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Abstract: The adaptive tracking problem for uncertain flexible joint robot system is studied in this paper. By utilizing the adaptive

backstepping method, an adaptive controller is constructed at the beginning. By utilizing the modified adaptive dynamic surface control

technique, a new adaptive controller is presented afterwards to avoid the overparametrization problem and the explosion of complexity

problem existing in the adaptive backstepping method. All the signals of the closed-loop system are rendered globally/semi-globally

uniformly ultimately bounded, and the tracking error can be made arbitrarily small by tuning the designed parameters. A simulation

example is given to show the validity of the control algorithm.
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1 Introduction

The research of flexible joint robots (FJR) has received

considerable attention in the past two decades[1]. To ob-

tain good control performance, no matter in modeling or in

control design, the joint flexibility, which is usually caused

by harmonic drives, shaft windup, and bearing deforma-

tion, cannot be ignored. In the literature, there have been

many methods proposed, for instance, the singular pertur-

bation approach[2], the passivity approach[3], the sliding

mode approach[4], and the neural network approach[5, 6].

It is known that the backstepping technique is also an im-

portant method. A robust controller was proposed to guar-

antee the tracking of any given reference trajectory with ar-

bitrary accuracy[7]. An adaptive output-feedback controller

was designed for the single link robotic manipulator[8] and

the adaptive backstepping method for rigid-link flexible-

joint robots was studied. In addition to these methods[9, 10],

the dynamic surface control method is a recently proposed

control algorithm. With this method, Zhang et al.[11, 12]

considered adaptive dynamic surface control for nonlinear

systems with uncertainties, Hou and Duan[13] studied how

to design controller for integrated missile guidance and au-

topilot. Moreover, some other approaches such as model

reference adaptive control[14, 15], robust adaptive control[16]

and adaptive iterative learning control[17] are also useful to

regulate such nonlinear systems.

The adaptive tracking problem for FJR has been studied

before. However, there exist some drawbacks in the exist-
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ing methods. The first one may be the “overparametriza-

tion” problem. The reason is that the control design pro-

cedure depends on the linear property of unknown system

parameters. Another may be the “explosion of complex-

ity” problem, i.e., the designed controller is usually made

quite complicated because of the repeated differentiations

of virtual controllers in control design procedure. In this

paper, we will investigate how to design an adaptive track-

ing controller for FJR to avoid the above problems. Mainly

motivated by the continuous control ideas[18, 19] and flexibly

using algebraic techniques, we present a new control design

method for FJR. Then, we construct an appropriate Lya-

punov function and show that the designed controllers can

guarantee all the signals of the resulting closed-loop system

globally/semi-globally uniformly ultimately bounded, and

the tracking errors can be rendered arbitrarily small.

The main contributions of the paper are characterized by

the following specific features: 1) The “explosion of com-

plexity” problem and the “overparametrization”problem of

the existing control methods are avoided. 2) It is not easy

to find an appropriate Lyapunov function which is well-

behaved in stability analysis. In this paper, by using flex-

ible algebraic techniques, two new Lyapunov functions are

recursively constructed in the control design procedure.

2 Preliminaries and problem statement

Consider the dynamic equations of the flexible joint

robots given as[20, 21]

M(q1)q̈1 +C(q1, q̇1)q̇1 + h(q1) + τc + f1(q1, q̇1) = 0 (1)

Bq̈2 − τc + f2(q2, q̇2) = u (2)

τc = K(q1 − q2) (3)

where q1 ∈ Rn is the joint angular position, q2 ∈ Rn is the

motor angular position, q̇1, q̇2 ∈ Rn are the respective veloc-
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ities, M(q1) ∈ Rn×n, B ∈ Rn×n are positive and symmetric

inertia matrices, K ∈ Rn×n is diagonal matrix whose en-

tries are elastic constants ki of the joints, C(q1, q̇1)q̇1 ∈ Rn

is the centrifugal and coriolis force, h(q1) ∈ Rn is the grav-

ity force vector, f1(q1, q̇1), f2(q2, q̇2) are the frictional terms,

and u ∈ Rn is the input torque. The angular positions q1,

q2, and the respective velocities q̇1, q̇2 are assumed to be

measurable.

The purpose of the paper is to design an adaptive state

feedback controller for the system (1)–(3). We specified the

control problems as: 1) Given the desired reference trajec-

tory qd, design a controller if possible, such that the link

position tracking error z1 = q1 − qd converges to 0 as much

as possible. 2) Meanwhile, all the closed-loop signals are

rendered bounded.

We need Assumptions 1–3.

Assumption 1. The desired trajectory vectors are con-

tinuous and available, and [qTd , q̇
T
d , q̈

T
d ]T ∈ Ωd with known

compact set Ωd =
{
[qTd , q̇

T
d , q̈

T
d ]T ∈ R3n

∣
∣|qd|2+|q̇d|2+|q̈d|2 ≤

A
}
.

Assumption 2. There exist positive constants bi, mi,

ki, i = 1, 2, such that m1 ≤ λmin(M) ≤ ‖M‖2 ≤
λmax(M) ≤ m2, b1 ≤ λmin(B) ≤ ‖B‖2 ≤ λmax(B) ≤ b2,

k1 ≤ λmin(K) ≤ ‖K‖2 ≤ λmax(K) ≤ k2, where only pa-

rameter b2 is known.

Assumption 3. There exist unknown positive constant

θi, and known smooth functions φi(·), i = 0, 1, 2, such that

|C(q1, q̇1)q̇1 + h(q1) +Kq1|2 ≤ θ0φ0(q1, q̇1) (4)

|f1(q1, q̇1)|2 ≤ θ1φ1(q1, q̇1) (5)

|f2(q2, q̇2)|2 ≤ θ2φ2(q2, q̇2). (6)

Remark 1. These assumptions are reasonable and not

stronger than the existing ones. Assumption 1 gives basic

conditions using dynamic surface control method. Assump-

tion 2 provides that only one constant b2 is known in this

paper, while in [8, 10], all the parameters bi, mi, ki, i = 1, 2

were assumed to be known. Assumption 3 is similar to

Assumption 2 in [19] for the rigid joint case.

Remark 2. It is easy to see that the FJR system is

underactuated. Tracking control problems of underactu-

ated systems are more difficult, since there are fewer inputs

than degrees of freedom. In addition, when the system is

suffered by external disturbances, only some semi-global

results can be obtained, rather than achieving global re-

sults. See for instance, the FJR system[7, 9], the ships[22],

the wheeled inverted pendulums[23], and more general un-

deractuated system[24].

Before the control design procedure, we define x1 = q1,

x2 = q̇1, x3 = q2, x4 = q̇2, and introduce the following

transformations:

{
z1 = x1 − qd, z2 = ż1 + (c1 + 1)z1

z3 = x3 − x∗
3, z4 = x4 − x∗

4

(7)

where x∗
i is the virtual control to be determined later. Then,

we can deduce that

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ż1 = z2 − (c1 + 1)z1

ż2 = M−1(x1)Kx3 − F1

ż3 = x4 − ∂x∗
3

∂θ̂

˙̂
θ − F2

ż4 = B−1 (u+K(x1 − x3) − f2) − ∂x∗
4

∂θ̂

˙̂
θ − F3

(8)

where Fi are defined as F1 = M−1 (Cx2 + h+Kx1 + f1)+

q̈d − (c1 +1)z2 +(c1 +1)2z1, F2 =
∂x∗

3
∂zT

1
ż1 +

∂x∗
3

∂zT
2
ż2 +

∂x∗
3

∂qT
d

q̇d +

∂x∗
3

∂q̇T
d

q̈d, and F3 =
∂x∗

4
∂zT

1
ż1 +

∂x∗
4

∂zT
2
ż2 +

∂x∗
4

∂zT
3
ż3 +

∂x∗
4

∂qT
d

q̇d +
∂x∗

4
∂q̇T

d

q̈d.

Define positive parameters a = m2
k2
1

and θ =
k2
2

a2m2
1
×

max
{
θ0, θ1,m

2
1, k

2
2, a

2m2
1,

am2
1

k2
,

θ2a2m2
1

k2
2

}
. Parameter a will

be used for constructing the Lyapunov function subse-

quently, and parameter θ is the only one to be estimated

in the control design. The following lemma 1, which is the

well known Young′s inequality[19], will play a key role in

proving the main results of this paper.

Lemma 1. For vectors x, y ∈ Rn, and scalar positive

numbers ε > 0, p > 0, there holds

xTy ≤ εp

p
|x|p +

1

qεp
|y|q

where q = p
p−1

.

Lemma 2. There exist smooth nonnegative functions

ψi, i = 1, · · · , 4, and positive constant ν such that

− zT
3 F2 ≤ (zT

3 z3) (ψ1θ + ψ2) + ν (9)

− zT
4 F3 ≤ (zT

4 z4) (ψ3θ + ψ4) + ν. (10)

Proof. See Appendix. �

3 Control of FJR system

In this subsection, we will construct an adaptive state-

feedback controller for FJR system, which will be addressed

in a step-by-step manner.

Step 1. Suppose θ̂ is the estimate of θ, and the corre-

sponding error is defined as θ̃ = θ̂ − θ. Then, we introduce

the transformations: z1 = x1 − qd and z2 = ż1 + (c1 + 1)z1
and choose the candidate Lyapunov function V1(z1, z2, θ̃) =
1
2
zT
1 z1 + 1

2a
zT
2 Kz2 + 1

2γ
θ̃2, where γ > 0 is a designed pa-

rameter. Taking the time derivative of V1, we get

V̇1 = −(c1 + 1)zT
1 z1 + zT

1 z2 +
1

a
zT
2 KM

−1(x1)Kx
∗
3+

1

a
zT
2 KM

−1K(x3 − x∗
3) − 1

a
zT
2 KF1 +

1

γ
θ̃

˙̂
θ. (11)

By using Lemma 1, one can conclude that

zT
1 z2 ≤ 1

2
zT
1 z1 +

1

2
zT
2 z2. (12)
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From Assumption 2 and Lemma 1, it leads to

− 1

a
zT
2 KM

−1 (Cx2 + h(x1) +Kx1 + f1) ≤
k2

am1
|z2||Cx2 + h+Kx1 + f1| ≤

1

δ1

(
k2

am1

)2

|z2|2 (θ0φ0 + θ1φ1) +
δ1
2

≤
1

δ1
θzT

2 z2 (φ0 + φ1) +
δ1
2
. (13)

According to Assumption 2 and Lemma 1, it yields

−1

a
zT
2 Kq̈d ≤ θ

2δ2
zT
2 z2 +

δ2
2
|q̈d|2. (14)

Similarly, we have

− 1

a
zT
2 K

(−(c1 + 1)z2 + (c1 + 1)2z1
) ≤

(
c1 + 1 +

(c1 + 1)4

2

)
max{k2

a
,
k2
2

a2
}|z2|2 +

1

2
|z1|2 ≤

(
c1 + 1 +

(c1 + 1)4

2

)
θzT

2 z2 +
1

2
zT
1 z1. (15)

Combining (13)–(15), it follows that

−1

a
zT
2 KF1 ≤ 1

2
zT
1 z1 + θ(ω1 − 1)zT

2 z2 +
δ1
2

+
δ2
2
|q̈d|2 (16)

where ω1 = 1
δ1

(φ0 + φ1) + 1
2δ2

+ c1 + (c1+1)4

2
+ 2. It follows

from Assumption 2 and Lemma 1 that

1

a
zT
2 KM

−1K(x3 − x∗
3) ≤ 1

2
zT
3 z3 + θzT

2 z2. (17)

Defining d1 = δ1
2

+ δ2
2
|q̈d|2, and substituting (12)–(17) into

(11), we obtain

V̇1 ≤ −c1zT
1 z1 +

1

a
zT
2 KM

−1(x1)Kx
∗
3 +

(
1

2
+ ω1θ

)
zT
2 z2+

1

2
zT
3 z3 + d1 +

1

γ
θ̃

˙̂
θ. (18)

We choose the first virtual control

x∗
3(z1, z2, qd, q̇d, θ̂) = −

(
c2 +

1

2
+ ω1θ̂

)
z2 (19)

where c2 > 0 is a design parameter. The adaptive law is

designed as

˙̂
θ = Ψ − σθ̂ (20)

where Ψ ≥ 0 will be determined later. Actually, the adap-

tive law can guarantee θ̂(t) > 0 for any positive initial value,

i.e., if θ̂(t0) > 0. From (20), we have

θ̂(t) = θ̂(t0)e
−σ(t−t0) +

∫ t

t0

e−σ(t−s)Ψ(s)ds > 0.

In view of a > 0 and θ̂ > 0, it follows that

1

a
zT
2 KM

−1(x1)Kx
∗
3 ≤ −(

c2 +
1

2
+ ω1θ̂

)
zT
2 z2. (21)

Substituting (21) into (18), we obtain

V̇1 ≤ −
2∑

i=1

ciz
T
i zi +

1

2
zT
3 z3 +

θ̃

γ
(
˙̂
θ − Ψ1) + d1 (22)

where Ψ1 = γω1z
T
2 z2. This completes Step 1. It can be

viewed as the initialization of the whole design procedure.

Step 2. Choosing the candidate Lyapunov function

V2(z1, z2, z3, θ̃) = V1 + 1
2
zT
3 z3, and taking the time deriva-

tive, it leads to

V̇2 ≤ −
2∑

i=1

ciz
T
i zi +

1

2
zT
3 z3 + zT

3 x
∗
4 +

θ̃

γ
(
˙̂
θ − Ψ1)+

d1 − zT
3
∂x∗

3

∂θ̂

˙̂
θ + zT

3 (x4 − x∗
4) − zT

3 F2. (23)

By Lemma 1, we can deduce that

zT
3 (x4 − x∗

4) ≤ 1

2
zT
4 z4 + zT

3 z3. (24)

Using Lemma 2, we have

−zT
3 F2 ≤ (zT

3 z3) (ψ1θ + ψ2) + ν. (25)

Defining Ψ2 = Ψ1 + γψ1z
T
3 z3 and choosing the virtual con-

trol, we have

x∗
4(·) = −(c3 + 1 + ψ2 + ψ1θ̂)z3 − ∂x∗

3

∂θ̂
(Ψ2 − σθ̂) (26)

where c3 > 0 is a design parameter. Substituting (26) into

(23), it yields that

V̇2 ≤ −
3∑

i=1

ciz
T
i zi +

1

2
zT
4 z4 + (

θ̃

γ
− zT

3
∂x∗

3

∂θ̂
)×

(
˙̂
θ − Ψ2 + σθ̂) − σ

γ
θ̃θ̂ + d2 (27)

where d2 = d1 + ν is a positive constant.

Step 3. Choosing the candidate Lyapunov function as

V3(z1, z2, z3, z4, �1, �2, θ̃) = V2 + 1
2
zT
4 Bz4, and taking the

time derivative of V3 while noticing (7) and (8), we have

V̇3 ≤ −
3∑

i=1

ciz
T
i zi +

1

2
zT
4 z4 + (

θ̃

γ
− zT

3
∂x∗

3

∂θ̂
)×

(
˙̂
θ − Ψ2 − σθ̂) +

σ

γ
θ̃θ̂ + zT

4 u− zT
4
∂x∗

4

∂θ̂

˙̂
θ+

zT
4

(
K(x1 − x3) − f2

) − zT
4 F3 + d2. (28)

By using Lemma 1, it leads to

zT
4 K(x1 − x3) ≤ θ

2ε1
|z4|2|x1 − x3|2 +

ε1
2
. (29)

Similarly, from Lemma 1, we can deduce that

−zT
4 f2 ≤ θ2

2ε2
|z4|2φ2 +

ε2
2

≤ θ

2ε2
|z4|2φ2 +

ε2
2
. (30)

By Lemma 2, it yields

−zT
4 F3 ≤ (zT

4 z4) (ψ3θ + ψ4) + ν. (31)
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Defining ω2 = 1
2ε1

|x1 − x3|2 + 1
2ε2
φ2 + ψ3, ψ̄3 = ψ3 −

γψ3z
T
3

∂x∗
3

∂θ̂
, Ψ = Ψ2 + γω2z

T
4 z4, d3 = d2 + ν + ε1

2
+ ε2

2
, and

choosing the adaptive controller, we have

⎧
⎪⎨

⎪⎩

u = −
(
c4 +

1

2
+ ψ̄3 + ω2θ̂

)
z4 − ∂x∗

4

∂θ̂
(Ψ − σθ̂)

˙̂
θ = Ψ − σθ̂, θ̂(0) > 0.

(32)

Substituting (24) and (31) into (28), we have

V̇3 ≤ −
3∑

i=1

ciz
T
i zi +

1

2
zT
4 z4 +

σ

γ
θ̃θ̂ + d3. (33)

It is not difficult to get

− 1

γ
σθ̃θ̂ = − 1

γ
σθ̃2 − 1

γ
σθ̃θ ≤ − 1

2γ
σθ̃2 +

1

2γ
σθ2. (34)

Substituting (34) into (33), it follows that

V̇3 ≤ −cV3 + d (35)

where d = d3 + 1
2γ
σθ2. Theorem 1 summarizes the main

results of this section.

Theorem 1. Consider the flexible joint robots dynamic

system (1)–(3) under Assumptions 1–3, we can design the

adaptive controller (32), such that all the closed-loop signals

are rendered globally uniformly ultimately bounded and the

tracking error z1 can be rendered arbitrarily small.

Proof. As can be seen, by (35), we can deduce that

V̇3 ≤ 0 on V3 = ρ when c > d
ρ
. Hence, V3 ≤ ρ is an invariant

set, i.e., if V3(0) ≤ ρ, then V3(t) ≤ ρ for all t ≥ 0. Thus,

all the closed-loop signals are globally uniformly ultimately

bounded. Moreover, by adjusting parameters σ, γ, ci, δj ,

εj , i = 1, · · · , 4, j = 1, 2, 3, we can make the tracking error

z1 arbitrarily small. �
Remark 3. This section presents an adaptive back-

stepping based control algorithm for FJR system. The

overparametrization problem is avoided. However, the de-

signed controller is very complicated here. This problem

can be solved by using a modified adaptive dynamic sur-

face method, see the next section for detail.

4 Extensions

In this section, a modified adaptive dynamic surface

method will be adopted to obtain a simple adaptive con-

troller. We need to introduce the following transformations:

{
z̄1 = x1 − qd, z̄2 = ˙̄z1 + (c̄1 + 1)z̄1

z̄3 = x3 − x̄3, z̄4 = x4 − x̄4

(36)

where x̄i, i = 3, 4 are the filtered virtual control achieved

by the following first-order filter

τi ˙̄xi + x̄i = x∗
i , x̄i(0) = x∗

i (0) (37)

where τi > 0 is a positive constant and x∗
i is the virtual

control to be determined later. Define �1 = x̄3 − x∗
3, �2 =

x̄4 − x∗
4, then from (36) and (37), we have

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

˙̄z1 = z2 − (c̄1 + 1)z1

˙̄z2 = M−1(x1)Kx3 − F (x1, x2, qd, q̇d, q̈d)

˙̄z3 = x4 +
1

τ3
�1

˙̄z4 = B−1 (u+K(x1 − x3) − f2(x3, x4)) +
1

τ4
�2

(38)

where F is defined as

F = M−1 (Cx2 + h+Kx1 + f1) + q̈d−
(c̄1 + 1)z̄2 + (c̄1 + 1)2z̄1.

Now, we give the design procedure in detail.

Step 1. Choosing the candidate Lyapunov function

U1(z̄1, z̄2, θ̃) = 1
2
z̄T
1 z̄1 + 1

2a
z̄T
2 Kz̄2 + 1

2γ̄
θ̃2, similar to Sec-

tion 3, we have

−1

a
z̄T
2 KF ≤ 1

2
z̄T
1 z̄1 + θ(ω1 − 1)z̄T

2 z̄2 +
δ̄1
2

+
δ̄2
2
|q̈d|2. (39)

According to Assumption 2, Lemma 1 and noticing x3 −
x∗

3 = z̄3 + �1, it follows that

1

a
z̄T
2 KM

−1K(x3 − x∗
3) ≤ 1

2
z̄T
3 z̄3 +

1

2
�T
1 �1 + θz̄T

2 z̄2. (40)

Choosing the virtual control

x∗
3(z1, z2, qd, q̇d, θ̂) = −

(
c̄2 +

1

2
+ ω1θ̂

)
z2 (41)

where c̄2 > 0 is a design parameter, and using (39) and

(40), we have

U̇1 ≤ −
2∑

i=1

c̄iz̄
T
i z̄i +

1

2
z̄T
3 z̄3 +

1

2
�T
1 �1 +

θ̃

γ̄
(
˙̂
θ − Λ1) + d1

(42)

where Λ1 = γ̄ω1z̄
T
2 z̄2. Let x∗

3 pass the first-order filter (37),

then we get the filtered virtual control x̄3.

Step 2. Choosing the candidate Lyapunov function

U2(z1, z2, z̄3, θ̃) = U1 + 1
2
z̄T
3 z̄3 and taking the time deriva-

tive, we have

U̇2 ≤ −
2∑

i=1

c̄iz
T
i zi +

1

2
z̄T
3 z̄3 +

1

2
�T
1 �1 +

θ̃

γ̄
(
˙̂
θ − Λ1)+

z̄T
3 (x4 − x∗

4) + z̄T
3 (x∗

4 +
1

τ3
�1) + d1. (43)

From Lemma 1, it yields that

z̄T
3 (x4 − x∗

4) = z̄T
3 (z̄4 + �2) ≤ 1

2
z̄T
4 z̄4 + z̄T

3 z̄3 +
1

2
�T
2 �2.

(44)

Choose the virtual control

x∗
4(z̄3, �1) = −

(
3

2
+ c̄3

)
z̄3 − 1

τ3
�1 (45)
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where c̄3 > 0 is a designed parameter. Defining d̄1 = δ̄1
2

+
δ̄2
2
|q̈d|2, and substituting (45) into (43), it yields that

U̇2 ≤ −
3∑

i=1

c̄iz̄
T
i z̄i +

1

2
z̄T
4 z̄4 +

1

2
�T
1 �1 +

1

2
�T
2 �2+

θ̃

γ
(
˙̂
θ − Λ1) + d̄1. (46)

Let the virtual control x∗
4 pass the first-order filter (37),

then we can get the filtered virtual control x̄4.

Step 3. From the definition of �1, �2, it follows that
{
�̇1 = − 1

τ3
�1 + η1(z̄1, · · · , z̄4, �1, qd, q̇d, q̈d, θ̂)

�̇2 = − 1
τ4
�2 + η2(z̄1, · · · , z̄4, �1, �2, qd, q̇d, q̈d, θ̂)

(47)

where continuous functions η1, η2 are defined as

η1 =
∂x∗

3

∂z̄T
1

˙̄z1 +
∂x∗

3

∂z̄T
2

˙̄z2 +
∂x∗

3

∂qTd
q̇d +

∂x∗
3

∂q̇Td
q̈d +

∂x∗
3

∂θ̂

˙̂
θ (48)

η2 =
∂x∗

4

∂z̄T
3

˙̄z3 +
∂x∗

4

∂�T
1

�̇1. (49)

Choosing the candidate Lyapunov function

U3(z̄1, z̄2, z̄3, z̄4, �1, �2, θ̃) = U2 + 1
2
z̄T
4 Bz̄4 + 1

2
�T
1 �1 + 1

2
�T
2 �2,

and taking the time derivative of V3 while noticing (36)

and (38), we have

U̇3 ≤ −
3∑

i=1

c̄iz̄
T
i z̄i +

1

2
z̄T
4 z̄4 +

1

2
�T
1 �1 +

1

2
�T
2 �2 + d̄1+

θ̃

γ̄
(
˙̂
θ − Λ1) + z̄T

4 u− �T
1 (

1

τ3
�1 − η1) − �T

2 (
1

τ4
�2 − η2)+

z̄T
4

(
K(x1 − x3) − f2 +

1

τ4
B�2

)
. (50)

There exist positive constants ε̄1 and ε̄2 such that

z̄T
4

(
K(x1 − x3) − f2

) ≤ θω2z̄
T
4 z̄4 +

1

2
�T
2 �2 +

ε̄1
2

+
ε̄2
2
(51)

where ω2 is defined as ω2 = 1
2ε̄1

|x1 −x3|2 + 1
2ε̄2
φ2. By using

Lemma 1, we can deduce

z̄T
4 × 1

τ4
B�2 ≤ 1

ε̄3τ 2
4

|z̄4|2 +
ε̄3b

2
2

4
�2
2. (52)

Defining d̄2 = d̄1 + ε̄1
2

+ ε̄2
2

, and substituting (52) and (51)

into (50), we have

U̇3 ≤ −
3∑

i=1

c̄iz̄
T
i z̄i +

θ̃

γ̄
(
˙̂
θ − Λ) + z̄T

4 u+ �T
1 η1 + �T

2 η2+

(1

2
+

1

ε̄3τ 2
4

+ ω2θ̂
)
z̄T
4 z̄4 +

( − 1

τ3
+

1

2

)
�T
1 �1+

( − 1

τ4
+ 1 +

ε̄3b
2
2

4

)
�T
2 �2 + d̄2 (53)

where Λ = Λ1 + γ̄ω2z̄
T
4 z̄4. Choosing the adaptive controller

⎧
⎪⎨

⎪⎩

u = −
(

1

2
+

1

ε̄3τ 2
4

+ c̄4 + ω2θ̂

)
z̄4

˙̂
θ = Λ − σ̄θ̂, θ̂(0) > 0

(54)

where σ̄ is a positive constant, and substituting (54) into

(53), it leads to

U̇3 ≤ −
4∑

i=1

c̄iz̄
T
i z̄i − 1

γ̄
σ̄θ̃θ̂ +

( − 1

τ3
+

1

2

)
�T
1 �1+

( − 1

τ4
+ 1 +

ε3b
2
2

4

)
�T
2 �2 + �T

1 η1 + �T
2 η2 + d2. (55)

Now, we have theorem 2, which summarizes the main

results of this section.

Theorem 2. Consider the flexible joint robots dynamic

system (1) – (3) under Assumptions 1–3, one can design the

adaptive state-feedback controller (54), such that:

1) For any initial conditions satisfying U3(0) ≤ ρ, ρ > 0,

there exist σ, γ̄, c̄i, δ̄j , ε̄j , τk, i = 1, · · · , 4, j = 1, 2, 3, k =

3, 4, guaranteeing that the tracking error z1 can be made

arbitrarily small by adjusting these designed parameters.

2) All the closed-loop signals are rendered semi-globally

uniformly ultimately bounded.

Proof. Choosing the Lyapunov function V3, and defin-

ing the set Ω =
{
[z̄T

1 , z̄
T
2 , z̄

T
3 , z̄

T
4 , �

T
1 , �

T
2 , θ̃]

T ∈ R6n+1
∣
∣z̄T

1 z̄1+
1
a
z̄T
2 Kz̄2 + z̄T

3 z̄3 + z̄T
4 Bz̄4 +�T

1 �1 +�T
2 �2 + 1

γ̄
θ̃2 ≤ 2ρ

}
, we see

that Ωd in Assumption 1 and Ω are compact sets. Then,

from the definition of η1(·) and η2(·), it follows that there

exist positive constants η̄1 and η̄2, such that on the com-

pact set Ωd × Ω, |η1(·)| ≤ η̄1 and |η2(·)| ≤ η̄2. By using

Lemma 1, we have

�T
1 η1 ≤ η̄2

1

2δ̄3
�T
1 �1 +

δ̄3
2
, �T

2 η2 ≤ η̄2
2

2δ̄4
�T
2 �2 +

δ̄4
2
. (56)

Defining d̄ = d̄2 + δ̄3
2

+ δ̄4
2

+ 1
2γ̄
σ̄θ2, and substituting (34)

and (56) into (55) yields

U̇3 ≤ −
4∑

i=1

c̄iz̄
T
i z̄i − 1

2γ̄
σ̄θ̃2 − ( 1

τ3
− 1

2
− η̄2

1

2δ̄3

)
�T
1 �1−

( 1

τ4
− 1 − ε̄3b

2
2

4
− η̄2

2

2δ̄4

)
�T
2 �2 + d̄. (57)

Choosing parameters such that c̄i > 0, i = 1, · · · , 4, σ̄ > 0,
1
τ3

≥ τ∗3 + 1
2

+
η̄2
1

2δ̄3
, 1

τ4
≥ τ∗4 + 1 +

ε̄3b22
4

+
η̄2
2

2δ̄4
, where τ∗3 > 0,

τ∗4 > 0, we have

U̇3 ≤ −cU3 + d̄ (58)

where c satisfies 0 < c̄ ≤ 2 · min{c̄1, ac̄2
k2
, c̄3,

c̄4
b2
, 1

2
σ̄, τ∗3 , τ

∗
4 }.

It follows from (58) that U̇3 ≤ 0 on the surface U3 = ρ when

c̄ > d
ρ
. Hence, V3 ≤ ρ is an invariant set, i.e., if U3(0) ≤

ρ, then U3(t) ≤ ρ for all t ≥ 0. Consequently, all the

closed-loop signals are semi-globally uniformly ultimately

bounded. Moreover, by adjusting parameters σ̄, γ̄, c̄i, δ̄j ,

ε̄j , τk, i = 1, · · · , 4, j = 1, 2, 3, k = 3, 4, we can make the

tracking error z̄1 arbitrarily small. �
Remark 4. To achieve the tracking errors arbitrarily

small, one can adjust the design parameters accordingly.

To be specific, increasing c̄i, σ̄, and decreasing τk will help

to increase c̄. Decreasing δ̄j , ε̄j and increasing γ̄ will help to

decrease d̄. From (58), it leads to U3 ≤ U3(0)e
−c̄t + d̄

c̄
(1 −

e−c̄t). With increasing value of c̄, and decreasing value of
d̄
c̄
, the tracking error is made smaller.



564 International Journal of Automation and Computing

5 Simulation

Consider the single-link flexible joint robot[7, 9], whose

dynamic equations are as follows:

Iq̈1 +Mgl sin(q1) +K(q1 − q2) + f1(q1, q̇1) = 0

Jq̈2 +Bq̇2 +K(q2 − q1) + f2(q2, q̇2) = u.

The desired trajectory for this robot model is given as

qd = 0.5 sin(0.5t) rad. When the external disturbances are

0, we choose the parameters as I = 1 kg·m2, Mgl = 3 N·m,

K = 5 N·m/rad, J = 1 kg·m2, B = 4 N·m·s/rad. It is

easy to verify that Assumption 1 and Assumption 2 hold.

Assumption 3 holds with φ0 = sin2 q1 +q21 , φ1 = 0, φ2 = q̇22 .

In Figs. 1–3, the responses of the resulting closed-loop sys-

tem for this case are characterized by the different curves

(the position of the link is q1a, the parameter estimation is

θa, and the control input is ua). When the external distur-

bances are f1 = −0.5 cos(q1)N and f2 = −0.5 cos(q2)N, we

choose another group of the parameters as I = 0.5 kg·m2,

Mgl = 1.5 N·m, K = 2.5 N·m/rad, J = 0.5 kg·m2, and

B = 2 N·m·s/rad, the responses of the resulting closed-loop

system for this case are characterized by the different curves

(the position of the link is q1b, the parameter estimation is

θb, and the control input is ub).

Fig. 1 The position of qd and q1

Fig. 2 The trajectories of θ̂

Fig. 3 The trajectories of input u

Since the responses of the presented controllers are simi-

lar, in this example, we only provide the simulation for the

control method shown in Section 4. By (7), we have
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ż1 = z2 − (c1 + 1)z1

ż2 = I−1Kx3 − F (x1, x2, qd, q̇d, q̈d)

ż3 = x4 +
1

τ3
�1

ż4 = J−1 (u+Bx4 +K(x1 − x3) − f2) +
1

τ4
�2

(59)

where F = I−1 (Mgl sin x1 +Kx1 + f1) + q̈d − (c1 + 1)z2 +

(c1 + 1)2z1. We choose the first virtual control

x∗
3(z1, z2, qd, q̇d, θ̂) = −

(
1

2
+ c2 + ω1θ̂

)
z2 (60)

where ω1 = 1
δ1

(sin2 x1 + x2
1) + 1

2δ2
+ c1 + (c1+1)4

2
+ 2. Let

the virtual control x∗
3 pass the first-order filter (37), then

we can get the filtered virtual control x̄3. Next, we choose

the second virtual control

x∗
4(z1, z2, z3, qd, q̇d, θ̂) = −

(
3

2
+ c3

)
z3 − 1

τ3
�1. (61)

Let the virtual control x∗
4 pass the first-order filter (37),

then we can get the filtered virtual control x̄4. At last, we

choose the actual control and the adaptive law as
⎧
⎨

⎩

u = −(1

2
+

1

ε3τ 2
4

+ c4 + ω2θ̂
)
z4

˙̂
θ = γ(ω1z

T
2 z2 + ω2z

T
4 z4) − σθ̂, θ̂(0) = 0.1

(62)

where ω2 = 1
2ε1

|x1 − x3|2 + 1
2ε2
x2

4.

In the simulation, we choose the parameters as c1 = 1.5,

c2 = 3, c3 = 2.5, c4 = 3, δ1 = 0.005, δ2 = 0.04, τ3 = 0.001,

τ4 = 0.03, ε1 = 0.1, ε2 = 0.01, ε3 = 8.5, σ = 0.000 4 and γ =

0.000 55. The initial values are x̄3(0) = 1.5 and x̄3(0) = 3.5.

The simulation demonstrates that the tracking objective

of flexible joint robots can be achieved with satisfactory

responses by the designed controller (62).

6 Concluding remarks

Tracking problems of the FJR system which is underac-

tuated, are more difficult than the fully actuated system.
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This paper gives a new adaptive tracking control method

for uncertain flexible joint robots. The designed controllers

can make the position tracking error arbitrarily small, while

keeping all the closed signals globally/semi-globally uni-

formly ultimately bounded. In this direction, there are still

remaining problems to be investigated. For example, an

interesting research problem is how to design an adaptive

tracking controller for the flexible joint robots in random

vibration environment.

Appendix

Proof of Lemma 2. From Assumptions 1 and 2, we

have

|M−1
1 (x1) (Cx2 + h(x1) +Kx1 + f1) | ≤

ψ11(x1, x2)max{ θ
1
2
0

m1
,
θ

1
2
1

m1
} (A1)

where ψ11(x1, x2) = φ
1
2
0 + φ

1
2
1 . Then, we can deduce that

|F1| ≤ ψ11θ̄ + ψ12 + q̈d. (A2)

From (8) and the definition of F2 and F3, it is not difficult

to get that there exist smooth functions such that

|F2| ≤ ψ21θ̄ + ψ22 + ψ23 q̈d (A3)

|F3| ≤ ψ31θ̄ + ψ32 + ψ33 q̈d. (A4)

Thus, we can deduce that

− zT
3 F2 ≤ zT

3

(
ψ21 θ̄ + ψ22 + ψ23 q̈d

) ≤
(zT

3 z3)
(
ψ2

21θ + ψ2
22 + ψ2

23

)
+
θ

4
+

1

4
+
q̈d

4
=

(zT
3 z3) (ψ1θ + ψ2) + ν (A5)

where ψ1 = ψ2
21, ψ2 = ψ2

22 + ψ2
23 and ν = θ

4
+ 1

4
+ q̈d

4
.

Similarly, we can deduce that

− zT
4 F3 ≤ zT

4

(
ψ31θ̄ + ψ32 + ψ33q̈d

) ≤

(zT
4 z4)

(
ψ2

31θ + ψ2
32 + ψ2

33

)
+
θ

4
+

1

4
+
q̈d

4
=

(zT
4 z4) (ψ3θ + ψ4) + ν (A6)

where ψ3 = ψ2
31 and ψ4 = ψ2

32 + ψ2
33. �
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