanges, data shortages and data
silos in practice.
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