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Abstract: This paper proposes a new method for control of continuous large-scale systems where the measures and control functions

are distributed on calculating members which can be shared with other applications and connected to digital network communications.

At first, the nonlinear large-scale system is described by a Takagi-Sugeno (TS) fuzzy model. After that, by using a fuzzy Lyapunov-

Krasovskii functional, sufficient conditions of asymptotic stability of the behavior of the decentralized networked control system (DNCS),

are developed in terms of linear matrix inequalities (LMIs). Finally, to illustrate the proposed approach, a numerical example and

simulation results are presented.
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1 Introduction

Decentralized control of large-scale systems (also known

as interconnected systems in some books) has been investi-

gated as a branch of control theory and has received con-

siderable attention over the past three decades due to its

various applications such as power systems, aerospace sys-

tems, nuclear reactors, systems control process, etc.[1−3]

In fact, various techniques for distributed control using

linear matrix inequalities (LMIs) were recently studied[4−9].

The systems consist of a large set of interconnected sub-

systems which can be far from each other. That′s why

we introduce the notion of communication network to con-

nect them, and thus it aims to ensure data transmission

and coordinating manipulation among spatially distributed

components. Compared with conventional point-to-point

control systems, the advantages of networked control sys-

tems (NCS) are less wiring, lower installation cost as well

as greater agility in diagnosis and maintenance. Because of

these distinctive benefits, typical application of these sys-

tems ranges over various fields, such as automotive, mobile

robotics, advanced aircraft, etc. It is well known that lim-

ited network resources, network-induced delays and data

packets dropout through the network, may degrade the de-

centralized networked control system (DNCS) performance

and lead to instability. It is mentioned that the communi-

cation delay, which has time-varying characteristics, is one

of the important factors to be considered in NCS analysis

and synthesis[10−19].

In this paper, the decentralized static output feedback
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control method for stabilization of nonlinear interconnected

system, that takes into account problems of delay and data

packets dropout in communication, is proposed. Based on

Takagi-Sugeno (TS) fuzzy system, the static output feed-

back controller is designed. The sufficient condition is of-

fered to guarantee the stability of the closed-loop system

using Lyapunov Krasovskii functional. Its constructive con-

ditions are presented in LMIs terms, taking effects of com-

munication network into account.

The paper is organized as follows. Section 2 presents

system description and preliminaries. Section 3 presents

the main results, describing the control strategy for large-

scale systems through a communication network. Section 4

shows simulation results. Finally, conclusions are given in

Section 5.

Notations. sym(W ) stands for W +WT. The symbol

(∗) within a matrix represents the symmetric entries.

2 Preliminaries and system description

Consider a large-scale system S composed of J intercon-

nected subsystems Si, i = 1, 2, · · · , J . The i-th fuzzy sub-

system Si is described by the following TS fuzzy model:

Si :

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

If θi1(t) is F l
i1 and θig(t) is F l

ig

then ẋi(t) = Al
ixi(t) +Bl

iui(t) +
J∑

j=1

fij(xj(t))

yi(t) = C2ixi(t)

(1)

where i = 1, 2, · · · , J , l = 1, 2, · · · , ri, xi(t) denotes the

state vector, yi(t) denotes the measured output, ui(t) is

the control input, Al
i, B

l
i and C2i are constant real matrices

with appropriate dimensions and C2i is full rank, θi1(t),
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θi2(t), · · · , θig(t) are some measurable premise variables for

subsystems Si, F
l
iq(q = 1, 2, · · · , g) represents the linguistic

fuzzy sets of the rule, fij(xj(t)) represents the interconnec-

tion of fuzzy rules in subsystem Si and subsystem Sj , and

ri represents the number of fuzzy rules in subsystem Si.

Using the central-average defuzzifier, the TS fuzzy sys-

tem can be given as
⎧
⎪⎪⎨

⎪⎪⎩

ẋi(t) =

ri∑

l=1

hl
i(θi(t))[A

l
ixi(t) +Bl

iui(t) +

J∑

j=1

fij(xj(t))]

yi(t) = C2ixi(t)

(2)

where

hl
i(θi(t)) =

υl
i(θi(t))

ri∑

l=1

υl
i(θi(t))

υl
i(θi(t)) =

g∏

q=1

F l
iq(θiq(t))

(3)

with F l
iq(θiq(t)) as the grade of membership of θiq(t) in the

fuzzy set F l
iq . h

l
i(θi(t)) is the membership function for each

fuzzy rule, which represents normalized grade of member-

ship, and satisfies

0 ≤ hl
i(θi(t)) ≤ 1, for l = 1, 2, · · · , ri,

ri∑

l=1

hl
i(θi(t)) = 1.

(4)

We assume that system S will be controlled through net-

work. Fig. 1 represents the structure of networked control

sub system Si with induced delays, where τsci is sensor-to-

controller delay and τcai is the controller-to-actuator delay.

It is assumed that the controller computational delay can

be absorbed into either τsci or τcai.

Fig. 1 Framework of networked control subsystem Si

Assumption 1. All pairs (Al
i, B

l
i) (i = 1, 2, · · · , J and

l = 1, 2, · · · , ri) are stabilizable.[20]

Assumption 2. The interconnection fij(xj(t)) satisfies

the following conditions: fij(xj(t)) = Bl
ifijl (xj(t)) and

‖f l
ij(xj(t))‖ ≤ f̄ l

ij‖xj(t)‖, where f̄ l
ii = 0, f̄ l

ij(i �= j) is a

positive constant and Bl
i is a constant real matrix with ap-

propriate dimensions.[20]

Assumption 3. The sensors are clock driven, the con-

troller and actuators are event driven.

Assumption 4. Data, either from measurement or for

control, are transmitted in a single packet.

Assumption 5. The effect of signal quantization is not

considered.

Assumption 6. The real input ui(t) for each subsystem,

realized through a zero-order hold (ZOH), is a piecewise

constant function.

It is worth mentioning that the sampling period of a sen-

sor is pre-determined for control algorithm design, and thus

the sensor can be assumed to be clock driven. However, an

actuator does not change its output to the plant under con-

trol until an updated control signal is received, implying

that the actuator is event driven.

To obtain our main results, the following lemmas are

needed.

Lemma 1.[21] For each real vector ζ and ρ, it follows

that

2ζTρ ≤ ζTZζ + ρTZ−1ρ (5)

with Z > 0.

Lemma 2.[20] The following inequality is verified for each

real vector νi ∈ Rn:

[
m∑

i=1

νi]

T

[
m∑

i=1

νi] ≤ m
m∑

i=1

νT
i νi. (6)

3 Main results

In this section, we are interested in the design of static

output feedback controller in order to stabilize the system.

Indeed, it is assumed that the states of the system (2) are

not all available for measurement, that is why we achieve an

output feedback control. The control scheme type parallel

distributed compensation (PDC) will be considered for each

subsystem Si. The overall fuzzy PDC networked controller

corresponding to Si can be described as

ui(tk) =

ri∑

l=1

hl
i(θi(tk))Kl

iyi(tk − τki).

From the ZOH, the input signal for each subsystem Si for

tk ≤ t ≤ tk+1 is given by

ui(t) =

ri∑

l=1

hl
i(θi(tk))Kl

iyi(tk − τki). (7)

For network-induced delay (τki), one major challenge for

NCS design is the effect of network-induced delays in a con-

trol loop. It occurs when the system components exchange

data across the network. It can degrade control perfor-

mance significantly or even destabilize the system. The de-

lays in NCS consist of a communication delay between sen-

sors and controllers τsci, a communication delay between

controller and actuators τcai, computational time in con-

troller τc which can be generally included in the controller

to actuator delay.

A natural assumption on τki can be made as

0 < τmi ≤ τki ≤ τMi. (8)
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Packet dropouts are network-induced effects which can

be the consequence of a link failure. They can also be gen-

erated purposefully in order to avoid congestion or to guar-

antee the most recent data to be sent. Although most net-

work protocols are equipped with transmission-retry mech-

anisms, they can only re-transmit for limited time. After

this time has expired, the packets are dropped. Normally,

feedback controllers can tolerate a certain amount of packet

losses. But the consecutive packet losses have an adverse

impact on the overall performance.

tk+1 − tk = σ̄iTe + max
i

{τ(k+1)i} − min
i

{τki} (9)

where Te denotes the sampling period, tk denotes the sam-

pling instant, and σ̄i denotes the maximum number of

packet dropouts in the updating periods. Using (2) and

(7), the closed-loop networked control system can be writ-

ten for tk ≤ t ≤ tk+1 as
{
ẋi(t) = A(t)xi(t) +H(t)xi(tk − τki) + f(xi(t))

yi(t) = C2ixi(t)
(10)

with

A(t) =

ri∑

l=1

hl
iA

l
i

B(t) =

ri∑

l=1

hl
iB

l
i

H(t) = B(t)

ri∑

s=1

hs
iK

s
iC2i

f(xi(t)) =

ri∑

l=1

hl
i

J∑

j=1

fij(xj). (11)

Defining ηi(t) = t− tk + τki, tk ≤ t ≤ tk+1, then

τki ≤ ηi(t) ≤ σ̄iTe + max
i

{τ(k+1)i}.

Thus, we get from [22] that

η1i ≤ ηi(t) ≤ η2i, η̇i(t) ≤ hdi (12)

where

η1i = τmi and η2i = σ̄iTe + max
i

{τMi}.

As
∑∞

k=0[tk, tk+1) = [0,∞), we have

⎧
⎪⎨

⎪⎩

ẋi(t) = A(t)xi(t) +H(t)xi(t− ηi(t)) + f(xi(t))

yi(t) = C2ixi(t)

xi(t) = φi(t), t ∈ [t0 − η2i, t0]

(13)

where φi(t) can be viewed as the initial condition of the

closed-loop control system. Then based on (12), it is noted

that the NCS (13) is equivalent to a system with an interval

time-varying delay.

The controller design is based on the following prelimi-

nary result given by the Lemma 3.

Lemma 3. For given scalars η1i > 0 and η2i > 0, the

closed-loop system (13) is asymptotically stable, if there

exist positive matrices Pi, Q1i, Q2i, Q3i, Z1i, and matrices

G1i, G2i and G3i, with appropriate dimensions, such that

the following conditions hold:

Φij =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

Φ11ij Φ12i Z1i 0 Φ15i

∗ Φ22i 0 0 Φ25ij

∗ ∗ −Q2i − Z1i 0 0

∗ ∗ ∗ −Q3i 0

∗ ∗ ∗ ∗ Φ55i

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

< 0

(14)

Φ11ij = Q1i +Q2i +Q3i + sym(GT
1iA(t)) − Z1i +GT

1iG1i+

(3J

J∑

j=1

f̂2
ji‖B̂j‖2)I

Φ12i = A(t)TG2i +GT
1iH(t)

Φ22i = sym(GT
2iH(t))− (1 − hdi)Q1i +GT

2iG2i

Φ15i = Pi −GT
1i +A(t)TG3i

Φ25ij = −GT
2i +HT(t)G3i

Φ55i = η2
1iZ1i − sym(G3i) +GT

3iG3i.

Proof. Let the Lyapunov-Krasovskii functional candi-

date be

V (t) =
J∑

i=1

vi(t), i = 1, 2, · · · , J (15)

where vi(t) denotes the Lyapunov-Krasovskii functional

corresponding to fuzzy subsystem Si. Each vi(t) is defined

as

vi(t) = xT
i (t)Pixi(t) +

∫ t

t−ηi(t)

xT
i (s)Q1ixi(s) ds+

∫ t

t−η1i

xT
i (s)Q2ixi(s) ds+

∫ t

t−η2i

xT
i (s)Q3ixi(s) ds+

η1i

∫ 0

−η1i

( ∫ t

t+s

ẋT
i (υ)Z1iẋi(υ) dυ

)
ds. (16)

The corresponding time derivative of vi(t) is given by

v̇i(t) ≤ 2ẋT
i (t)Pixi(t) + xT

i (t)(Q1i +Q2i +Q3i)xi(t)−
(1 − hdi)x

T
i (t− ηi(t))Q1ixi(t− ηi(t))−

xT
i (t− η1i)Q2ixi(t− η1i)−
xT

i (t− η2i)Q3ixi(t− η2i)+

ẋT
i (t)(η2

1iZ1i)ẋi(t)−

η1i

∫ t

t−η1i

ẋT
i (υ)Z1iẋi(υ) dυ. (17)

Denoting ψ1i = xi(t)−xi(t− η1i), by Jensen inequality, we

can obtain

−η1i

∫ t

t−η1i

ẋT
i (υ)Z1iẋi(υ) dυ ≤ −ψT

1iZ1iψ1i. (18)
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From (13), we construct for appropriately dimensioned ma-

trices G1i, G2i, and G3i as the following zero-value expres-

sion:

2
[
xT

i (t)GT
1i + xT

i (t− ηi(t))G
T
2i + ẋT

i (t)GT
3i

]×
[ − ẋi(t) +A(t)xi(t) +H(t)x(t− ηi(t)) + f(xi(t))

]
= 0

ΨT
i (t) =

[

xT
i (t) xT

i (t− ηi(t)) xT
i (t− η1i) xT

i (t− η2i) ẋT
i (t)

]
.

(19)

According to Lemmas 1 and 2, we have

2xT
i (t)GT

1i

J∑

j=1

fij(xj) ≤

xT
i (t)GT

1iG1ixi(t) +
J∑

j=1

fT
ij(xj)

J∑

j=1

fij(xj) ≤

xT
i (t)GT

1iG1ixi(t) + J

J∑

j=1

fT
ij(xj)fij(xj). (20)

Based on Assumptions 1 and 2, and defining f̂ij = maxl f̄
l
ij ,

‖B̂i‖ = maxl ‖Bl
i‖, we have

2xT
i (t)GT

1i

J∑

j=1

fij(xj) ≤

xT
i (t)GT

1iG1ixi(t) + J
J∑

j=1

fT
ij(xj)fij(xj) ≤

xT
i (t)(GT

1iG1i + J

J∑

j=1

f̂2
ji‖B̂j‖2)Ixi(t) (21)

2xT
i (t− ηi(t))G

T
2i

J∑

j=1

fij(xj) ≤

xT
i (t− ηi(t))G

T
2iG2ixi(t− ηi(t))+

xT
i (t)J

J∑

j=1

f̂2
ji‖B̂j‖2Ixi(t) (22)

2ẋT
i (t)GT

3i

J∑

j=1

fij(xj) ≤

ẋT
i (t))GT

3iG3iẋi(t) + xT
i (t)J

J∑

j=1

f̂2
ji‖B̂j‖2)Ixi(t). (23)

Considering (17)−(19) and (21)−(23), the derivative of (15)

along the closed loop system (13) can be described as

V̇ (t) =

J∑

i=1

v̇i(t) ≤
J∑

i=1

J∑

j=1

ri∑

l=1

ri∑

s=1

hl
ih

s
jΨ

T
i (t)ΦijΨi(t) ≤ 0.

(24)

According to Lemma 3, we have V̇ (t) < 0. So system (13)

is asymptotically stable. �
The objective now is to determine the gain matrices Kl

i

such that the static output feedback closed-loop system is

asymptotically stable.

Theorem 1. For given scalars η1i > 0, η2i > 0, μ1,

μ2, and μ3, the closed-loop system (13) is asymptotically

stable, if there exist positive matrices P̄i, Q̄1i, Q̄2i, Q̄3i,

Z̄1i, matrices Ĝ11i > 0, Ĝ21i > 0, Ĝ22i > 0, and Y s
i , with

appropriate dimensions, such that the following conditions

hold

Φ̄ll
ij < 0 (25)

Φ̄ls
ij + Φ̄sl

ij < 0, j > i, s > l (26)

where

Φ̄ls
ij =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Φ̄11il Φ̄12ils Z̄1i 0 Φ̄15il ḠT
i

∗ Φ̄22ils 0 0 Φ̄25ils 0

∗ ∗ −Q̄2i − Z̄1i 0 0 0

∗ ∗ ∗ −Q̄3i 0 0

∗ ∗ ∗ ∗ Φ̄55i 0

∗ ∗ ∗ ∗ ∗ Φ̄66ij

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Φ̄11il = Q̄1i + Q̄2i + Q̄3i + μ1sym(Al
iḠi) − Z̄1i + μ2

1I

Φ̄12ils = μ2Ḡ
T
i (Al

i)
T + μ1B

l
iY

s
i C2i

Φ̄22ils = μ2sym(Bl
iY

s
i C2i) − (1 − hdi)Q̄1i + μ2

2I

Φ̄15il = P̄i − μ1Ḡi + μ3Ḡ
T
i (Al

i)
T

Φ̄25ils = −μ2Ḡi + μ3C
T
2i(Y

s
i )T(Bl

i)
T

Φ̄55i = η2
1iZ̄1i − μ3sym(Ḡi) + μ2

3I

Φ̄66ij = −(3J

J∑

j=1

f̂2
ji‖B̂j‖2)−1I

Ḡi = Vi

[
Ĝ11i 0

Ĝ21i Ĝ22i

]

V T
i . (27)

Then, the desired controller gains are given by Ks
i =

Y s
i WiSiĜ

−1
11iS

−1
i WT

i , where Wi, Si and Vi are derived from

singular value decomposition (SVD) of C2i.

Proof. Under the conditions of the Theorem 1, a feasi-

ble solution satisfies the condition Φ̄55i < 0, which implies

that Ḡi is nonsingular. Define Gi = Ḡ−1
i , P̄i = ḠT

i PiḠi,

Q̄1i = ḠT
i Q1iḠi, Q̄2i = ḠT

i Q2iḠi, Q̄3i = ḠT
i Q3iḠi and

Z̄1i = ḠT
i Z1iḠi.

Assume that C2i is full rank, then the SVD decompo-

sition exists such that WT
i C2iVi =

[

Si 0
]

and Ḡi =

Vi

[
Ĝ11i 0

Ĝ21i Ĝ22i

]

V T
i . It is obtained that

C2iḠi = Wi[Si 0]V T
i Vi

[
Ĝ11i 0

Ĝ21i Ĝ22i

]

V T
i =

Wi[SiĜ11i 0]V T
i =

WiSiĜ11iS
−1
i WT

i Wi[Si 0]V T
i = ĜiC2i.

By letting Y l
i = Kl

iĜ = Kl
iWiSiĜ11iS

−1
i WT

i , using Schur

complement and applying a congruence transformation to

(25) and (26) by diag
{
Gi, Gi, Gi, Gi, Gi

}
, we find that the
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condition (14) holds considering (4) and (11). Thus, there

exists a fuzzy controller (7) such that the closed-loop system

(13) is asymptotically stable. �

4 Simulation results

Example 1. To show the effectiveness of the proposed

approach, we consider the numerical example given in [4],

which is composed of two subsystems S1 and S2 described

respectively by

⎧
⎪⎪⎨

⎪⎪⎩

ẋ1(t) =

2∑

l=1

hl
1(θ1(t))[A

l
1x1(t) +Bl

1u1(t) +

J∑

j=1

f1j(xj(t))]

y1(t) = C21x1(t)

(28)

with

A1
1 =

⎡

⎢
⎣

−6 6 0

0.5 −3 1

0 0.2 −1

⎤

⎥
⎦ , A2

1 =

⎡

⎢
⎣

−1 0.1 0

−0.2 −2 0

0.3 0 −1

⎤

⎥
⎦

B1
1 =

⎡

⎢
⎣

2 1

1 1

1 1

⎤

⎥
⎦ , B2

1 =

⎡

⎢
⎣

1 2

1 2

1 1

⎤

⎥
⎦

C21 =

[
1 0.1 0.1

0.1 0.2 0.1

]

, f11 = 0

f12 =

⎡

⎢
⎣

0.02 0.01

0.01 0.4

0.01 0.1

⎤

⎥
⎦ ||x2||

h1
1(x1(t)) = sin2(x11(t)), h2

1(x1(t)) = cos2(x11(t)).

For subsystem S2,

⎧
⎪⎪⎨

⎪⎪⎩

ẋ2(t) =

2∑

l=1

hl
2(θ2(t))[A

l
2x2(t) +Bl

2u2(t) +

J∑

j=1

f2j(xj(t))]

y2(t) = C22x2(t)

(29)

with

A1
2 =

[
−1 0

0 −1

]

, A2
2 =

[
−2 0

0 −1

]

B1
2 =

[
2

1

]

, B2
2 =

[
2

2

]

C22 =

[
1 0

0.1 1

]

, f21 =

[
0.01 0.01 0.01

0.02 0.01 0.1

]

||x1||

f22 = 0, h1
2(x2(t)) = sin2(x21(t))

h2
2(x2(t)) = cos2(x21(t)).

The network-related parameters for each subsystem Si

are assumed as Te = 3ms, the minimum delay η1i = 4ms,

the maximum delay η2i = 20 ms and the maximum num-

ber of packet dropouts is σ̄i = 3. The time varying de-

lays between the sensors and controller as well as between

controller and actuator are generated randomly such as

min(τsci+τcai) ≥ η1i, and max(τsci+τcai+(σ̄i+1)Te) ≤ η2i,

and packet dropouts are also generated randomly such as

max(Ne) ≤ 3, where Ne is the number of packet dropouts,

hdi = 0.1, μ1 = 1 , μ2 = 0.3 and μ3 = 0.5.

By Theorem 1, we find a feasible solution as K1
1 =[

1.2494 −3.3911

−1.3490 3.2305

]

, K2
1 =

[
0.0596 0.5105

−0.1445 −0.5467

]

for

subsystem S1, and K1
2 =

[

−0.0559 −0.0221
]
, K2

2 =
[

−0.0311 −0.0564
]

for subsystem S2.

For simulation, initial conditions are x1(0) =
[

1 0.5 −1
]T

and x2(0) =
[

2 −2
]T

.

The state variables evolution of NCSs and control inputs

are shown in Figs. 2−4 from which, we can note that all

states converge to zero. Figs. 5 and 6 show the delays in-

troduced by the network and packet loss data which are

randomly generated. Therefore, according to Theorem 1,

the closed-loop overall fuzzy large-scale system composed

of two subsystems S1 and S2 is asymptotically stable. The

simulation results are consistent with the analysis and sup-

port the effectiveness of the developed design strategy.

Fig. 2 Response of state x in the S1

Fig. 3 Response of state x in the S2
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Fig. 4 Evolution of control input signals ui(t)

Fig. 5 Delay induced by communication networks

Fig. 6 Data packets dropout

Example 2. We consider the same large-scale system S

composed of three fuzzy subsystems Si, i = 1, 2, 3, as that

in [20].

For subsystem S1:

Rule 1 :

If x11(t) is small and x12(t) is big

then ẋ1(t) = A1
1x1(t) +B1

1u1 +
3∑

j=1

f1j(xj(t))

y1(t) = C11x1(t).

Rule 2 :

If x11(t) is small and x12(t) is small

then ẋ1(t) = A2
1x1(t) +B2

1u1 +
3∑

j=1

f1j(xj(t))

y1(t) = C11x1(t).

Rule 3 :

If x11(t) is big and x12(t) is small

then ẋ1(t) = A3
1x1(t) +B3

1u1 +

3∑

j=1

f1j(xj(t))

y1(t) = C11x1(t).

For these rules,

A1
1 =

[
−2 3

1.5 −2.2

]

, A2
1 =

[
−4 3

3 −2

]

A3
1 =

[
−2 3

−6 −11

]

, B1
1 =

[
0.15

0.1

]

B2
1 =

[
0.6

0.4

]

, B3
1 =

[
0.3

0.2

]

C11 =

[
1 0

0.1 1

]

, f11 = 0

f12 =

[
0.08

0.05

]

||x2||, f13 =

[
0.09

0.06

]

||x3||.

For subsystem S2:

Rule 1 :

If x21(t) is small and x22(t) is small

then ẋ2(t) = A1
2x2(t) +B1

2u2 +

3∑

j=1

f2j(xj(t))

y2(t) = C11x2(t).

Rule 2 :

If x21(t) is big and x22(t) is small

then ẋ2(t) = A2
2x2(t) +B2

2u2 +
3∑

j=1

f2j(xj(t))

y2(t) = C11x2(t).

For these rules,

A1
2 =

[
−3 1

5 −3

]

, A2
2 =

[
−2 1

3 −0.3

]

B1
2 =

[
0.1

0.6

]

, B2
2 =

[
0.2

1.2

]

f21 =

[
0.02

0.12

]

||x1||, f22 = 0

f23 =

[
0.06

0.36

]

||x3||.

For subsystem S3:
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Rule 1 :

If x31(t) is big and x32(t) is big

then ẋ3(t) = A1
3x3(t) +B1

3u3 +
3∑

j=1

f3j(xj(t))

y3(t) = C11x3(t).

Rule 2 :

If x31(t) is small and x32(t) is big

then ẋ3(t) = A2
3x3(t) +B2

3u3 +

3∑

j=1

f3j(xj(t))

y3(t) = C11x3(t).

For these rules,

A1
3 =

[
−3 1

4 −2

]

, A2
3 =

[
−2 1

3 −1

]

B1
3 =

[
0.6

0.8

]

, B2
3 =

[
0.3

0.4

]

f31 =

[
0.48

0.64

]

||x1||, f32 =

[
0.24

0.32

]

||x2||

f33 = 0.

It is seen that all fij satisfy the matching condition (2)

with f̂1
11 = f̂2

11 = f̂3
11 = 0, f̂1

12 = 0.5, f̂2
12 = 0.125, f̂3

12 =

0.25, f̂1
13 = 0.6, f̂2

13 = 0.15 and f̂3
13 = 0.3 for subsystem S1.

All fij satisfy (2) with f̂1
21 = 0.2, f̂2

21 = 0.1, f̂1
22 = f̂2

22 =

0, f̂1
23 = 0.6 and f̂2

23 = 0.3 for subsystem S2, All fij sat-

isfy (2) with f̂1
31 = 0.8, f̂2

31 = 1.6, f̂1
32 = 0.4, f̂2

32 = 0.8 and

f̂1
33 = f̂2

33 = 0 for subsystem S3.

The membership functions of each state are shown in

Fig. 1 of [20].

The network-related parameters for each subsystem Si

are assumed as Te = 5ms, the minimum delay η1i = 6ms,

the maximum delay η2i = 20 ms and the maximum num-

ber of packet dropouts is σ̄i = 2. The time varying de-

lays between the sensors and controller as well as between

controller and actuator are generated randomly such as

min(τsci+τcai) ≥ η1i, and max(τsci+τcai+(σ̄i+1)Te) ≤ η2i

and packet dropouts are also generated randomly such as

max(Ne) ≤ 2, hdi = 0.1, μ1 = 1, μ2 = 0.5 and μ3 = 0.9.

Applying Theorem 1, the solutions of LMIs can

be obtained as K1
1 =

[

−4.2341 −4.6081
]
, K2

1 =
[

−1.1609 −1.0426
]

and K3
1 =

[

0.6774 0.2271
]

for

subsystem S1, K1
2 =

[

−2.2344 −2.9514
]

and K2
2 =

[

−1.8578 −1.5973
]

for subsystem S2, and K1
3 =

[

−0.8119 −0.8278
]

and K2
3 =

[

−1.9309 −1.6042
]

for

subsystem S3.

For simulation, initial conditions are x1(0) =
[

1.5 −1
]T

, x2(0) =
[

−0.5 0.5
]T

and x3(0) =
[

0.7 −0.3
]T

.

The state variable evolution of NCSs and control inputs

are shown in Figs. 7−10 from which, we can note that all

states converge to zero. Therefore, according to Theorem

1, the closed-loop overall fuzzy large-scale system composed

of three subsystems S1, S2 and S3 is asymptotically stable.

Thus, we have shown that the proposed decentralized static

output feedback controller makes the nonlinear intercon-

nected system in network communication exhibit asymp-

totic stability.

Fig. 7 State responses x in S1

Fig. 8 State responses x in S2

Fig. 9 State responses x in S3

Fig. 10 Control signal trajectories ui(t)
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5 Conclusions

In this paper, based on Lyapunov-Krasovskii functional,

new stabilization conditions have been established for net-

worked controlled large-scale system. Furthermore, using

these conditions in presence of the delay and data packets

dropout in the network communication, networked fuzzy

static output feedback controller gains have been obtained.

The simulation results are shown to prove the advantages

of the developed method.
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