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Abstract: With the rapid increase of the amount of vehicles in urban areas, the pollution of vehicle emissions is becoming more and
more serious. Precise prediction of the spatiotemporal evolution of urban traffic emissions plays a great role in urban planning and policy
making. Most existing methods usually focus on estimating vehicle emissions at historical or current moments which cannot well meet
the demands of future planning. Recent work has started to pay attention to the evolution of vehicle emissions at future moments using
multiple attributes related to emissions, however, they are not effective and efficient enough in the combination and utilization of differ-
ent inputs. To address this issue, we propose a joint framework to predict the future evolution of vehicle emissions based on the GPS tra-
jectories of taxis with a multi-channel spatiotemporal network and the motor vehicle emission simulator (MOVES) model. Specifically,
we first estimate the spatial distribution matrices with GPS trajectories through map-matching algorithms. These matrices can reflect
the attributes related to the traffic status of road networks such as volume, speed and acceleration. Then, our multi-channel spatiotem-
poral network is used to efficiently combine three key attributes (volume, speed and acceleration) through the feature sharing mechan-
ism and generate a precise prediction of them in the future period. Finally, we adopt an MOVES model to estimate vehicle emissions by
integrating several traffic factors including the predicted traffic states, road networks and the statistical information of urban vehicles.
We evaluate our model on the Xi'an taxi GPS trajectories dataset. Experiments show that our proposed network can effectively predict
the temporal evolution of vehicle emissions.
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1 Introduction prediction of the evolution of traffic emissions. The trend

of vehicle pollution emissions is mainly affected by driv-

Environmental pollution from traffic is becoming an
important issue that people are concerned about. Urban
traffic congestion and dense traffic flow have exacerbated
environmental problems, and vehicle emissions have be-
come one of the main sources of urban air pollutionltl.
The pollutants emitted by vehicles contain carbon
monoxide, nitrogen oxides, and particulate matter, which
are the main causes of smog and photochemical smog pol-
lution2. Therefore, the urban transportation system
needs to establish an effective environmental monitoring
and early warning system. The key issue is the accurate

Research Article

Manuscript received July 14, 2020; accepted December 14, 2020;
published online March 5, 2021

Recommended by Associate Editor Min Wu

Colored figures are available in the online version at https://link.

springer.com/journal/11633
© The Author(s) 2021

ing conditions, such as changes in vehicle speed, accelera-
tion, and traffic volume. Predicting the emission of mo-
tor vehicles in the future means predicting the temporal
and spatial trends of multiple related traffic condition
variables. Therefore, the accurate and efficient prediction
of trends of multiple related traffic condition variables
can provide scientific estimations for predicting the evolu-
tion of urban vehicle emissions.

In recent years, more and more researchers have fo-
cused their research on vehicle emissions and urban air
pollution. The existing researches on the prediction of the
temporal and spatial distribution of urban mobile source
emissions can be roughly divided into two main methods:
model-driven and data-driven. Based on the model-driv-
en method, vehicle emission models are proposed to ob-
tain an emission inventory, which is used to estimate or
predict the total emission traffic of a specific areal® 4,
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within a specified time range (usually one year). Wang et
al.bl proposed a vehicle emission model based on mileage
and emission factors to study vehicle emission trends in
China. Emission models such as motor vehicle emission
simulator (MOVES)[®l, computer programme to calculate
emissions from road transport (COPERT)[" 8! and the in-
ternational vehicle emission (IVE) modell! have been de-
veloped and adjusted according to vehicle information
databases (such as vehicle type and fuel type) in various
locations. MOVES was developed by the US Environ-
mental Protection Agency and used to estimate emis-
sions from mobile sources on highways. It considers sever-
al mobile emissions processes, including exhaust during
driving, brake wear, tire wear, and driving losses.
COPERT is a commonly used emission model in Europe.
The model uses lots of experimental data to determine
the emission parameters of road transportation and ob-
tain an emission inventory. The IVE model uses vehicle
specific power (VSP) and engine stress (ES) as inputs to
calculate emission factors. Recently, Jamshidnejad et
al.ll% proposed a comprehensive framework that com-
bines micro and macro emission models to estimate
vehicle emissions. The emission inventory estimated by
the model-driven methods can provide the macro-emis-
sions of the city, but it cannot satisfy the short-term and
fine-grained forecasting needs of the early warning mech-
anism in an urban environmental monitoring system.

Although the above methods have made great pro-
gress, it is still a challenging problem to predict vehicle
emissions. The model-driven algorithms lack universality
and ignore the influence of geographic and environmental
factors on the distribution of traffic flow. Due to the lim-
itation of accuracy, the above algorithm can only predict
the total emissions of the entire city or region, and can-
not predict emissions within the fine-scale range.

With the rapid development of traffic data collection
and big data technologylll: 12 researchers have turned to
data-driven methods, using mobile source pollution emis-
sion monitoring data and other urban multi-source data
to study spatiotemporal prediction of vehicle emissions.
The development of laser remote sensing technology(!3-16]
has enabled on-road monitoring equipments for the re-
mote sensing of emissions to measure the instantaneous
emissions of vehicles while driving. Xu et al.ll7l proposed
long short-term memory (LSTM) networks combined
with automatic encoders to predict vehicle emissions
based on data obtained from the remote sensing station.
Xu et al.l'81 proposed a deep spatiotemporal residual
early-late fusion network with the semi-supervised geo-
graphical weighted regression to predict vehicle emissions
in urban areas, using the sparse monitoring stations. The
data collected in this way is not extensive enough, and
the sparseness of the monitoring stations makes the gran-
ularity of the emission predictions insufficient.

With the establishment and improvement of the envir-
onmental monitoring system and intelligent transporta-
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tion system, a large number of GPS sensors are installed
on taxis. The trajectory data with the spatiotemporal
properties are distributed on various streets of the city,
and can reflect the traffic state in a small area or even on
the street scale. GPS trajectories have time continuity
and closeness, which can realize short-term estimation.
More than that, the data covers all the streets of the city,
which not only overcomes the sparseness of telemetry sta-
tions, but also enables fine-grained emission analysis.

Aslam et al.[l9 verified that the traffic patterns reflec-
ted in the taxi trajectory data obtained through high-
density sampling have roughly the same trend as the ac-
tual traffic patterns. Therefore, it is widely used in the re-
search of urban traffic and traffic pollution. Nyhan et
al.2% inferred the spatial and temporal distribution of
Singapore’s vehicle emissions by taxi GPS trajectories and
loop detector data. Shang et al.2ll used taxi trajectory
data and urban road network information to infer vehicle
emissions in Beijing. Nocera et al.?2 estimated the car-
bon emissions of road transport using incomplete traffic
information collected by the flow estimator.

The existing research on using big data to estimate
vehicle pollution emissions at any scale is mature. In
most works, the current or past vehicle emission distribu-
tion is estimated with the aid of traffic conditions, and
the analysis of spatiotemporal evolution of emissions is
blank temporarily.

It is a prediction problem to obtain evolution of
vehicle emissions by using historical GPS trajectory data.
There are some challenges here:

1) The prediction of emission trends is complicated
and requires high accuracy and calculation efficiency.
Only considering a single feature cannot achieve accurate
modeling and prediction of emissions. In order to im-
prove the accuracy of vehicle emission prediction, mul-
tiple traffic attributes need to be considered in the vehicle
emission model. For example, the traffic average speed
and volume are used in the COPERT model to calculate
the emissions of vehicles; the MOVES model additionally
considers average acceleration. However, predicting mul-
tiple features separately will greatly increase the compu-
tation cost and reduce the development efficiency. There-
fore, how to improve calculation efficiency in the case of
predicting multiple traffic state-related features at the
same time becomes an urgent problem to be solved.

2) How to effectively extract and integrate multiple
attributes related to traffic emissions is also a challen-
ging task. The attributes related to traffic emissions in-
clude traffic volume, average speed, acceleration, etc. The
temporal and spatial variation trend of the attributes are
complex nonlinear models and are hard to predict pre-
cisely. Besides, affected by the external environment and
location factors, these attributes reflect different traffic
conditions, but at the same time they are related to each
other, which brings difficulties to the design of feature ex-
traction and fusion mechanism.
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In order to solve the above problems, we propose a
joint framework based on the multi-channel spatiotem-
poral graph convolution network and the MOVES emis-
sion factor model to predict spatial and temporal distri-
bution of traffic emissions with reasonable accuracy, us-
ing multi-source datasets including meteorological data
and road network data.

Specifically, we first match the GPS trajectories to
different spatial grids with a map matching algorithm,
and extract traffic status that changes with time, which
is the volume, average speed and acceleration of passing
taxis in each grid. Then spatiotemporal feature spaces of
taxi volume, speed and acceleration can be constructed
by multi-channel spatiotemporal graph convolution net-
works. We will use the feature sharing mechanism to
couple above features to predict traffic states in future
periods. Finally, the MOVES emission model is used to
calculate emission factors, combined with road network
information to estimate the emission evaluation of
vehicles. Through the comparison and visualization ex-
periments on the Xi'an taxi trajectories dataset, the ef-
fectiveness of this method is proved. The main contribu-
tions of this paper are as follows:

1) In order to improve the accuracy of pollution pre-
diction and ensure the computational efficiency of the
model, we use a multi-channel mechanism to achieve sim-
ultaneous prediction of multiple attributes. At the same
time, in order to balance the scale differences of different
features, we introduce homoscedastic uncertainty to learn
the weight of the loss of each channel.

2) In order to better construct the spatiotemporal de-
pendence of each attribute, we use spatiotemporal graph
convolutional network (STGCN) in each channel to ex-
tract spatiotemporal features layer by layer. In addition,
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we introduce a feature sharing mechanism to model the
selection tendency in the extraction of features between
related attributes which helps to achieve better fusion
and utilization of different attributes.

3) We evaluate the effectiveness of our method on the
GPS trajectory dataset of taxis in Xi'an. The results show
that the multi-channel mechanism shortens the training
time by 17.72%, and under the premise of ensuring the
prediction accuracy, the prediction accuracy of traffic
volume and average speed attributes are respectively in-
creased by 4.86% and 4.68%, proving the effectiveness of
the feature sharing mechanism. In addition, through the
prediction and analysis of pollution in different function-
al areas of the city, the distribution of pollution is basic-
ally consistent with the actual situation, so it can be con-
sidered that the prediction of vehicle emissions is effect-
ive.

The rest of this paper is organized as follows. System
overview is written in Section 2. Section 3 describes the
proposed urban traffic emission evolution prediction mod-
el. The details of the experimental setup and the results
of the related experiments are written in Section 4. Fi-
nally, we conclude this paper in Section 5.

2 Definition

Definition 1. Trajectory. Let P denote a set of
GPS trajectories at the t¢-th time interval, and
Tr:p1 — p2 = --- — pp is a trajectory in P, where p has
a geospatial coordinate set g and a timestamp T,
p=(7.9)

Definition 2. Node. Dividing the city into
N =1 x J grid based on the longitude and latitude, de-
noted by V = {ri,r2, -+ ,rn}, each of which represents a
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Fig.1 Architecture of multi-channel spatiotemporal graph convolutional networks and MOVES model
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spatial node.

3 Methodology

In this section, we propose the prediction model for
evolution of traffic emissions based on a joint training
framework of map-matching and multi-channel spati-
otemporal graph convolution network, as shown in Fig. 1.
Specifically, we first match the GPS trajectory to corres-
ponding spatial grids using the map-matching algorithm,
and taxi volume, average speed and acceleration in each
grid are calculated. Then, we adopt a multi-channel spa-
tiotemporal graph convolution network to construct the
feature spaces of volume, speed and acceleration respect-
ively, and use the feature sharing mechanism to couple
the above features to predict the traffic states in spatial
grids in the next time interval. Finally, we estimate the
emission of urban vehicles by the MOVES model, using
road network and urban vehicle statistical information.

3.1 Traffic states construction

The GPS trajectories received by the vehicle are pro-
jected onto the road network using the map-matching al-
gorithm[23], After matching, each point of the trajectories
is mapped onto the corresponding road segment. Given
two trajectory points p; and ps, the speed and accelera-
tion of p1 can be calculated:

vy = dist(p1.9,p2.9) (1)
|p2.T—p1-7_‘
P ek (2)

|p2.7T — p1.7]

where dist () is the function that calculates the distance
of road network between two points. Likewise, we can
calculate the average speed and average acceleration of
grid r; at the interval ¢ as follows:

5Z:|P1|><|Tr1\ 2 D ®)

TricPip,eTrt

i 4
a = [P?| x |Trz Z Z Ak ( )
TriecPt pyeTri
where |-| denotes the cardinality of the set. Tr' =

{pk | pr.g € 7i} and P* = {Tr | Tr = Tr'} denote a set of
trajectory points and a set of trajectories in grid r;. In
addition, GPS trajectory data can be used to find the
traffic volume of a certain area in a time interval. The
taxi volume of grid r; at the interval ¢ is defined as

= Z H{k>1|prgerl}. (5)

TreP

Therefore, three matrices representing time-varying
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traffic conditions within the grid area can be extracted
from the historical trajectory. Firstly, we define the set of
time intervals as 7 = {t1,t2, -+ ,tr}, and traffic status
including average speed, acceleration and taxi volume in
all N regions can be denoted as three tensors S, A,
F e R™*YN where S[i,t] = o}, A[i,t] = a; and FJ[i,t] = fi.
The area within Xi'an Second Ring Road is divided into
8x8 disjoint grids. Each row of the three matrices repres-
ents a time interval, and each column represents a grid
unit. Each element represents the average speed, accelera-
tion, and taxi volume of all vehicles passing through the
grid area in certain time interval, which can reflect the
traffic condition of the area. As show in Fig.2, when the
trajectories in the grid are dense, i.e., the taxi volume is
large, the average speed of vehicles is lower than that in
the sparse trajectory area. Similarly, the average accelera-
tion of vehicles is also lower than the grid with fewer
vehicles.

3.2 Multi-channel spatiotemporal graph
convolution network

3.2.1 Graph construction

In this work, we define the road network as a set of
time-varying spatial graphs G. In graph G, = (V, €, W) at
the ¢-th time interval, V; is a set of vertices correspond-
ing to the traffic status S, A, Fy € RY in the above-men-
tioned nodes; £ is the set of edges representing the con-
nectedness between nodes, while W € RV*" denotes the
weighted adjacency matrix of G.

3.2.2 Multi-channel STGCN

The multi-channel spatiotemporal graph convolution-
al network is a model that we proposed based on
STGCN[R4, which can predict the three features of taxi
volume, average speed and acceleration in the traffic net-
work simultaneously, and guarantee reasonable accuracy
and scale. The network structure is shown in Fig.1. A
novel multi-channel feature sharing mechanism is pro-
posed in our model. The network constructs the spatiot-
emporal feature space of volume, speed and acceleration
separately, and interactively encapsulates them into the
spatiotemporal convolution module of other channels.
Three channels eavesdrop to feature information related
to themselves through a feature sharing mechanism.

In this paper, spatiotemporal graph convolutional net-
works?4 are used to capture the dynamic spatial and
temporal correlations on traffic networks. The network
includes several spatiotemporal convolutional blocks,
which are a combination of graph convolutional layers/25]
and temporal convolutional layers to model spatial and
temporal correlations.

Regarding the graph convolution layer, we mainly
consider spectral convolution on arbitrary graphs/25l.
Since it is difficult to express meaningful conversion oper-
ators in the node domain, the spectral representation of
the convolution operator is given on the graphl?%, de-
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Fig. 2 Visualization of GPS trajectories, taxi volume, speed, acceleration

noted as xg. According to above definition, node feature
vector X € RV*7 with a filter g, = diag(w) parameter-
ized by w € R" in the Fourier domain is

Gu %6 X = gu(L)X = gu (UAUT) X (6)

where U € RM*YN is the eigenvector matrix and A €
RY*YN is the diagonal matrix of the eigenvalues of the

normalized graph Laplacian L.

L=Iy-D 3AD : =UAU” e RV*N  (7)
where In represents the identity matrix and D € RV*YN
represents the diagonal degree matrix with D;; =) j Aij.
We define g., as the eigenvalue function of L. However,
since the complexity of multiplying by U is O (N?), the
calculation is huge. In order to solve the above problem,
Defferrard et al.25] used Chebyshev polynomial expansion
to obtain effective approximation,

gu(L)X ~ z_: wy (1}) X = 2_: wi T (D)X (8)

where Ty(L) is the k-th order Chebyshev polynomial

L—

evaluated on the scaled Laplace operator L= h
max

IN, \pax is the largest eigenvalue of L, and w € R¥ is
the vector of Chebyshev coefficients. Details about
Chebyshev polynomials approximation can be found in
[25, 26].

As for temporal convolutional layers, it contains a
one-dimensional convolution, the width of the kernel is
K¢, and then gated linear units (GLU)27 is connected as
the activation unit. The input of the temporal convolu-
tion for each node in graph G can be regarded as a se-
quence of length M, with C; channels, denoted as
Y € RM*C%, The convolution kernel I" € RE!*Cix2C0 g
designed to map Y to a single output. Therefore, tempor-
al convolutional layers can be defined as

I'srY = Poo(Q) e RMKiFxCe (9)

where P and @ are the input gates of GLU, ® donates
the Hadamard product. The sigmoid activation function
o(Q) controls which input P of the current state is
relevant to discover the composition structure and
dynamic variance in the time series. A non-linear
activation function can perform deep mining on inputs

@ Springer



224 International Journal of Automation and Computing 18(2), April 2021

field by stacking temporal convolutional layers. In
addition, when stacking temporal convolutional layers,
residual connections are realized. Similarly, the same
convolution kernel is used on each node, and the
temporal convolution can be generalized to 3D variables,
denoted as I" x7 Y with ) € RM*NxCi,

In order to fuse features from spatial and temporal do-
mains at the same time, Yu et al.24 constructed a spati-
otemporal convolutional block (ST-Conv block) based on
the bottleneck strategy, including two temporal convolu-
tional layers, respectively in the upper and lower two lay-
ers, and a spatial convolution layer in the middle. When
the input of the block [ is the characteristic matrix x' €
RM*"*C" then the output a't! € RO -2(Ki=1)xnxc!
is calculated:

'™t = I'l %7 ReLU (QZ *G (Fé % ml)) (10)

where I¢, Il are the upper and lower temporal
convolutional layers parameters of block I, ©' is the graph
convolution spectrum kernel, and ReLU(-) represents the
ReLU activation function. After stacking two ST-Conv
blocks, a temporal convolutional layer and a fully-
connected layer are used as the final output layer.

We design three parallel channels, namely volume
channel, speed channel, and acceleration channel to ex-
tract the temporal and spatial dependence feature of mul-
tiple attributes such as traffic flow, speed and accelera-
tion respectively, as shown in Fig.1l. Each channel in
multi-channel spatiotemporal graph convolutional net-
work (MC-STGCN) is a ST-subnetwork, which is com-
posed of two ST-Conv blocks and an output layer. Input
of the three sub-networks is time-ordered sequence of
traffic attribute graphs. Under the actions of parallel net-
works, feature extraction processes of attributes are inde-
pendent of each other and proceed simultaneously, which
improves computational efficiency of our task.

In order to fuse features from spatial and temporal do-
mains at the same time, Yu et al.24 constructed the spa-
tiotemporal convolutional block (ST-Conv block) based
on the bottleneck strategy, including two temporal convo-
lutional layers, respectively in the upper and lower, and a
spatial convolution layer in the middle. When the input
of the block [ is the characteristic matrix s' € RM*nxC"
of the traffic speed, the characteristic matrix of its accel-
eration is also packaged as the input of the block [, then

1 R(M&(Kﬁl))mlxcl*'

the output s " is calculated:

s+ = 'l s ReLU (@l %g (Fé 7 [sl,al,fl]))

(11)

a't' = 'l 7 ReLU (9l *g (Fé *T [al, s', fl]))
(12)
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F7 = Il %7 ReLU (QZ *g (Fé *T [.flv slaal]))
(13)

where I¢, I! are the upper and lower temporal
convolutional layers parameters of block I, ©' is the graph
convolution spectrum kernel, and ReLU(-) represents the
ReLU activation function. After stacking two ST-Conv
blocks, a temporal convolutional layer and a fully
connected layer are used as the final output layer.

3.2.3 Feature sharing mechanism

For traffic state prediction models including taxi
volume, traffic speed and acceleration, they have relat-
ively close temporal and spatial characteristics, such as
spatial correlation, temporal periodicity and dependence,
etc. Due to the similarity between channels, feature shar-
ing can provide more information about spatiotemporal
characterization for each task, thereby assisting ST-sub-
networks to extract more accurate feature representa-
tions.

In this article, the output of the first ST-Conv block
in each channel will be used as a shared feature and be-
come the input feature of the second ST-Conv block in
other channels. Since the feature representations of differ-
ent channels have different scales and statistical features,
the network will prefer features with larger values and ig-
nore other feature information. Therefore, we first stand-
ardize the shared features and then concatenate them in-
to high-dimensional feature vectors. The input of the
second ST-Conv block of speed channel is

52 :Concat(Norm(sl), Norm(al)7 Norm(fl)) c R3Mxnxc!
(14)

where st, a!, f e RM*mxC" are outputs of the first ST-
Conv block in three channels, and Norm(:) represents
standardized operation, which transforms features into a
representation with same mean and variance. Concat(-) is
to concatenate matrix according to a certain dimension.
Similarly, the inputs of second ST-Conv block of
acceleration channel and volume channel are:

a® = Concat(Norm(a'), Norm(s"), Norm(f")) (15)

f? = Concat(Norm(f"), Norm(s"), Norm(a')).  (16)

3.2.4 External factor fusion

External factors like weather can affect urban traffic
and road conditions. For example, a heavy rain may con-
gest the streets. External factors are like switches, and if
they do, the road conditions will change dramatically.
Based on this conclusion, Zhang et al.28] develop a gat-
ing-mechanism-based fusion, which can obtain the corres-
ponding external features expressed as E; € R at time ¢
in the network, as shown in Fig.1. Formally, we can get
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the following gating value:
F, =0 (W.-E +b.) (17)

where W, € R'**! and b. € R' are learnable parameters.
F; € R? is the output value of the gate. o(-) is the
sigmoid function and “” is dot product of two matrices.
Then a product fusion based on the gating mechanism is
embedded in the output layer of each ST-subnetwork for
speed sin, acceleration a;, and volume f;,:

Sout = tanh (Fiy1 @ (I'Y *7 Sin)) (18)
aout = tanh (Fip1 © (I *7 ain)) (19)
fout = tanh (Ft+1 © (qu kT fzn)) (20)

where tanh is a hyperbolic tangent function, which
ensures that the output value is between —1 and 1. I is
the parameter of the temporal convolutional layer, and
Fiy1 represents the weather forecast of environmental
features at future moments. According to this, the
predicted values Si41,Gey1, ft+1 at time t+ 1 are as
follows:

§t+l = Ws * Sout + bs
dt+1 = Wa * Qout + ba

ft+1 = W; % four + by. (21)

3.2.5 Loss function design for MC-STGCN

W is the set of all learnable parameters of predicted
speed models of MC-STGCN. Our goal is to learn them
by minimizing the loss function between the predicted
value S and the true value S:

L(3Wa)=> I8 (si-ary1,- -+, 50, Wa) — s ||®. (22)
t

Similarly, We and Wy is a set of all learnable para-
meters of predicted acceleration models and volume mod-
els. For the square loss function,

L(a;We) =Y lla(a-nt1,- -, a, Wo) — aria )
t

(23)

L (f, Wu'/) = Z Hf(ft—MJrl, s fe, W) — ft+1H2
t (21)

where si11, art1, fir1 are ground truths, 3(-), a(-), f(-)
represent predicted values of model.

The performance of the multi-channel learning model
depends on the loss weight between channels. Manually
adjusting the weights is time-consuming and labor-intens-
ive. In order to better optimize our proposed multi-chan-
nel network, we use the strategy proposed in [29] to bal-
ance the three channels. Then, the network loss function

formula is as follows:

1 N
L (8; qu) =+

2
202

L(W¢7W63W¥770550a?0f) =

%L(d; Wo) + %L (f, ng) + logafaga?

(25)
where o, 04, 0y are balancing weights of three channels,
which can be optimized as parameters in training. The
loss function automatically learns the weighted
hyperparameters in the loss function through the
homoscedastic uncertainty, so that the loss function of

each task has a similar scale.
3.3 Emission model

Traffic speed, acceleration and volume information
can be further used to estimate vehicle emissions in the
road network. Different models can be used in environ-
mental science. These models can quantify the relation-
ship between emissions and speed and other factors based
on large amounts of data. The MOVES was developed by
the US Environmental Protection Agency (EPA) and is
capable of calculating vehicles pollutant emissions at dif-
ferent scales. The reason why we use this model is that
MOVES can more meticulously describe the working con-
ditions and emission levels of vehicles. In the MOVES
model, it mainly calculates the distribution of operating
conditions of vehicles, and combines speed, acceleration
and vehicle specific power (VSP).

_ Avg + vi + C’U? + Muviar + mgu sin 0

VSP’U,t — M (26)

where:
A: Rolling resistance coefficient kW /(m/s)
B: Rotational resistance coefficient kW /(m?/s?)
C: Aerodynamic drag coefficient kW /(m?/s?)
M: Vehicle mass, tonne
vy: Speed at time ¢ (m/s)
at: Acceleration at time ¢ (m/s®)
0: Slope
g: Acceleration of gravity, 9.8 m/s?

For light vehicles, the calculation formula (22) is sim-
plified to (23)B0]

VSP = v(1.1a + 0.132) + 0.000 3020°. (27)

A simplified MOVES model is proposed in [31], which
divides the operating mode of vehicles into 23 types, cor-
responding to different default average emission rates
(AER), as shown in Table 1. The values are given in
Table 1 to calculate different kinds of emissions, which
applies for Euro III passenger vehicles. Although di-
versity of vehicles will influence accuracy, the results are
still statistically useful as we sample the most represent-
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Table 1 Operating mode bin average emission rates in the MOVES model for selected pollutants

Operating mode description

Average emission rate (g/h)

CO2 NOx CO HC
Braking 3529 0.23 5.14 0.19
Idling 3265 0.10 0.89 0.05
VSP <0 5134 0.34 17.69 0.13
0<VSP <3 7089 0.52 28.88 0.10
3<VSP <6 9852 1.22 26.62 0.19

1 < speed < 25
6 <VSP <9 12 449 2.15 38.20 0.26
9 <VSP < 12 14 845 3.81 55.39 0.36
12 < VSP 17930 7.94 93.47 0.58
VSP <0 6985 0.67 23.05 0.20
0<VSP <3 7950 1.09 30.55 0.18
3<VSP<6 9683 1.65 39.28 0.20
6 < VSP <9 12423 2.79 57.42 0.38
25 < speed < 50 9 <VSP < 12 16 578 3.91 65.17 0.37
12<VSP < 18 21 855 6.16 97.87 0.59
18 < VSP < 24 29 459 13.54 239.24 3.84
24 < VSP < 30 40 359 23.78 506.67 6.81
30 < VSP 50 682 31.29 1779.51 11.25
VSP < 6 9951 1.44 17.31 0.19
6 < VSP <12 15 956 3.96 29.56 0.27
12<VSP < 18 20 786 5.54 43.51 0.34

50 < speed

18 < VSP < 24 27104 11.50 219.28 2.59
24 < VSP < 30 36 102 17.12 231.37 3.76
30 < VSP 46 021 21.56 679.99 4.92

ative vehicles in calculation.

The dataset applied in this paper is taxi GPS traject-
ories collected in the Second Ring of Xi'an city, and speed
of vehicles in urban area is generally limited between
40 km/h and 60 km/h. Moreover, according to statistical
characteristics of speed, that is the average is 30.26 km/h
and standard deviation is 9.66 km/h. Therefore, the situ-
ation in Table 1 satisfies emission estimation under al-
most all driving states.

Therefore, the emission factor (EF) which is the
amount of pollutants (g/km) emitted by each vehicle per
kilometer is calculated,

EF = AER X v. (28)

The total emissions in particular area is
E=FEF x f x L/1000 (29)

where L is the road length, and f is traffic volume.
Traffic volume is estimated by the ratio of the predicted

@ Springer

taxi volume and the total number of urban vehicles. For
example, in 2018, there were 3.24 million vehicles in
Xi'an, and 86 267 taxis were collected in the data set.
Therefore, the data sample accounts for 2.67% of the
total vehicles in urban. The traffic volume in each grid is
estimated by dividing taxi volume in the grid by the
ratio.

4 Experiment

4.1 Dataset description

In this paper, the dataset we used is shown in Table 2,
the details are as follows.

We use a large-scale online taxi GPS dataset collec-
ted by Didi Chuxing, which is an online car-hailing com-
pany in China. The data source is https://gaia.didichux-
ing.com. The dataset contains taxi GPS trajectories from
October 1, 2018 to November 29, 2018 in Xi'an. The
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Table 2 Datasets discription

Dataset Taxi in Xi'an
Data type Taxi GPS
Location Xi'an
Time span October 1, 2018 — November 29, 2018
Time interval 1h
Grid map size (8,8)
Trajectory data
Average sampling rate 2-4s
Taxis 86 267
Available time interval 1440

Road Network

Spatial range 8 km X 8 km

Total length 514 km
External factors
Temperature [-6°C, 26 °C]

Wind speed [0, 32 km/h]

dataset covers urban area of 8 km x 8 km within the
Second Ring Road in Xi'an, and 46.6 million GPS points
of 20000+ taxis approximately every day. The dataset
includes the geographic location of each vehicle and the
corresponding time stamp, which is collected every 2—4 s.

The road network within the Second Ring Road of
Xi'an includes a spatial range of 8 km x 8 km, with a
total length of 514 thousands meters. Urban roads are di-
vided into 4 levels, which are expressways, main roads,

secondary roads and branch roads.

4.2 Data preprocessing

We divide the Second Ring road area of Xi'an into 8 x
8 grids, and the size of each area is about 1 km x 1 km. 1
hour is set as the length of the time interval, then nodes
in graph contain 24 data points per day. We use the Z-
score method to convert traffic speed and acceleration to
a scale with mean 0 and variance 1. In experiment, the
data from October 1, 2018 to November 17, 2018 (48
days) was used for training, and the data from Novem-
ber 18, 2018 to November 29, 2018 (12 days) was used as
the validation set and the test set. When testing the pre-
diction results, we use the first 12 time intervals to pre-
dict the value of the next time interval.

The adjacency matrix is calculated based on the dis-
tance between grids in the road network. In the paper, we
use dynamic time warping3? to calculate the similarity
distance between node (grid) ¢ and node (grid) j,
dij = DTW (i, j). The weighted adjacency matrix W is as
follows:

S f, A

e L - 0.8

Eipnag: Bk
I 'ﬂi:! ;

'I'IT

s ).
L
E-HE#!: Ell I

Fig.3 Adjacency matrix

al2 d?
1] >
wiy = exp< —G>,z7$jandexp< 0_2)_5

0, otherwise.

(30)

where w;; is weight of the edge, which is decided by d;;.
And o2 and ¢ are thresholds that control distribution and
sparsity of W, with 10 and 0.5, respectively. The
visualization of D = [d;;] and W is shown in Fig. 3.

4.3 Experimental settings

We set hyperparameters of the network based on the
performance on validation dataset. In our model, graph
convolutional layers of the first and second ST-Conv
block use 64 and 128 convolution kernals, respectively.
All temporal convolutional layers use 32 convolution
kernals, and adjust the temporal span of the data by con-
trolling the step size of temporal convolution. During the
training phase, the learning rate is 0.001 and the batch
size is 16. In experiments, the multi-channel spatiotem-
poral network performance is evaluated by two common
metrics: mean absolute error (MAE) and root mean
square error (RMSE)

MAE =

%Z\yz‘ = il

RMSE = /,Z vi — )’ (31)

We compare MC-STGCN with widely used time series
regression models, including:

1) HA: Historical averagel33.

2) Static.

3) Var: Vector auto-regressivel34.
4) FNN: Feed-forward neural network[33.
5) LSTM: Long short-term memory network[6l.
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Table 3 Prediction results of MC-STGCN model and other baseline methods on Xi'an taxi datasets

Taxi in Xi'an (1 hour) volume

Taxi in Xi'an (1 hour) speed

Taxiin Xi'an (1 hour) acceleration

Model
MAE RMSE MAE RMSE MAE RMSE
HA 30.551 61.090 2.099 3.240 0.113 0.230
Static 96.496 148.815 3.256 4.753 0.142 0.299
Var 55.056 76.736 2.535 3.685 0.146 0.257
FNN 96.726 148.009 5.930 7.629 0.105 0.214
LSTM 63.944 121.760 2.946 4.972 0.114 0.225
GRU 65.924 122.699 3.032 5.009 0.108 0.225
STGCN 28.962 42.046 2.052 3.096 0.107 0.215
MC-STGCN 27.553 39.249 1.956 3.005 0.106 0.217
MC-STGCN (no-FS) 29.462 45.159 2.182 3.126 0.107 0.216
6) GRU: Gated recurrent units7. 2018/10/26 2018/10/26 2018/10/26 2018/10/26
7) STGCN: Spatiotemporal graph convolutional net- Monday Monday Monday Monday
8§AM-9AM 10AM-11AM  5PM—6PM 8§PM—-9PM

works[24],

All experiments are compiled and tested on a Linux
cluster (CPU: Intel(R) Xeon(R) CPU E5-2 680 v3 @ 2.50
GHz, GPU: NVIDIA GeForce GTX 2 080).

4.4 Experiment results

We compare MC-STGCN with 7 baseline methods in
the Taxi in Xi'an dataset. Table 3 shows the prediction
performance results for the next hour. According to the
evaluation indicators, we have achieved reasonably excel-
lent performance in traffic volume, speed, and accelera-
tion. As we can see, the prediction results of some gener-
al time series analysis methods (HA, static, FNN, LSTM,
GRU) are usually not ideal, which shows that they only
consider the temporal dependencies of features, and ig-
nore spatial correlation. Therefore, these methods have
limited ability to model nonlinear and complex traffic
data. For Var, it further considers the spatial correlation
between features. As a result, it achieves better perform-
ance. However, it fails to capture complex nonlinear tem-
poral dependencies and dynamic spatial correlation. In
contrast, STGCN 1is superior to other methods, indicat-
ing that it can effectively capture the dynamic changes of
traffic data.

The MC-STGCN model we proposed is significantly
better than the single channel result in the traffic speed
feature, and slightly better than the single channel result
in the traffic acceleration. This proves that the multi-
channel feature sharing mechanism has advantages in as-
sisting the network to extract spatiotemporal features.

Moreover, we designed an ablation experiment on fea-
ture sharing machanisms, which removes concatenation of
feature vectors after the first ST-Conv block. The experi-
ment results are in Table 3, in which MC-STGCN (no-
FS) line is the result of a model without a feature shar-
ing mechanism. Simply using multi-channel models to
train three traffic attributes in parallel has a larger devi-
ation than single-task STGCN. This is because the loss
function of MC-STGCN contains errors of all attributes,
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Fig. 4 Traffic volume, COg, CO, HC and NO on Monday

which makes it difficult to achieve the optimization ef-
fect of individual training. The introduction of feature
sharing machanism makes up for this defect.

Fig.4 visualizes the prediction of traffic volume, COa,
CO, HC and NO in the Second Ring Road of Xi'an on a
weekday (2018/11/26 Monday), respectively. As shown in
the first line, in the time period from 8 AM to 9AM, the
traffic volume is larger than that from 10AM to 11 AM.
This is because of the morning peak, which is consistent
with our common sense. Similarly, the volume distribu-
tion from 5PM to 6 PM is different from volume distribu-
tion from 8 PM to 9PM. When people get off work and
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Fig. 5 Traffic volume, CO2, CO, HC and NO on Sunday

school, traffic volume from the work places in the city
center to the residential areas. Therefore, the predicted
vehicle emissions are mainly concentrated in dense roads
in the city center during the morning and evening peak
hours. After the evening peak, vehicle emissions increase
in the suburban direction.

However, the distribution of traffic volume and vehicle
emissions on weekends is different from that on weekdays.
As shown in the first row of Fig. 5, the traffic volume dur-
ing the period from 10 AM to 11 AM is significantly more
than that from 8 AM to 9 AM. Judging by common sense,
people do not have to go to work on weekends, usually go
out late, and are more inclined to go to the entertain-
ment area in the city center. Therefore, the vehicle emis-
sions in the city center have increased during this period.
Similarly, until 5PM to 6PM, the city center is still a
gathering place for citizens, and vehicle emissions are still
high. From 8PM to 9PM. in the evening, the traffic
volume began to spread along the main urban roads, and
the distribution of vehicle emissions also changed in the
same trend.

Fig.6 shows the comparison of traffic volume and
vehicle emissions on weekdays and weekends. There is
more traffic volume on weekdays from 8 AM to 9AM
than on weekends from 8 AM to 9AM. In addition, the
volume on weekdays is more concentrated than that on
weekends, whether in the morning or at night. This is be-
cause people's travel locations are more specific (work-

2018/10/25 2018/10/25 2018/10/25 2018/10/25
Sunday Sunday Sunday Sunday
8§AM-9AM 10AM-11AM 5PM—-6PM 8§PM—-9PM

[ E

Fig.6 Comparison of traffic volume and vehicle emissions on
weekdays and weekends

place or school) on weekdays, and the travel time is con-
centrated in the same period. On the contrary, on week-
ends, citizens' travel locations, travel time, and the num-
ber of outgoing vehicles are scattered. Although the pur-
pose of travel is different, the distribution of vehicles is
roughly the same due to the concentration of workplaces
and entertainment areas in the city center. Therefore, the
pollutants emitted by vehicles in the morning and even-
ing peaks are concentrated in the city center, and the
vehicle emissions in the late night are higher in the sub-
urbs. In addition, vehicle volume and pollutant emissions
are distributed along urban roads. Large traffic volume in
dense roads will cause congestion, and vehicles will emit
more pollutants.

5 Conclusions

In this paper, we predict the evolution of vehicle emis-
sions in urban road networks based on historical taxi
GPS trajectories. The knowledge gained from our re-
search can provide many valuable applications for social
welfare, such as vehicle emission warnings, improving
urban planning, and studying the sources of air pollution.
Considering the efficiency and effectiveness, we solve this
problem through a three-step method. Considering the ef-
ficiency and effectiveness, we solved this problem through
a three-step method. We first map the trajectory data to
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road networks and calculate the average traffic speed and
acceleration of the area. And then, we use the multi-
channel STGCN network to predict the traffic status in
future periods. Finally, the pollution emission distribu-
tion is calculated based on the predicted traffic status
and the proportionally estimated traffic volume. We eval-
uate our method based on extensive experiments. The ex-
periment uses GPS trajectories generated by more than
80 000 vehicles within two months. The results prove the
effectiveness and rationality of our method. In the future,
we will further improve the vehicle flow estimation al-
gorithm to make the evolution of attributes related to
traffic emissions more accurate.
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