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Abstract: The problem of the chattering phenomenon is still the main drawback of the classical sliding mode control. To resolve

this problem, a discrete second order sliding mode control via input-output model is proposed in this paper. The proposed control law

is synthesized for decouplable multivariable systems. A robustness analysis of the proposed discrete second order sliding mode control

is carried out. Simulation results are presented to illustrate the effectiveness of the proposed strategy.
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1 Introduction

The variable structure systems (VSS) were introduced

in 1960s[1, 2]. They are characterized by their robust-

ness against uncertainties, modeling errors and external

disturbances[1, 3−5]. Sliding mode control (SMC) is a par-

ticular case of the variable structure systems. The main

idea behind SMC is to synthesize a discontinuous control

input to force the states trajectories to reach a specific sur-

face called the sliding surface (s = 0) in finite time and to

stay on it. However, in spite of the robustness of the sliding

mode control, the chattering phenomenon, caused by the

discontinuous term of the control law, is still the main prob-

lem of the SMC which involves sudden and rapid variation

of the control signal leading to undesirable results[3, 5−7].

Many researchers were interested in solving the problem

of the chattering phenomenon. One of the solutions was

the higher order sliding mode control which has been intro-

duced in the 1980s in order to overcome the chattering prob-

lem. The second order sliding mode control is a particular

case of the higher order sliding mode control. It involves

forcing the system to reach the sliding surface characterized

by ṡ = s = 0 and to remain on it[8, 9].

The elaboration of the sliding mode control via input

output model was limited to the classical sliding mode

control. There are some works, in literature, which used

input-output model for single-input single-output systems
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(SISO)[10−15]. For SISO systems, we proposed a new dis-

crete second order sliding mode control in order to reduce

the chattering phenomenon[16].

However, it is well known that many control systems are

multivariable and the control problems of this type of sys-

tems are very difficult[17−19]. Therefore, it is necessary to

synthesize robust control laws for multivariable systems.

The adaptive control and the sliding mode control were

combined in order to synthesize a discrete robust adaptive

sliding mode controller for multivariable systems[17]. More-

over, in the last few years, a discrete sliding mode control

via input-output model was developed for decouplable and

nondecouplable multivariable systems, respectively[18, 19].

This work proposes a discrete second order sliding mode

control for decouplable multivariable systems (2-MDSMC)

via input-output model[20] and studies the robustness of

this control. The 2-MDSMC was designed to resolve the

problems of the chattering phenomenon and the external

disturbances. In order to obtain good performance in terms

of reduction of the chattering phenomenon and rejection of

the external disturbances, a condition for the choice of the

discontinuous term amplitude was given.

This paper is organized as follows. Section 2 describes

the classical sliding mode control for decouplable multi-

variable systems. In Section 3, we propose a new dis-

crete second order sliding mode control for the decouplable

multi-input multi-output systems. A robustness analysis

of the proposed discrete second order sliding mode control

is presented in Section 4. Simulation results are given in

Section 5. Section 6 concludes the paper.
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2 Multivariable discrete classical slid-

ing mode control (1-MDSMC)

Consider the multi-input multi-output (MIMO) discrete

time system described by the following model:

A(q−1)Y (k) = q−1B(q−1)U(k) + V (k) (1)

where Y (k), U(k) and V (k) are the output, the input and

the disturbance vectors, respectively.

Y (k) = [y1 (k) · · · yp (k)]T

U (k) = [u1 (k) · · · up (k)]T

V (k) = [v1 (k) · · · vp (k)]T.

A(q−1) and B(q−1) are two polynomial matrices defined as

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

A
(
q−1

)
= Ip + A1q

−1 + · · · + AnAq−nA ,

dim (Aτ1) = (p, p) , τ1 ∈ [1, nA]

B
(
q−1

)
= B0 + B1q

−1 + · · · + BnB q−nB ,

dim (Bτ2) = (p, p) , τ2 ∈ [1, nB ] .

The sliding function vector is given by

S (k) = C
(
q−1) (Y (k) − Yr (k)) =

C(q−1)E(k) =

[s1 (k) · · · sp (k)]T (2)

where C
(
q−1

)
is a polynomial matrix defined as

C(q−1) = Ip + C1q
−1 + · · · + CnC q−nC

dim(Cτ3) = (p, p) , τ3 ∈ [1, nC ] .

Yr(k) is the desired trajectory vector. E(k) is the error

vector.

Consider F̄
(
q−1

)
and Ḡ

(
q−1

)
as the two polynomial ma-

trices solutions of the diophantine polynomial matrix equa-

tion:

C
(
q−1

)
= F̄

(
q−1

)
A
(
q−1

)
Δ
(
q−1

)
+ q−1Ḡ

(
q−1

)
(3)

where
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

F̄
(
q−1

)
= Ip

Ḡ
(
q−1

)
= Ḡ0 + Ḡ1q

−1 + · · · + ḠnḠ
q−nḠ

dim (Ḡτ4) = (p, p) , τ4 ∈ [0, nḠ]

nḠ = sup (nC − 1, nA)

and Δ
(
q−1

)
=
(
1 − q−1

)
Ip is a differential operator.

The equivalent control law was obtained when the fol-

lowing condition was satisfied:

S (k + 1) = S (k) = 0.

We have

S (k + 1) = C
(
q−1) (Y (k + 1) − Yr (k + 1)) .

If we replace the expression of Y (k+1), S(k+1) becomes

S (k + 1) =

C
(
q−1

) [
A
(
q−1

)]−1 [
B
(
q−1

)
U (k) + V (k + 1)

]−
C
(
q−1

)
Yr (k + 1) =

C
(
q−1

) [
A
(
q−1

)]−1
B
(
q−1

)
U (k)−

C
(
q−1

)
Yr (k + 1) + C

(
q−1

) [
A
(
q−1

)]−1
V (k + 1) .

Replacing C
(
q−1

)
by its expression defined in (3), we

obtained

S (k + 1) =

F̄
(
q−1

)
B
(
q−1

)
Δ
(
q−1

)
U (k)+

q−1Ḡ
(
q−1

) [
A
(
q−1

)]−1
B
(
q−1

)
U (k) +

C
(
q−1

) [
A
(
q−1

)]−1
V (k + 1) − C

(
q−1

)
Yr (k + 1) .

By using (1), the sliding function S(k + 1) can be written

as

S (k + 1) = B
(
q−1)Δ

(
q−1)U (k) + G

(
q−1) Y (k) +

Δ
(
q−1) V (k + 1) − C

(
q−1) Yr (k + 1) .

In order to calculate the equivalent control law Ueq (k), we

assumed that the disturbances vector was null, the sliding

function S(k + 1) became

S (k + 1) = B
(
q−1

)
Δ
(
q−1

)
U (k) + Ḡ

(
q−1

)
Y (k)−

C
(
q−1

)
Yr (k + 1) .

Then, the equivalent control law was given by

Ueq (k) =
[
B
(
q−1

)
Δ
(
q−1

)]−1
C
(
q−1

)
Yr (k + 1)−

[
B
(
q−1

)
Δ
(
q−1

)]−1
Ḡ
(
q−1

)
Y (k) .

(4)

To ensure the robustness of the sliding mode control law,

we added the discontinuous control term, such as

Udis (k) = −

⎡

⎢
⎢
⎢
⎢
⎣

m 1sgn (s1 (k))

m 2sgn (s2 (k))

· · ·
m psgn (sp (k))

⎤

⎥
⎥
⎥
⎥
⎦

(5)

where sgn is the signum function defined as

sgn (si (k)) =

{
−1, if si (k) < 0

1, if si (k) > 0.

Then, the global sliding mode control law can be expressed

as

U (k) = Ueq (k) + Udis (k) =
[
B
(
q−1

)
Δ
(
q−1

)]−1×
[−Ḡ

(
q−1

)
Y (k) + C

(
q−1

)
Yr (k + 1)

]−
⎡

⎢
⎢
⎢
⎢
⎣

m1sgn (s1 (k))

m2sgn (s2 (k))

· · ·
mpsgn (sp (k))

⎤

⎥
⎥
⎥
⎥
⎦

.

(6)
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3 Multivariable discrete second order

sliding mode control (2-MDSMC)

In spite of the robustness of the sliding mode control, the

chattering phenomenon is the main drawback of SMC. To

overcome this problem, we propose using a discrete second

order sliding mode control for the decouplable multivariable

systems via input-output model.

In this section, we consider the same system defined by

(1). In the case of second order sliding mode control, the

sliding function is expressed in terms of S(k + 1) and S(k).

The new sliding function vector σ (k) was selected as[8, 9]

σ (k) = S (k) + β S (k − 1) (7)

where S(k) is the sliding function defined in (2), and 0 <

β < 1.

The equivalent control law was deduced from the follow-

ing equation:

σ (k + 1) = σ (k) = 0. (8)

We had

S (k + 1) = B
(
q−1)Δ

(
q−1)U (k) + Ḡ

(
q−1) Y (k)−

C
(
q−1) Yr (k + 1) .

Then, the sliding function vector σ (k + 1) can be written

as

σ (k + 1) = S (k + 1) + βS (k) =

B
(
q−1)Δ

(
q−1)U (k) + Ḡ

(
q−1) Y (k)−

C
(
q−1

)
Yr (k + 1) + βS (k) .

Using the last relation and (8), we obtained the expression

of the equivalent control law as

Ueq2 (k) = −[B (q−1
)
Δ
(
q−1

)]−1
βS (k)−

[
B
(
q−1)Δ

(
q−1)]−1

Ḡ
(
q−1) Y (k) +

[
B
(
q−1)Δ

(
q−1)]−1

C
(
q−1) Yr (k + 1) (9)

with Ḡ
(
q−1

)
as the polynomial matrix solution of the dio-

phantine polynomial matrix defined in (3).

In the case of the discrete second order sliding mode con-

trol, the discontinuous control law Udis2 (k) is given by[9,16]:

Udis2 (k) = Udis2 (k − 1)−

[
B
(
q−1)Δ

(
q−1)]−1

Te

⎡

⎢
⎢
⎢
⎢
⎢
⎣

m′
1sgn (σ1 (k))

m′
2sgn (σ2 (k))

...

m′
psgn (σp (k))

⎤

⎥
⎥
⎥
⎥
⎥
⎦

(10)

with Te as the sampling rate.

Then, the global control law is written as

U (k) = Ueq2 (k) + Udis2 (k) =

[
B
(
q−1)Δ

(
q−1)]−1

[
−βS (k) − Ḡ

(
q−1

)
Y (k) +

C
(
q−1

)
Yr (k + 1)

]

+

Udis 2 (k − 1)−

[
B
(
q−1

)
Δ
(
q−1

)]−1
Te

⎡

⎢
⎢
⎢
⎢
⎣

m′
1sgn (σ1 (k))

m′
2sign (σ2 (k))

· · ·
m′

psgn (σp (k))

⎤

⎥
⎥
⎥
⎥
⎦

. (11)

4 Robustness analysis

In order to obtain good results in terms of reduction of

the chattering phenomenon and rejection of external distur-

bances, we must choose an optimal value of the discontin-

uous term amplitude. Therefore, in this section, we deter-

mined a condition for the choice of the discontinuous term

amplitude.

By applying the control law defined in (11) to the system

(1), the sliding function vector at instant k + 1 was written

as

S (k + 1) = B
(
q−1

)
Δ
(
q−1

)
U (k) + Ḡ

(
q−1

)
Y (k) +

Δ
(
q−1

)
V (k + 1) − C

(
q−1

)
Yr (k + 1) . (12)

Replacing U(k) by its expression (11), we had

S (k + 1) = B
(
q−1

)
Δ
(
q−1

)
(Ueq2 (k) + Udis2 (k)) +

Ḡ
(
q−1

)
Y (k) + Δ

(
q−1

)
V (k + 1) − C

(
q−1

)
Yr (k + 1) .

Replace Ueq2(k) by its expression, the sliding function vec-

tor became

S (k + 1) = −βS (k) + B
(
q−1

)
Δ
(
q−1

)
Udis2 (k) +

Δ
(
q−1) V (k + 1) .

The difference between S(k + 1) and S(k) gave

S (k + 1) − S (k) = −βS (k) + B
(
q−1

)
Δ
(
q−1

)
Udis2 (k) +

Δ
(
q−1) V (k + 1) + βS (k − 1)−

B
(
q−1)Δ

(
q−1)Udis2 (k − 1) − Δ

(
q−1) V (k) .

The new sliding function vector σ(k + 1) can be rewritten

as

σ (k + 1) = σ (k) + Δ
(
q−1) (V (k + 1) − V (k))−

⎡

⎢
⎣

m′′
1 sgn (σ1 (k))

· · ·
m′′

p sgn (σp (k))

⎤

⎥
⎦

with m′′
i = Te m′

i, i ∈ [1 · · · p] .

Let

Ṽ (k) = Δ
(
q−1

)
(V (k + 1) − V (k)) =

[ṽ1 (k) , · · · , ṽp (k)]T.
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A convergent quasi-sliding mode control exists, if the fol-

lowing condition is satisfied:

|σi (k + 1)| < |σi (k)| , i ∈ [1, · · · , p] . (13)

This last equation is equivalent to
{

(σi (k + 1) − σi (k)) , if (σi (k)) < 0

(σi (k + 1) + σi (k)) , if (σi (k)) > 0.
(14)

We had

σi (k + 1) = σi (k) − m′′
i sgn (σi (k)) + ṽi (k) .

Case 1. σi (k) > 0.

In this case, the conditions of existence of a quasi-sliding

mode are
{

σi (k + 1) − σi (k) < 0

σi (k + 1) + σi (k) > 0.

1) σi (k + 1) − σi (k) = −m′′
i + ṽi (k) < 0

⇒ m′′
i > ṽi (k)

2) σi (k + 1) + σi (k) = 2σi (k) − m′′
i + ṽi (k) > 0

⇒ m′′
i < 2σi (k) + ṽi (k).

Case 2. σi (k) < 0.

The conditions of existence of a quasi-sliding mode be-

come
{

σi (k + 1) − σi (k) > 0

σi (k + 1) + σi (k) < 0.

1) σi (k + 1) − σi (k) = m′′
i + ṽi (k) > 0

⇒ m′′
i > −ṽi (k)

2) σi (k + 1) + σi (k) = 2σi (k) + m′′
i + ṽi (k) < 0

⇒ m′′
i < −2σi (k) − ṽi (k).

Theorem 1. The discrete second order sliding mode

control defined in (11) allows the reduction of the chattering

phenomenon if and only if the gains m′′
i satisfy

ṽi (k) sgn (σi (k)) < m′′
i < 2 |σi (k)| + ṽi (k) sgn (σi (k)) ,

i ∈ [1, · · · , p] . (15)

If the external disturbances vi (k) are constant, then the

last relation becomes

0 < m′′
i < 2 |σi (k)| (16)

as the sliding function σi (k) tends to zero. Therefore, mi
′′

must be very small.

5 Simulation example

Consider the multi-input multi-output system described

by the following expression[19]:

A(q−1)Y (k) = q−1B(q−1)U(k) + V (k)

with
{

A
(
q−1

)
= I2 + A1q

−1 + A2q
−2

B
(
q−1

)
= B0 + B1q

−1

where

A1 =

(
−1.856 0

0 −1.925 2

)

A2 =

(
0.860 6 0

0 0.926 5

)

B0 =

(
0.095 16 0.048 77

0.048 77 0.259 7

)

B1 =

(
−0.090 5 −0.044 1

−0.047 5 −0.247

)

Y (k) =

[
y1 (k)

y2 (k)

]

U (k) =

[
u1 (k)

u2 (k)

]

.

The polynomial matrix C
(
q−1

)
was chosen as

C
(
q−1) = I2 − 0.02I2q

−1 + 0.000 1I2q
−2.

The desired trajectory vector was defined as

Yr (k) =

[
yr1(k)

yr2(k)

]

=

[
1

2

]

.

The disturbances vector was chosen as
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

V (k) =

[
0

0

]

, if 0 < k < 100

V (k) =

[
0.6

0

]

, if k > 100

V (k) =

[
0.6

0.8

]

, if k > 150.

In order to reduce the chattering phenomenon, the gains

m′′
i must satisfy the condition defined in (15). The external

disturbances vector was chosen as constant disturbances.

Therefore, the gains m′′
i must satisfy the condition defined

in (16).

We had

0 < m′′
1 < 2 |σ1 (k)| and 0 < m′′

2 < 2 |σ2 (k)| .

Firstly, we proposed that the gains m′′
i do not satisfy

the condition defined in (15). Then, we chose m′′
i which

satisfied the condition.

5.1 Condition not satisfied

In this case, we chose m′′
1 and m′′

2 such as condition (16)

was not satisfied.

m′′
1 = 0.5

m′′
2 = 0.5.
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5.1.1 Case 1: Multivariable discrete classical slid-

ing mode control (1-MDSMC)

The simulation results of classical sliding mode control

are shown in Figs. 1 and 2. Fig. 1 presents the evolution

of the output vector and the desired reference trajectory

vector. The evolution of the sliding functions s1(k) and

s2(k) is given in Fig. 2.

(a) Evolution of the output y1(k) (——) and the desired tra-

jectory yr1(k) (− − −)

(b) Evolution of the output y2(k) (——) and the desired tra-

jectory yr2(k) (- - -)

Fig. 1 Evolution of the output vector Y (k) and the desired tra-

jectory vector Yr(k)

Figs. 1 and 2 show that the chattering phenomenon ap-

pears in the output vector Y (k) and in the sliding function

vector S(k).

5.1.2 Case 2: Discrete second order sliding mode

control (2-MDSMC)

Figs. 3 and 4 illustrate the evolution of the outputs y1(k)

and y2(k) and the sliding functions σ1(k) and σ2(k), respec-

tively. The parameter β was chosen as β = 0.1.

We observe from Figs. 3 and 4 the presence of the chat-

tering phenomenon when condition (16) was not satisfied.

(a) Evolution of the sliding function s1(k)

(b) Evolution of the sliding function s2(k)

Fig. 2 Evolution of the sliding function vector S(k)

(a) Evolution of the output y1(k) (——) and the desired tra-

jectory yr1(k) (- - -)

(b) Evolution of the output y2(k) (——) and the desired tra-

jectory yr2(k) (− − −)

Fig. 3 Evolution of the output vector Y (k) and the desired tra-

jectory vector Yr(k)
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(a) Evolution of the sliding function σ1(k)

(b) Evolution of the sliding function σ2(k)

Fig. 4 Evolution of the sliding function vector σ(k)

A comparison between the results obtained by the dis-

crete classical sliding mode control with those obtained by

the proposed discrete second order sliding mode control, is

given in Fig. 5.

The comparison of the two methods show that the results

obtained by the proposed control law are better than those

obtained by the classical discrete sliding mode control in

terms of reduction of the chattering phenomenon even if

the condition was not satisfied.

5.2 Condition satisfied

In this section, we assumed that condition (16) was sat-

isfied.

We chose m′′
1 and m′′

2 as

m′′
1 = 0.001

m′′
2 = 0.01.

5.2.1 Case 3: Multivariable discrete classical slid-

ing mode control (1-MDSMC)

In this case, we assumed that condition (6) was satisfied.

The simulation results of the system controlled by the con-

troller defined in (6) are shown in Figs. 6−8. The evolution

of the real system outputs y1(k) and y2(k) and the desired

trajectories yr1(k) and yr2(k) are given in Fig. 6. Fig. 7

shows the evolution of the control signals u1(k) and u2(k).

The evolution of the sliding functions s1(k) and s2(k) is

presented in Fig. 8.

(a) Comparison between the output y1(k) of 1-MDSMC (——)

and 2-MDSMC (− − −)

(b) Comparison between the output y2(k) of 1-MDSMC (——)

and 2-MDSMC (− − −)

Fig. 5 Comparison between the output of 1-MDSMC and 2-

MDSMC

It is clear that the chattering phenomenon cannot be re-

duced by the classical discrete sliding mode control even if

condition (16) was satisfied.

5.2.2 Case 4: Discrete second order sliding mode

control (2-MDSMC)

The simulation results of the system controlled by the

controller defined in (11) are shown in Figs. 9–11. The evo-

lution of the real system outputs y1(k) and y2(k) and the

desired trajectories yr1(k) and yr2(k) are given in Fig. 9.

Fig. 10 shows the evolution of the control signals u1(k) and

u2(k). The evolution of the sliding functions σ1(k) and

σ2(k) is presented in Fig. 11.

Figs. 9–11 prove that very satisfactory performance is

recorded in the reduction of the chattering phenomenon and

the rejection of external disturbances.

Fig. 12 gives the comparison between the output vector of

the discrete classical sliding mode control and the proposed

discrete second order sliding mode control.

It can be observed that, in the case of classical discrete

sliding mode control, the chattering phenomenon was al-

ways present in the output vector, in the sliding function

vector and also in the control input vector, even though the

condition was satisfied. While, the proposed discrete sec-

ond order sliding mode control gave good results in terms of

reducing the chattering phenomenon and rejecting external

disturbances when condition (16) was satisfied.
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(a) Evolution of the output y1(k) (——) and the desired tra-

jectory yr1(k) (− − −)

(b) Evolution of the output y2(k) (——) and the desired tra-

jectory yr2(k) (− − −)

Fig. 6 Evolution of the output vector Y (k) and the desired tra-

jectory vector Yr(k)

(a) Evolution of the control input u1(k)

(b) Evolution of the control input u2(k)

Fig. 7 Evolution of the control input vector U(k)

(a) Evolution of the sliding function s1(k)

(b) Evolution of the sliding function s2(k)

Fig. 8 Evolution of the sliding function vector S(k)

(a) Evolution of the output y1(k) (——) and the desired tra-

jectory yr1(k) (− − −)

(b) Evolution of the output y2(k) (——) and the desired tra-

jectory yr2(k) (− − −)

Fig. 9 Evolution of the output vector Y (k) and the desired tra-

jectory vector Yr(k)
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(a) Evolution of the control input u1(k)

(b) Evolution of the control input u2(k)

Fig. 10 Evolution of the control input vector U(k)

(a) Evolution of the sliding function σ1(k)

(b) Evolution of the sliding function σ2(k)

Fig. 11 Evolution of the sliding function vector σ(k)

(a) Comparison between the output y1(k) of 1-MDSMC (——)

and 2-MDSMC (− − −)

(b) Comparison between the output y2(k) of 1-MDSMC (——)

and 2-MDSMC (− − −)

Fig. 12 Comparison between the output of 1-MDSMC and 2-

MDSMC

6 Conclusions

In this paper, a discrete second order sliding mode con-

trol via input-output model for decouplable multivariable

systems was proposed. Then, a condition for the choice of

the discontinuous term amplitude was elaborated. Finally,

a numerical example showed good performance in terms of

reduction of the chattering phenomenon and rejection of

external disturbances when the condition of the choice of

the discontinuous term amplitude was satisfied.
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