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Abstract: This paper considers the problem of delay-dependent non-fragile H∞ control for a class of linear systems with interval

time-varying delay. Based on the direct Lyapunov method, an appropriate Lyapunov-Krasovskii functional (LKF) with triple-integral
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1 Introduction

Time-delay is frequently a source of instability and poor

performance, which is often encountered in various physical

and engineering systems such as chemical engineering sys-

tems, biological systems, economic systems and networked

control systems and so on. Hence, the subject of the stabil-

ity analysis of systems with time-varying delay has received

considerable attention in the past few years (see e.g. [1–19],

and the references therein).

It is well known that the problem of H∞ control has long

been an important and challenging research topic in the

control community. Therefore, in the past years, much at-

tention has been paid to the H∞ control problem for time-

delay systems. Depending on whether the existence con-

ditions of H∞ controller include the information of delay

or not, the existing results on H∞ control for time-delay

systems can be classified into two types: delay-independent

ones and delay-dependent ones. Since delay-dependent ones

are generally less conservative than delay-independent ones

especially for system with small size delays. Hence, con-

siderable attention has been paid to the delay-dependent

stability[12−19]. Usually, the H∞ performance index and

the upper bound of the delay are two performance indices,

which are used to evaluate the conservativeness of the sta-

bility conditions. For a prescribed upper bound of the de-

lay, the smaller the value of performance index is the better

the stability conditions are. For a prescribed performance

index, the larger the value of upper bound is, the less con-

servative the stability conditions are.
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In practice, however, owing to the A/D conversion, D/A

conversion, finite word length and round-off errors in nu-

merical computations, there are often some perturbations

appearing in the feedback controller gain, which may result

from either the actuator degradations or the requirements

for readjustment of controller gains during the controller

implementation stage. So, it is necessary and reasonable

that any controller should be able to tolerate some level of

controller gain variations. Following this idea, in recent

years, the non-fragile control problem has attracted the

interest of many researchers. For example, the problems of

robust non-fragile H∞ control for stochastic systems with

time-varying delay had been investigated in [20–22]. The

problems of non-fragile guaranteed cost control for stochas-

tic systems with time-varying delay had been studied in

[23–25]. The H∞ non-fragile observer-based control for un-

certain time-delay systems had been presented in [26–28].

However, all these techniques assume that the delay-range

varies from zero to an upper bound. Nevertheless, in cer-

tain time-delay systems, like networked control systems, the

delay-range may have a non-zero lower bound. In this case,

the criteria in the previous work are conservative since they

do not take into account information of the lower bound of

delay.

Recently, the triple integral forms of Lyapunov-

Krasovskii functional (LKF) for stability of time-varying

delays were proposed[4, 5], and showed its improvement of

maximum delay bounds. Inspired by the works of [4, 5],

in this paper, we contribute to the improvement of the

H∞ performance and non-fragile H∞ control for a class

of linear systems with interval time-varying delay. Based

on the direct Lyapunov method, a new LKF with triple in-

tegral terms involving lower and upper bounds of interval

time-varying delays have been introduced, and combining it

with the newly established integral inequality, an improved
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H∞ performance analysis criterion and non-fragile H∞ con-

troller are formulated in terms of linear matrix inequalities.

The improved results are mainly attributed to the appro-

priate LKF and tighter bounding technique for dealing with

the cross-terms that emerge from the time derivative of the

LKF. Numerical examples are given to illustrate the effec-

tiveness of the proposed method.

The remainder of the paper is organized as follows. Sec-

tion 2 states the problem formulation. Section 3 and Section

4 provides the improved results for H∞ performance and

non-fragile H∞ controller. Two examples are illustrated

in Section 5 to show the effectiveness of the proposed ap-

proaches, and the paper is concluded in Section 6.

2 Problem formulation

Consider a class of linear systems with interval time-

varying delay described by

⎧
⎪⎨

⎪⎩

ẋ(t) = Ax(t) + Adx(t − h(t)) + Bu(t) + Bωω(t)

z(t) = Cx(t) + Cdx(t − h(t)) + Dωω(t) + Du(t)

x(t) = ϕ(t), t ∈ [−h2, 0]

(1)

where x(t) ∈ Rn is the state vector, u(t) ∈ Rm is the

control input vector, ω(t) ∈ Rp is the disturbance input

belonging to L2 [0,∞), z(t) ∈ Rl is the controlled output;

A, Ad, B, Bω, C, Cd, Dω and D are known real constant

matrices of appropriate dimensions; ϕ(t) is continuous-time

initial function defined on [−h2, 0]; h(t) is the time-varying

delay of the system and is assumed to satisfy:

h1 ≤ h(t) ≤ h2, ḣ(t) ≤ μ (2)

or

h1 ≤ h(t) ≤ h2 (3)

where h1, h2 and μ are known constants.

For a prescribed scalar γ > 0, we define the performance

index as

J(ω) =

∫ ∞

0

[z(t)Tz(t) − γ2ωT(t)ω(t)]dt. (4)

This paper is concerned with the problems of non-fragile

H∞ control for linear systems with interval time-varying

delay. Our attention is paid to the design of a memoryless

non-fragile state feedback controller:

u(t) = K(t)x(t) (5)

where K(t) = K +ΔK(t) and K is the controller gain, ΔK

is a perturbed matrix, which is assumed to be

ΔK(t) = DcFc(t)Ec, FT
c (t)Fc(t) ≤ I (6)

where Dc and Ec are known real constant matrices with

appropriate dimensions, the time-varying uncertain matrix

F (t) satisfies FT(t)F (t) ≤ I , ∀t.

The purpose of this paper is to develop a delay-dependent

H∞ conditions such that, for any h(t) satisfying (2) or (3):

1) The closed-loop system is asymptotically stable for

ω(t) = 0.

2) The closed-loop system guarantees under zero ini-

tial condition ||z(t)||2 < γ||ω(t)||2 for all nonzero ω(t) ∈
L2 [0,∞) and a prescribed scalar γ > 0.

To end this section, we introduce the following lemmas,

which are important for deriving the main results.

Lemma 1[2]. For any constant matrix W ∈ Rn×n, W =

W T > 0, a scalar function h := h(t) > 0, and a vector-

valued function ẋ : [−h, 0] → Rn, such that the following

integrations are well defined, then:

−h

∫ t

t−h

ẋT(s)Wẋ(s)ds ≤ ζT
1 (t)

[
−W W

W −W

]

ζ1(t)

−h2

2

∫ 0

−h

∫ t

t+θ

ẋT(s)Wẋ(s)ds ≤ ζT
2 (t)

[
−W W

W −W

]

ζ2(t)

where

ζT
1 (t) =

[

xT(t) xT(t − h)
]

ζT
2 (t) =

[
hxT(t)

∫ t

t−h
xT(s)ds

]
.

Lemma 2[7]. Suppose r1 ≤ r(t) ≤ r2, where r(t) : R+ →
R+, then, for any R = RT > 0, the following integral

inequality holds:

−
∫ t−r1

t−r2

ẋT(s)Rẋ(s)ds ≤ δT(t)
{
(r2 − r(t))TR−1MT+

(r(t) − r1)Y R−1NT + [Y −Y + T −T ] +

[Y −Y + T −T ]T
}

δ(t)

where

δT(t) =
[

xT(t − r1) xT(t − r(t)) xT(t − r2)
]

T =
[

TT
1 TT

2 TT
3

]T

, Y =
[

Y T
1 Y T

2 Y T
3

]T

where T and Y are free matrices of appropriate dimensions.

Lemma 3[9]. Suppose γ1 ≤ γ(t) ≤ γ2, where γ(·): R+ →
R+. Then, for any constant matrices Ξ1, Ξ2 and Ω with

proper dimensions, the following matrix inequality

Ω + (γ(t) − γ1)Ξ1 + (γ2 − γ(t))Ξ2 < 0

holds, if and only if

Ω + (γ2 − γ1)Ξ1 < 0

Ω + (γ2 − γ1)Ξ2 < 0.

Lemma 4[3]. Given matrices Q = QT, H , E, and R =

RT with appropriate dimensions, the inequality

Q + HFE + ETFTHT < 0

holds for all F satisfying FTF ≤ R, if and only if there

exists some scalar ε > 0 , such that

Q + εHHT + ε−1ETRE < 0.
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3 H∞H∞H∞ performance analysis

In this section, we will establish a less conservative de-

lay dependent stability criterion for the following unforced

system:

⎧
⎪⎨

⎪⎩

ẋ(t) = Ax(t) + Adx(t − h(t)) + Bωω(t)

z(t) = Cx(t) + Cdx(t − h(t)) + Dωω(t)

x(t) = ϕ(t),∀t ∈ [−h2, 0].

(7)

Theorem 1. Given scalars γ > 0, 0 ≤ h1 ≤ h2, and

μ, the system (7) with conditions (2) and (3) is asymp-

totically stable and satisfying ||z(t)||2 ≤ γ||ω(t)||2 for any

nonzero ω(t) ∈ L2[0,∞), under the zero initial condi-

tion if there exist real symmetric positive definite matri-

ces P =

[
P11 P12 P13
∗ P22 P23
∗ ∗ P33

]

, Qi (i = 1, 2, 3), Rj , Zj (j = 1, 2);

free matrices S1, S2, Ya, Ta (a = 1, 2, 3) of appropriate di-

mensions such that the following linear matrix inequalities

(LMIs) hold:

⎡

⎢
⎣

Ξ
√

hδY Υ

∗ −R2 0

∗ ∗ −I

⎤

⎥
⎦ < 0 (8)

⎡

⎢
⎣

Ξ
√

hδT Υ

∗ −R2 0

∗ ∗ −I

⎤

⎥
⎦ < 0 (9)

where

Ξ =⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Ξ11 Ξ12 S1Ad Ξ14 Ξ15 Ξ16 Ξ17 S1Bω

∗ Ξ22 Ξ23 Ξ24 0 PT
23 PT

33 0

∗ ∗ Ξ33 Ξ34 AT
d ST

2 0 0 0

∗ ∗ ∗ Ξ44 0 Ξ46 Ξ47 0

∗ ∗ ∗ ∗ Ξ55 P12 P13 S2Bω

∗ ∗ ∗ ∗ ∗ −Z1 0 0

∗ ∗ ∗ ∗ ∗ ∗ −Z2 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ −γ2I

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Ξ11 = P12 + PT
12 + Q1 − R1 − h2

2Z1 − h2
δZ2 + S1A + ATST

1

Ξ12 = R1 + P13, Ξ14 = −P12 − P13, Ξ15 = P11 − S1 + ATST
2

Ξ16 = PT
22 + h2Z1, Ξ17 = P23 + hδZ2

Ξ22 = −Q1 + Q2 + Q3 − R1 + Y1 + Y T
1

Ξ23 = −Y1 + T1 + Y T
2 , Ξ24 = −T1 + Y T

3

Ξ33 = −(1 − μ)Q2 − Y2 − Y T
2 + T2 + TT

2

Ξ34 = −T2 − Y T
3 + TT

3 , Ξ44 = −Q3 − T3 − TT
3

Ξ46 = −PT
22 − PT

23, Ξ47 = −PT
32 − PT

33

Ξ55 = H − S2 − ST
2 , hδ = h2 − h1

H = h2
1R1 + hδR2 +

1

4
h4

2Z1 +
1

4
(h2

2 − h2
1)

2Z2

Y =
[

0 Y T
1 Y T

2 Y T
3 0 0 0 0

]T

T =
[

0 TT
1 TT

2 TT
3 0 0 0 0

]T

S =
[

ST
1 0 0 0 ST

2 0 0 0
]T

Υ =
[

C 0 Cd 0 0 0 0 Dω

]T

.

Proof. Construct an appropriate LKF as

V (t) = V1(t) + V2(t) + V3(t) (10)

where

V1(t) =ξT(t)Pξ(t)

V2(t) =

∫ t

t−h1

xT(s)Q1x(s)ds +

∫ t−h1

t−h(t)

xT(s)Q2x(s)ds+

∫ t−h1

t−h2

xT(s)Q3x(s)ds+

h1

∫ 0

−h1

∫ t

t+θ

ẋT(s)R1ẋ(s)dsdθ+

∫ −h1

−h2

∫ t

t+θ

ẋT(s)R2ẋ(s)dsdθ

V3(t) =
h2

2

2

∫ 0

−h2

∫ 0

θ

∫ t

t+λ

ẋT(s)Z1ẋ(s)dsdλdθ+

(h2
2 − h2

1)

2

∫ −h1

−h2

∫ 0

θ

∫ t

t+λ

ẋT(s)Z2ẋ(s)dsdλdθ

ξT(t) =
[

xT(t)
∫ t

t−h2
xT(s)ds

∫ t−h1
t−h2

xT(s)ds
]
.

Then, taking the time derivative of V (t) with respect to t

along the system (7) yields:

V̇ (t) ≤2ξT(t)P ξ̇(t) + xT(t)Q1x(t) + ẋT(t)Hẋ(t)−
xT(t − h1)(Q1 − Q2 − Q3)x(t − h1)−
(1 − μ)xT(x − h(t))Q2x(t − h(t))−
xT(t − h2)Q3x(t − h2)−

h1

∫ t

t−h1

ẋT(s)R1ẋ(s)ds −
∫ t−h1

t−h2

ẋT(s)R2ẋ(s)ds

− h2
2

2

∫ 0

−h2

∫ t

t+θ

ẋT(s)Z1ẋ(s)dsdθ−

(h2
2 − h2

1)

2

∫ −h1

−h2

∫ t

t+θ

ẋT(s)Z2ẋ(s)dsdθ

(11)

where H = h2
1R1 + hδR2 + 1

4
h4

2Z1 + 1
4
(h2

2 − h2
1)

2Z2.

From Lemmas 1 and 2, respectively, we obtain the fol-
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lowing inequality:

− h1

∫ t

t−h1

ẋT(s)R1ẋ(s)ds ≤
[

x(t)

x(t − h1)

]T [
−R1 R1

∗ −R1

] [
x(t)

x(t − h1)

] (12)

− h2
2

2

∫ 0

−h2

∫ t

t+θ

ẋT(s)Z1ẋ(s)dsdθ ≤
⎡

⎢
⎣

h2x(t)
∫ t

t−h2

x(s)ds

⎤

⎥
⎦

T [
−Z1 Z1

Z1 −Z1

]
⎡

⎢
⎣

h2x(t)
∫ t

t−h2

x(s)ds

⎤

⎥
⎦

(13)

− (h2
2 − h2

1)

2

∫ −h1

−h2

∫ t

t+θ

ẋT(s)Z2ẋ(s)dsdθ ≤
⎡

⎢
⎣

(h2 − h1)x(t)
∫ t−h1

t−h2

x(s)ds

⎤

⎥
⎦

T [
−Z2 Z2

Z2 −Z2

]
⎡

⎢
⎣

(h2 − h1)x(t)
∫ t−h1

t−h2

x(s)ds

⎤

⎥
⎦

(14)

and

−
∫ t−h1

t−h2

ẋT(s)R2ẋ(s)ds ≤ δT(t)
[
(h2 − h(t))TR−1

2 TT+

(h(t) − h1)Y R−1
2 Y T + [Y −Y + T −T ]+

[Y −Y + T −T ]T
]
δ(t). (15)

From the system (7), the following equation holds:

2[xT(t)S1 + ẋT(t)S2]×
[Ax(t) + Adx(t − h(t)) − ẋ(t) + Bωω(t)] = 0 (16)

where S1, S2 are free matrices with appropriate dimensions.

By substituting (12)–(16) in (11), and defining an aug-

mented state vector ζ(t) as

ζT(t) =
[

xT(t) xT(t − h1) xT(t − h(t)) xT(t − h2)

ẋT(t)
∫ t

t−h2
xT(s)ds

∫ t−h1
t−h2

xT(s)ds ωT(t)
]
.

Then V̇ (t) can be expressed as

V̇ (t) ≤ζT(t)[Π + (h2 − h(t)]TR−1
2 TT+

(h(t) − h1)Y R−1
2 Y T)ζ(t) (17)

where Π =⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Ξ11 Ξ12 S1Ad Ξ14 Ξ15 Ξ16 Ξ17 S1Bω

∗ Ξ22 Ξ23 Ξ24 0 PT
23 PT

33 0

∗ ∗ Ξ33 Ξ34 AT
d ST

2 0 0 0

∗ ∗ ∗ Ξ44 0 Ξ46 Ξ47 0

∗ ∗ ∗ ∗ Ξ55 P12 P13 S2Bω

∗ ∗ ∗ ∗ ∗ −Z1 0 0

∗ ∗ ∗ ∗ ∗ ∗ −Z2 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Now, for a prescribed scalar γ, consider the performance

index J(ω), by adding z(t)Tz(t) − γ2ωT(t)ω(t) to the both

sides of (17), we can rewrite (17) as

V̇ (t) + z(t)Tz(t) − γ2ωT(t)ω(t) ≤
ζT(t)(Π̄ + ΘTΘ + (h2 − h(t))TR−1

2 TT+

(h(t) − h1)Y R−1
2 Y T)ζ(t) (18)

where Π̄ = Π + diag
{

0 0 0 0 0 0 0 −γ2I
}

and Θ =
[

C 0 Cd 0 0 0 0 Dω

]
.

If

Π̄ + ΘTΘ + (h2 − h(t))TR−1
2 TT + (h(t) − h1)Y R−1

2 Y T<0

(19)

then

V̇ (t) + z(t)Tz(t) − γ2ωT(t)ω(t) ≤ 0. (20)

Now, when ω(t) = 0, V̇ (t) < 0, then, the system is asymp-

totically stable. For ω(t) 	= 0, integrating both sides of (20)

from 0 to t, and letting t → ∞ with zero initial condition,

we get
∫ ∞

0

zT(s)z(s)ds ≤
∫ ∞

0

γ2ωT(s)ω(s)ds. (21)

That is ||z(t)||2 < γ||ω||2, so the closed-loop system (7) has

an H∞ disturbance attenuation level γ, under zero initial

conditions.

Applying the Schur complement to (19), we deduce the

LMIs stated in Theorem 1. �

4 Non-fragile robust HHH∞ controller syn-

thesis

In this section, based on the result stated in the Section

3, we now design a non-fragile state feedback controller (5)

to make system (1) robustly asymptotically stable with the

disturbance attenuation γ .

Theorem 2. Given scalars γ > 0, 0 ≤ h1 ≤ h2 and

μ, system (1) with the non-fragile controller (5) is robustly

asymptotically stable and satisfying ||z(t)||2 ≤ γ||ω(t)||2 for

any nonzero ω(t) ∈ L2[0,∞) under the zero initial condi-

tion, if there exist positive scalars ε̃, real symmetric pos-

itive definite matrices P̃ =

[
P̃11 P̃12 P̃13
∗ P̃22 P̃23
∗ ∗ P̃33

]

, Q̃i(i = 1, 2, 3),

R̃j , Z̃j(j = 1, 2); free matrices Ỹa, T̃a(a = 1, 2, 3), X, Y of

appropriate dimensions such that the following LMIs hold:

⎡

⎢
⎣

Λ̃1 Γ̃a Γ̃T
E

∗ −ε̃I 0

∗ ∗ −ε̃I

⎤

⎥
⎦ < 0 (22)

⎡

⎢
⎣

Λ̃2 Γ̃a Γ̃T
E

∗ −ε̃I 0

∗ ∗ −ε̃I

⎤

⎥
⎦ < 0 (23)
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where

Λ̃1 =

⎡

⎢
⎣

Ξ̃′ √
hδỸ Υ̃′

∗ −R̃2 0

∗ ∗ −I

⎤

⎥
⎦ , Λ̃2 =

⎡

⎢
⎣

Ξ̃′ √
hδT̃ Υ̃′

∗ −R̃2 0

∗ ∗ −I

⎤

⎥
⎦

Ξ̃′ =⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Ξ̃′
11 Ξ̃12 AdX Ξ̃14 Ξ̃′

15 Ξ̃16 Ξ̃17 Bω

∗ Ξ̃22 Ξ̃23 Ξ̃24 0 P̃T
23 P̃T

33 0

∗ ∗ Ξ̃33 Ξ̃34 XAT
d 0 0 0

∗ ∗ ∗ Ξ̃44 0 Ξ̃46 Ξ̃47 0

∗ ∗ ∗ ∗ Ξ̃55 P̃12 P̃13 Bω

∗ ∗ ∗ ∗ ∗ −Z̃1 0 0

∗ ∗ ∗ ∗ ∗ ∗ −Z̃2 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ −γ2I

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Ξ̃′
11 = P̃12 + P̃T

12 + Q̃1 − R̃1 − h2
2Z̃1 − h2

δZ̃2 + AX + BY +

XAT + Y TBT

Ξ̃12 = R̃1 + P̃13, Ξ̃14 = −P̃12 − P̃13

Ξ̃′
15 = P̃11 − X + XAT + Y TBT, Ξ̃16 = P̃T

22 + h2Z̃1

Ξ̃17 = P̃23 + hδZ̃2, Ξ̃22 = −Q̃1 + Q̃2 + Q̃3 − R̃1 + Ỹ1 + Ỹ T
1

Ξ̃23 = −Ỹ1 + T̃1 + Ỹ T
2 , Ξ̃24 = −T̃1 + Ỹ T

3

Ξ̃33 = −(1 − μ)Q̃2 − Ỹ2 − Ỹ T
2 + T̃2 + T̃T

2

Ξ̃34 = −T̃2 − Ỹ T
3 + T̃T

3 , Ξ̃44 = −Q̃3 − T̃3 − T̃T
3

Ξ̃46 = −P̃T
22 − P̃T

23, Ξ̃47 = −P̃T
32 − P̃T

33

Ξ̃55 = H̃ − X − XT, hδ = h2 − h1

H̃ = h2
1R̃1 + hδR̃2 +

1

4
h4

2Z̃1 +
1

4
(h2

2 − h2
1)

2Z̃2

Γ̃a =
[

ε̃BT 0 0 0 ε̃BT 0 0 0 DT
u 0

]T

Dc

Γ̃E =
[

EcX
T 0 0 0 0 0 0 0 0 0

]

Υ̃′ =
[

CXT + DY 0 CdXT 0 0 0 0 Dω

]T

Ỹ =
[

0 Ỹ T
1 Ỹ T

2 Ỹ T
3 0 0 0 0

]T

T̃ =
[

0 T̃T
1 T̃T

2 T̃T
3 0 0 0 0

]T

.

In this case, an appropriate non-fragile state feedback con-

troller can be chosen by u(t) = K(t)x(t), K = Y X−T.

Proof. Firstly, replacing A, C by A + B(K + ΔK),

C + Du(K + ΔK) in (8), (9) and separating the uncertain

ΔK, we have

Λ1 + ΓaFc(t)ΓE + ΓT
EFT

c (t)Γa < 0 (24)

Λ2 + ΓaFc(t)ΓE + ΓT
EFT

c (t)Γa < 0 (25)

where

Λ1 =

⎡

⎢
⎣

Ξ′ √
hδY Υ′

∗ −R̃2 0

∗ ∗ −I

⎤

⎥
⎦ , Λ2 =

⎡

⎢
⎣

Ξ′ √
hδT Υ′

∗ −R̃2 0

∗ ∗ −I

⎤

⎥
⎦

Ξ′ =⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Ξ′
11 Ξ12 S1Ad Ξ14 Ξ′

15 Ξ16 Ξ17 S1Bω

∗ Ξ22 Ξ23 Ξ24 0 PT
23 PT

33 0

∗ ∗ Ξ33 Ξ34 AT
d ST

2 0 0 0

∗ ∗ ∗ Ξ44 0 Ξ46 Ξ47 0

∗ ∗ ∗ ∗ Ξ55 P12 P13 S2Bω

∗ ∗ ∗ ∗ ∗ −Z1 0 0

∗ ∗ ∗ ∗ ∗ ∗ −Z2 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ −γ2I

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Ξ′
11 = P12 + PT

12 + Q1 − R1 − h2
2Z1 − h2

δZ2 + S1(A + BK)+

(A + BK)TST
1

Ξ′
15 = P11 − S1 + (A + BK)TST

2

Υ′ =
[

(C + DuK) 0 Cd 0 0 0 0 Dω

]T

.

From Lemma 4, we have

Λ1 + ε−1ΓaΓT
a + εΓT

EΓE < 0 (26)

Λ2 + ε−1ΓaΓT
a + εΓT

EΓE < 0 (27)

where

Γa =
[

(S1B)T 0 0 0 (S2B)T 0 0 0

0 DT
u

]T

Dc

ΓE =
[

Ec 0 0 0 0 0 0 0 0 0
]
.

Applying the Schur complement to (26) and (27), we have

⎡

⎢
⎣

Λ1 Γa εΓT
E

∗ −εI 0

∗ ∗ −εI

⎤

⎥
⎦ < 0 (28)

⎡

⎢
⎣

Λ2 Γa εΓT
E

∗ −εI 0

∗ ∗ −εI

⎤

⎥
⎦ < 0. (29)

Now, in order to obtain an LMI based result, we set

S1 = S2 = X−1, where X is a nonsingular ma-

trix. Then pre- and post-multiplying (28), (29) by

diag

{
X ··· X
︸ ︷︷ ︸

7

I I X ε−1I ε−1I
}

, and its transpose, defin-

ing P̃3×3 = XP3×3X
T, Q̃j = XQjX

T, Ỹj = XYjX
T,

T̃j = XTjX
T, j = 1, 2, 3; Ri = XRiX

T, Zi = XZiX
T,

i = 1, 2, ε̃ = ε−1, Y = KXT, we deduce the LMIs stated in

Theorem 2. �

5 Numerical examples

In this section, two examples are given to demonstrate

the improved H∞ performance analysis criterion as well as

non-fragile H∞ control results obtained in this paper.

Example 1[14]. Consider time-delay system (1) with the
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following parameters

A =

[
−0.6238 −1.0132

2.0116 −0.2106

]

, D =

[
0 0

0 0

]

Ad =

[
−0.5011 −0.7871

−0.3002 0.5231

]

, C =

[
0.2134 −0.0191

0.1119 −0.1665

]

Bω =

[
−0.4326 0.1253

−1.6656 0.2877

]

, Cd =

[
0.0816 0.1290

0.0712 0.0669

]

.

(30)

In this example, we will provide two performance indexes,

that is the H∞ performance index γ and the upper bound

h2. For comparing our results with those in [11,12,14,19],

we assume μ = 0 and h1 = 0. Table 1 gives the maximum

allowable delay bound h2 for a prescribed γ. Table 2 gives

the minimum allowed γ for a given h2 .

Table 1 The maximum allowable delay bound h2 for a given γ

γ 2.0 2.5 3.0 3.5 4.0

[11] 0.4057 0.4660 0.5047 0.5316 0.5515

[12] 0.4057 0.4660 0.5046 0.5316 0.5515

[14] 0.4203 0.4779 0.5146 0.5401 0.5589

[19] 0.4734 0.5237 0.5545 0.5754 0.5904

Theorem 1 0.6620 0.7040 0.7300 0.7470 0.7595

Table 2 The minimum allowable γ for a delay bound h2

h2 0.1 0.2 0.3 0.4 0.5

[11] 1.0714 1.2426 1.5067 1.9634 2.2981

[12] 1.0714 1.2425 1.5067 1.9634 2.2981

[14] 1.0577 1.2112 1.4515 1.8733 2.7757

Theorem 1 0.9331 0.9525 1.0216 1.1204 1.2843

Through the comparison in Tables 1 and 2, it can be

found that for a prescribed performance index γ, Theorem

1 can allow larger delay bound; on the other hand, for a pre-

scribed upper bound h2 of the delay, we can obtain smaller

γ. Hence the stability criterion in Theorem 1 is less conser-

vative than those in [11, 12, 14, 19].

Example 2[29]. Let us look into a practical example of

a linearized model of aircraft control system, vertical take-

off and landing (VTOL) control problem of helicopters de-

scribed by

⎧
⎪⎨

⎪⎩

ẋ(t) = Ax(t) + Adx(t − h(t)) + Bu(t) + Bωω(t)

z(t) = Cx(t) + Du(t) + Dωω(t)

x(t) = ϕ(t),∀t ∈ [−h2, 0]

(31)

where

A =

⎡

⎢
⎢
⎢
⎣

−0.0366 0.0271 0.0188 −0.4555

0.0482 −1.0100 0.0024 −4.0208

0.1002 0.3681 −0.7070 1.4200

0 0 1.0000 0

⎤

⎥
⎥
⎥
⎦

Ad = 0.3A, B =

⎡

⎢
⎢
⎢
⎣

0.4422 0.1761

3.5446 −7.5922

−5.5200 4.4900

0 0

⎤

⎥
⎥
⎥
⎦

, Bω =

⎡

⎢
⎢
⎢
⎣

1

1

1

1

⎤

⎥
⎥
⎥
⎦

C =
[

0 0 0 1
]
, D =

[

0.1 0.1
]

Dω = 0.

Note that the unforced system is unstable for the delay-

free case, the state x(t) of the open-loop system is shown

in Fig. 1.

Fig. 1 State response of the open-loop system

To show the effectiveness and robustness of non-fragile

H∞ control results obtained in this paper, suppose we know

that the time-varying delay h(t) satisfies 0 ≤ h(t) ≤ 5.

Case 1. When ΔK = 0, then the non-fragile controller

became the normal robust H∞ controller. In this case, for

given μ = 0.3 and H∞ performance index γ = 0.6716, the

corresponding H∞ state feedback controller is computed as

K1 =

[
−0.0690 0.3498 2.2545 2.5134

−0.0223 0.4086 1.5923 0.2799

]

.

Case 2. When ΔK 	= 0 , and the uncertain parameter

is satisfying (6) with

Dc =

[
0.2 0

0 0.1

]

, Ec =

[
0.1 0 0 0

0 0 0 0.2

]

.

For the same value of μ and γ, the corresponding non-fragile

H∞ controller is computed as

K2 =

[
−0.2282 0.3588 1.9494 2.0676

−0.0949 0.4434 1.3840 0.0649

]

.

The state trajectories of the system under the non-fragile

controller are shown in Fig. 2. Clearly, system (30) with the

non-fragile state-feedback controller (5) is asymptotically

stable.

Fig. 2 State response of the close-loop system
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Next, for comparing the robust controller with the non-

fragile controller, we take the state x1(t) as research object.

Under the same condition, the following Fig. 3 is showing

the state trajectories of x1(t) under the controller K1 and

K2 .

Fig. 3 The state x1(t) of the close-loop system

From the above figure, we can see that when there ex-

ist some perturbations in the feedback controller gain, the

non-fragile controller can tolerate some level of controller

gain variations and has better performance than the nor-

mal robust H∞ controller.

6 Conclusions

In this paper, we have studied the problems of non-fragile

H∞ control for a class of linear systems with interval time-

varying delay. The key features of the approach include an

appropriate LKF with triple-integral terms, augment terms

and a tighter integral inequality for bounding the cross-

terms without neglecting any useful terms, thus more in-

formation on the time delay can be employed, and hence

it yields less conservative delay-range bounds. Numerical

examples have illustrated the effectiveness of the proposed

method.
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