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Abstract: In this paper, iterative learning control (ILC) technique is applied to a class of discrete parabolic distributed parameter

systems described by partial difference equations. A P-type learning control law is established for the system. The ILC of discrete

parabolic distributed parameter systems is more complex as 3D dynamics in the time, spatial and iterative domains are involved.

To overcome this difficulty, discrete Green formula and analogues discrete Gronwall inequality as well as some other basic analytic

techniques are utilized. With rigorous analysis, the proposed intelligent control scheme guarantees the convergence of the tracking

error. A numerical example is given to illustrate the effectiveness of the proposed method.
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1 Introduction

Designing a controller with learning ability has been an

interesting topic that the control engineers explore[1]. In

this background, in the 1970s, iterative learning control

(ILC) which is an effective intelligent control technique

came up[2]. Nowadays, ILC has been extensively applied

in practice, such as industrial robotics, intelligent transport

systems, biomedical engineering, etc[3−8]. Meanwhile, the-

oretical research on ILC itself has been developed greatly,

e.g., the research on modeling is extended to distributed

parameter systems from ordinary different systems, as well

as from discrete time systems to continuous time systems,

and from determine systems to stochastic ones[9−15].

On the other hand, in recent years, as most physical or

chemical processes can be described by distributed param-

eter systems, ILC for distributed parameter systems has

become a research hot-spots. In [16], ILC for the first

order hyperbolic distributed parameter systems was dis-

cussed by using finite approximation. A class of second

order hyperbolic elastic system was studied in [17], by us-

ing the differential difference iterative learning algorithm.

Xu et al.[18] designed P-type and D-type iterative learn-

ing algorithms based on semigroup theory for a class of

parabolic distributed parameter systems. Tension control

system was studied in [19] by using the PD-type learning
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algorithm. In [20], by employing the P-type learning con-

trol algorithm, a class of single-input single-output coupling

(consisting of the hyperbolic and parabolic equations) non-

linear distributed parameter systems was studied and the

convergence conditions, speed and robustness of the iter-

ative learning algorithm were proposed or discussed. Re-

cently, without any simplification or discretization of the

3D dynamics in the time, space as well as iteration domain,

Huang et al.[21] proposed the ILC for a class of inhomoge-

neous heat equations.

However, it should be pointed out that compared to dis-

crete systems described by ordinary difference equation,

there are very limited studies on ILC for discrete distributed

parameter systems governed by partial difference equation.

ILC for traffic density of freeway model described by first

order discrete hyperbolic systems was studied in [5−7], in-

cluding the tracking and identification. ILC for spatio-

temporal dynamics using Crank-Nicholson discretization

was discussed in [22], using linear matrix inequality condi-

tions. In fact, the application and the relative topics includ-

ing boundedness, stability, and oscillation of discrete dis-

tributed parameter systems governed by partial difference

equation have been studied by a number of authors[23−26].

Especially, the parabolic type partial difference equation

was considered in [27, 28].

In this paper, ILC technique is applied to a class of dis-

crete parabolic distributed parameter systems described by

partial difference equations. In the systems, the coefficients

are uncertain but bounded. Under given initial and bound-

ary conditions, a P-type iterative learning law for discrete

parabolic distributed parameter systems is proposed and

tracking error convergence analysis is given in detail. Here,

we don′t use linear matrix inequality conditions or finite

approximations, although iterative processes involves three

different domains (time, space and iteration). We take dis-
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crete Green formula and an analogues discrete Gronwall

inequality to estimate the states of learning systems, then

use fixed point theorem to get convergence results.

The remainder of this paper is organized as follows. In

Section 2, the problem formulation and some preliminaries

are described. In Section 3, with rigorous analysis, suffi-

cient conditions guaranteeing the tracing error convergence

of the ILC system are proposed. Numerical simulations are

displayed in Section 4 and finally Section 5 concludes the

paper.

2 Preliminary

Consider the following single input single output discrete

parabolic type distributed parameter system governed by

partial difference equations{
Δ2q(i, j)=a(j)Δ2

1q(i − 1, j)+b(j)q(i, j)+c(j)u(i, j) (1a)

y(i, j) = l(j)q(i, j) + m(j)u(i, j) (1b)

where i, j are spatial and time discrete variables, respec-

tively, 1 ≤ i ≤ I , 0 ≤ j ≤ J , I, J are given integers.

{a(j)}, {b(j)}, {c(j)} as well as {l(j)}, {m(j)} are uncer-

tain bounded real sequences, {a(j)} > 0. q(i, j), u(i, j),

y(i, j) ∈ R (for a pair of fixed i, j) denotes the state, control

input and output of the discrete system (1), respectively. In

system (1), the partial differences are defined as usual, i.e.,⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Δ1q(i, j) = q(i + 1, j) − q(i, j)

Δ2q(i, j) = q(i, j + 1) − q(i, j)

Δ2
1q(i, j) = Δ1

(
Δ1q(i − 1, j)

)
=

q(i + 1, j) − 2q(i, j) + q(i − 1, j).

(2)

The zero boundary condition of system (1) is

q(0, j) = 0 = q(I + 1, j), 1 ≤ j ≤ J (3)

and the initial condition is

q(i, 0) = ϕ(i, 0), 1 ≤ i ≤ I. (4)

Remark 1. From (1a), if qj = col
(
q(1, j), · · · , q(I, j)

)
and uj = col

(
u(1, j), · · · , u(I, j)

)
, then we have the vector

recurrence relation as

qj+1 − qj = Ajq
j + cju

j , j = 0, 1, 2, · · · , J

where

Aj = a(j)

⎡
⎢⎢⎢⎢⎢⎢⎣

−2 1 0 · · · 0

1 −2 1 · · · 0

· · ·
0 · · · 1 −2 1

0 · · · 0 1 −2

⎤
⎥⎥⎥⎥⎥⎥⎦

+ b(j)I (5)

with I being the unit matrix. Furthermore, if a(j) = a =
�t
h2 (h is space stepsize and �t is time stepsize or sampling

time), and b(j) = �t × b, c(j) = �t × c, then (1a) is dis-

cretization of the following parabolic distributed parameter

system

∂q(x, t)

∂t
=

q2(x, t)

∂x2
+ bq(x, t) + cu(x, t). (6)

Generally, to ensure numerical stability, it is needed to se-

lect a suitable sampling period when we discrete the con-

tinuous systems. For example, forward difference method

provides �t
h2 < 1

2
. However, we only consider the partial

difference systems (1) in this paper (step ratio is 1). Some

examples were given to illustrate this reasonableness in [23],

e.g., the temperature distribution of a “very long” thin rod,

and the model of population dynamics with spatial migra-

tions.

For the controlled object described by system (1), let the

desired system output be yd(i, j). Now, the aim is to seek

a corresponding desired input ud(i, j) such that the actual

output of system (1)

y∗(i, j) = l(j)qd(i, j) + m(j)ud(i, j) (7)

will approximate to the desired output yd(i, j). It is not

easy to get the desired control as the system is uncertain.

We will gradually gain the control sequence uk(i, j) by using

learning control method.

In order to get the control input sequence uk(i, j), we use

the P-type iterative learning control algorithm

uk+1(i, j) = uk(i, j) + γ(j)ek(i, j) (8)

where tracking error ek(i, j) = yd(i, j) − yk(i, j), yk(i, j) is

the k-th output corresponding to the k-th input uk(i, j),

and γ(j) is the gain matrix in the learning process.

Assuming that in the learning process, the state of system

starts from the same initial value, i.e.,

qk(i, 0) = ϕ(i, 0), 0 ≤ i ≤ I, k = 1, 2, · · · . (9)

For convenience, the discrete L2 norm ‖ · ‖ and discrete

L2(λ) norm ‖ · ‖λ used in this paper are defined as follows:

‖g‖ =
( I∑

i=1

g(i)2
) 1

2
, g(i) ∈ R (10)

‖fk‖λ =
(

sup
0≤j≤J

{(‖fk(·, j)‖2λj)}) 1
2 (11)

where λ > 0, fk(i, j) ∈ R, 1 ≤ i ≤ I, 0 ≤ j ≤ J . According

to the definition, we have

‖fk‖λ ≤ sup
0≤j≤J

‖fk(·, j)‖ ≤ λ−J‖fk‖λ.

To show the convergence of ILC of systems (1), two lem-

mas are given as follows.

Lemma 1 (A analogues discrete of difference type

Gronwall inequality)[27]. Let the constant sequences

{v(i)}, {B(i)} and {D(i)} be real sequences defined for

i ≥ 0 satisfying

v(i + 1) ≤ B(i)v(i) + D(i), B(i) ≥ 0, i ≥ 0. (12)
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Then,

v(j) ≤
j−1∏
i=0

B(i)v(0) +

j−1∑
i=0

D(i)

j−1∏
s=i+1

B(s), j ≥ 0. (13)

Lemma 2 (Discrete Green′s formula)[25]. Under ini-

tial and boundary conditions (3) and (4), for system(1), we

have

I∑
i=1

q(i, j)Δ2
1q(i − 1, j) =

q(I+1, j)Δ1q(I, j)−q(1, j)Δ1q(0, j)−
I∑

i=1

(
Δ1q(i, j)

)2

=

−
I∑

i=0

(
Δ1q(i, j)

)2

. (14)

3 Main results

Given that the control input u(i, j) of system (1) is under-

taken by uk(i, j) generated from the above learning control

scheme (8), the corresponding system dynamics description

becomes⎧⎪⎨
⎪⎩

Δ2qk(i, j) = a(j)Δ1qk(i − 1, j) + b(j)qk(i, j)+

c(j)uk(i, j) (15a)

yk(i, j) = l(j)qk(i, j) + m(j)uk(i, j). (15b)

The initial condition of system (15) is also (9). Additionally,

the boundary condition of system (15) is 0, i.e.,

qk(0, j) = 0 = qk(I + 1, j), 1 ≤ j ≤ J. (16)

3.1 State estimation

In this section, in order to obtain convergence conditions

of tracking error, we give the estimation state of system

(15a), i.e., qk(i, j).

Proposition 1. Under initial and boundary conditions

(9) and (16), for qk(i, j) in (15), we have

I∑
i=1

qk(i, j + 1)2 ≤ C1(j)
I∑

i=1

q2
k(i, j) + C2(j)

I∑
i=1

u2
k(i, j)

(17)

where

C1(j) = 1 + 2b(j) + |c(j)| + 8a2(j) + 4(b(j) − 2a(j))2

C2(j) = |c(j)| + 4c2(j).

Proof. We divide our proof into three steps. First, by

(1) and (2), we have

qk(i, j + 1) =

a(j)Δ2
1qk(i − 1, j) +

(
1 + b(j)

)
qk(i, j) + c(j)uk(i, j).

(18)

Multiplying the two sides of (18) by qk(i, j) yields

qk(i, j)qk(i, j + 1) = a(j)qk(i, j)Δ2
1qk(i − 1, j)+(

1 + b(j)
)
q2

k(i, j) + c(j)qk(i, j)uk(i, j). (19)

Note that

(Δ2qk(i, j))2 =
(
qk(i, j + 1) − qk(i, j)

)2

=

q2
k(i, j + 1) − 2qk(i, j)qk(i, j + 1) + q2

k(i, j). (20)

Then, from (19) and (20), we obtain

q2
k(i, j + 1) =(

Δ2qk(i, j)
)2

+ 2qk(i, j)qk(i, j + 1) − q2
k(i, j) =(

Δ2qk(i, j)
)2

+ 2a(j)qk(i, j)Δ2
1qk(i − 1, j)+(

1 + 2b(j)
)
q2

k(i, j) + 2c(j)qk(i, j)uk(i, j). (21)

Second, summing up both sides of (21) from i = 1 to I , we

get

I∑
i=1

q2
k(i, j + 1) =

I∑
i=1

(
Δ2qk(i, j)

)2

+ 2a(j)

I∑
i=1

qk(i, j)Δ2
1qk(i − 1, j)+

(
1 + 2b(j)

) I∑
i=1

q2
k(i, j) + 2c(j)

I∑
i=1

qk(i, j)uk(i, j) �

Σ1 + Σ2 + Σ3 + Σ4. (22)

For Σ1, by (1a), we have

Δ2qk(i, j) =
(
b(j) − 2a(j)

)
qk(i, j) + a(j)qk(i + 1, j)+

a(j)qk(i − 1, j) + c(j)uk(i, j). (23)

Then,

Σ1 =
I∑

i=1

(
Δ2qk(i, j)

)2

≤

I∑
i=1

4
{(

b(j) − 2a(j)
)2

q2
k(i, j) + a2(j)q2

k(i + 1, j)+

a2(j)q2
k(i − 1, j) + c2(j)u2

k(i, j)
}
. (24)

Further, by the boundary condition (16), we get

I∑
i=1

a2(j)q2
k(i + 1, j) + a2(j)q2

k(i − 1, j) ≤

a2(j)[q2
k(2, j) + q2

k(3, j) + · · · + q2
k(I, j)]+

a2(j)[q2
k(1, j) + q2

k(2, j) + · · · + q2
k(I − 1, j)] ≤

I∑
i=1

2a2(j)q2
k(i, j).

Therefore, by (24), we have

Σ1 ≤
I∑

i=1

4[(b(j) − 2a(j))2 + 2a2(j)]q2
k(i, j)+

4c2(j)u2
k(i, j). (25)
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By Lemma 2 and aj > 0, j ≥ 0, we have

Σ2 = 2a(j)
I∑

i=1

qk(i, j)Δ2
1qk(i − 1, j) =

2a(j)
I∑

i=1

[
qk(I + 1, j)Δ1qk(I, j) − qk(1, j)Δ1qk(0, j)−

I∑
i=1

(
Δ1qk(i, j)

)2]
= −2a(j)

I∑
i=0

(Δ1qk(i, j))2 ≤ 0. (26)

For
∑

4,

Σ4 = 2c(j)
I∑

i=1

qk(i, j)u(i, j) ≤

|c(j)|
I∑

i=1

(
q2

k(i, j) + u2
k(i, j)

)
. (27)

Finally, substituting (25)−(27) into (22), we obtain

I∑
i=1

q2
k(i, j + 1) ≤

I∑
i=1

4[(b(j) − 2a(j))2 + 2a2(j)]q2
k(i, j)+

4c2(j)

I∑
i=1

u2
k(i, j) +

(
1 + 2b(j)

) I∑
i=1

q2
k(i, j)+

|c(j)|
I∑

i=1

(
q2

k(i, j) + u2
k(i, j)

)
=

[
1 + 2b(j) + |c(j)| + 8a2(j)+

4(b(j) − 2a(j))2
] I∑

i=1

q2
k(i, j)+

[|c(j)| + 4c2(j)
] I∑

i=1

u2
k(i, j). (28)

�

3.2 Convergence analysis of ILC

In this section, with Lemma 1 and Proposition 1, we

give the sufficient conditions of ILC system (15) under con-

ditions (7) and (16). The following theorem is the main

result of this paper.

Theorem 1. For ILC system (15) under the initial con-

dition (9) and boundary condition (16), if gain γ(j) of al-

gorithm (8) satisfies |1 − m(j)γ(j)|2 < 1
2
, 0 ≤ j ≤ J ,

then

lim
k→∞

‖ek(·, j)‖2 = 0, 0 ≤ j ≤ J. (29)

Proof. In the following process of the follow, for sim-

plicity of presentation, we denote

ūk(i, j) � uk+1(i, j) − uk(i, j) (30)

ȳk(i, j) � yk+1(i, j) − yk(i, j) (31)

q̄k(i, j) � qk+1(i, j) − qk(i, j). (32)

According to the learning control algorithm (8), we have

ek+1(i, j) =

ek(i, j) + yk(i, j) − yk+1(i, j) =

ek(i, j) + l(j)
(
qk(i, j) − qk+1(i, j)

)
+

m(j)
(
uk(i, j) − uk+1(i, j)

)
=

ek(i, j) + l(j)
(
qk(i, j) − qk+1(i, j)

)
−

m(j)γ(j)ek(i, j) =(
1 − m(j)γ(j)

)
ek(i, j)+

l(j)
(
qk(i, j) − qk+1(i, j)

)
. (33)

Let

λmγ = sup
1≤j≤J

(
1 − m(j)γ(j)

)2

(34)

λl = sup
1≤j≤J

l(j). (35)

Then, (33) implies

e2
k+1(i, j) ≤ 2λmγe2

k(i, j) + 2λlq̄
2
k(i, j). (36)

Summing up both sides of (36) with respect to i, we obtain

I∑
i=1

e2
k+1(i, j) ≤ 2λmγ

I∑
i=1

e2
k(i, j) + 2λl

I∑
i=1

q̄2
k(i, j). (37)

By (37), in order to prove Theorem 1, we must estimate

q̄2
k(i, j). Then for learning system (15), it can be easily

verified that q̄2
k(i, j) satisfies⎧⎪⎨

⎪⎩
Δ2q̄k(i, j) = a(j)Δ1q̄k(i − 1, j)+

b(j)q̄k(i, j) + c(j)ūk(i, j)

ȳk(i, j) = l(j)q̄k(i, j) + m(j)ūk(i, j).

(38)

Under the initial condition (9) and zero boundary condition

(16), comparing (38) with (15), by means of Proposition 1,

we can obtain

I∑
i=1

q̄2
k(i, j + 1) ≤ C1

I∑
i=1

q̄2
k(i, j) + C2

I∑
i=1

ū2
k(i, j) (39)

where

0 ≤ C1 = sup
1≤j≤J

|C1(j)|

C2 = sup
1≤j≤J

C2(j). (40)

Then, using Lemma 1 and (9), we have

I∑
i=1

q̄2
k(i, j) ≤

C1(j − 1)
I∑

i=1

q̄2
k(i, 0) +

j−1∑
t=0

C2

I∑
i=1

ū2
k(i, t)Cj−t−1

1 =

j−1∑
t=0

C2

I∑
i=1

ū2
k(i, t)Cj−t−1

1 . (41)
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On the other hand, by learning law (8), it is easy to see

ū2
k(i, j) =

(
uk+1(i, j) − uk(i, j)

)2

≤ γ2e2
k(i, j). (42)

Substituting (42) into (41), and according to (37), we can

obtain that

I∑
i=1

e2
k+1(i, j) ≤

2λmγ

I∑
i=1

e2
k(i, j) + 2λl

( j−1∑
t=0

C2

I∑
i=1

γ2e2
k(i, t)Cj−t−1

1

)
.

(43)

Multiplying both sides of (43) by λj(0 < λ < 1), and con-

sidering that λC1 < 1, we get

I∑
i=1

e2
k+1(i, j)λ

j ≤ 2λmγ

I∑
i=1

e2
k(i, j)λj+

2λl(

j−1∑
t=0

C2

I∑
i=1

γ2e2
k(i, t)Cj−t−1

1 )λj ≤

2λmγ

I∑
i=1

e2
k(i, j)λj+

2λl

( j−1∑
t=0

C2

I∑
i=1

γ2e2
k(i, t)λtCj−t−1

1 λj−t
)
. (44)

Using the definition of norm ‖ · ‖λ, (44) becomes

I∑
i=1

e2
k+1(i, j)λ

j ≤ 2λmγ‖ek‖2
λ+

2C2λlγ
2(

j−1∑
t=0

‖ek‖2
λ(C1λ)j−t−1λ). (45)

Since
∑j−1

t=0 ((C1λ)j−t−1λ) ≤ λ
1−C1λ

, we have

I∑
i=1

e2
k+1(i, j)λ

j ≤ (2λmγ +
λ

1 − C1λ
× 2C2λlγ

2)‖ek‖2
λ.

(46)

By conditions of Theorem 1: 2λmγ < 1, and the continuous

property of real number, there exists a sufficiently small λ

such that

(2λmγ +
λ

1 − C1λ
× 2C2λlγ

2) < 1. (47)

If ρ � (2λmγ + λ
1−C1λ

× 2C2λlγ
2), then (46) means

‖ek+1‖2
λ ≤ ρ‖ek‖2

λ. (48)

Thus, from (48), we have

‖ek+1‖2
λ ≤ ρk‖e1‖2

λ. (49)

Therefore, when k → ∞, ‖ek+1‖2
λ → 0. Finally, by

‖ek‖λ ≤ sup
0≤j≤J

‖ek(·, j)‖ ≤ λ−J‖ek‖λ

we can obtained

lim
k→∞

‖ek(·, j)‖2 = 0, 0 ≤ j ≤ J. (50)

�
Remark 2. Here, we only consider single input and sin-

gle output system governed by a partial difference equa-

tion and output equation. It is not difficult to extend the

corresponding results to multi-input multi-output systems

described by partial difference equations.

Remark 3. Clearly, from the conclusion of Theorem 1

and definition of discrete L2 norm, we can get the pointwise

convergence of tracking error, i.e., ek(i, j) converges to zero

asymptotically as k tends to infinity for all (i, j), 1 ≤ i ≤ I ,

0 ≤ j ≤ J .

4 Simulation

In order to illustrate the effectiveness of ILC mentioned

in this paper, a specific numerical example considering the

following system has been given as follows. Let the desired

output of system (15) be yd(i, j) = 1
8
jsin( i−1

5
), space and

time ranges be 1 ≤ i ≤ 10, 1 ≤ j ≤ 100, state initial value

and boundary value be zero. The system coefficients are

a(j) = 0.2+e−2j , b(j) = −0.3, c(j) = 0.6, l(j) = 0.5−e−3j ,

m(j) = 0.8 + e−j , gain coefficient γ(j) = 0.8. Then it is

easy to verify that the conditions of Theorem 1 are satisfied.

The simulation results are shown in Figs. 1 – 4.

Fig. 1 shows the desired curved surface. Fig. 2 shows the

curved surface at the twenties iteration. Fig. 3 gives error

curved surfaces of 8, 10, 15, 20, respectively. Fig. 4 is maxi-

mum absolute error-iterative curve. Numerically, when the

iteration numbers are 10 and 15, the absolute values of the

maximum tracking error are 1.2182×10−3 and 3.99×10−6,

respectively. The effectiveness of the proposed ILC (8) for

discrete distributed parameter system (1) is validated.

Fig. 1 Desired output yd(i, j) = 1
8
jsin( i−1

5
)

5 Conclusions

In this paper, we have considered the problem of ILC

scheme for a class of discrete parabolic distributed parame-

ter systems with coefficient uncertainty. A P-type learning
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Fig. 2 The twentieth iterative output yk(i, j)(k = 20)

Fig. 3 The error surfaces of different iterations

Fig. 4 Max tracking error versus number of interations

law is established for our system. Compared with discrete

systems described by ordinary difference equation, the ILC

of discrete parabolic distributed parameter system is more

complex. It is also shown that under some given conditions,

the P-type ILC law can guarantee the asymptotic conver-

gence of the tracking error in mean L2 norm for the en-

tire time interval through the iterative learning process. In

the future, the control scheme will be applied to a freeway

model with a diffusion term[29].
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