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Abstract: This paper studies the problem of tracking control for a class of switched nonlinear systems with time-varying delay. Based
on the average dwell-time and piecewise Lyapunov functional methods, a new exponential stability criterion is obtained for the switched
nonlinear systems. The designed output feedback H∞ controller can be obtained by solving a set of linear matrix inequalities (LMIs).
Moreover, the proposed method does not need that a common Lyapunov function exists for the switched systems, and the switching
signal just depends on time. A simulation example is provided to demonstrate the effectiveness of the proposed design scheme.
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1 Introduction

Switched systems are a class of hybrid dynamical systems
which consist of a family of subsystems and a rule that
orchestrates the switching among them. The local behav-
ior is affected by the continuous dynamical subsystems and
the discrete dynamical switching mechanisms determine the
global performance. In recent years, there are lots of signif-
icant achievements both in theory development and prac-
tical applications of switched systems[1−5]. On the other
hand, time-delay systems are an important class of systems,
which are ubiquitous in real world, such as in chemical pro-
cess, aerodynamics, and communication networks systems.
Sometimes, even a small delay may affect the system per-
formance greatly. A stable system may become unstable
or chaotic behavior may appear if delay is present in the
system[6−8]. Since the switched systems with time-delay
have strong engineering background, they have attracted
considerable attention, and some useful results have been
obtained[9−18]. There are several methods used in analyz-
ing stability of time-delay switched systems, such as the
common Lyapunov function, multiple Lyapunov functions,
piecewise Lyapunov function and average dwell-time. The
work in [12] gives delay-dependent conditions for the expo-
nential stability of the switched linear systems with time-
varying delay by common Lyapunov function. The work in
[17] gives the exponential stability criterion for a class of
switched linear systems with constant time delay by com-
bining dwell-time with the piecewise Lyapunov function.

Tracking control for time-delay switched system is widely
used in robot control and guided missile control. To the best
of the authors′ knowledge, the issue of tracking control has
not been fully investigated for time-delay switched systems.
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Only a few results have been reported on tracking control
for switched systems[19−26]. The stability of tracking con-
trol based on observer for time-delay switched linear sys-
tems has been investigated in [21], but the proposed method
needs that a common Lyapunov function must exist for the
switched systems. By using average dwell-time, a new ex-
ponential stability criterion of state feedback tracking con-
trol for switched nonlinear systems with time-varying delay
has been obtained in [22]. In this paper, we aim to design
an output feedback controller for a class of switched non-
linear systems with time-varying delay. Combining average
dwell-time with the piecewise Lyapunov function, a new ex-
ponential stability criterion for a class of switched nonlinear
systems with time-varying delay is derived. Moreover, when
there exists a common Lyapunov function for the system, it
will be exponentially stable under arbitrary switching law.

Notations. Rn denotes n-dimensional Euclidean space;
Rm×n denotes the space of m × n matrices with real en-
tries. L2[0,∞) is the space of square integrable functions
on [0,∞), and L loc

1 ([�,∞),Rn) is the space of locally
Lebesgue integrable vector valued functions on [�,∞),
where � is a scalar. For any given τ > 0, let Cn =
C([−τ, 0],Rn) be the Banach space of continuous mapping
from ([−τ, 0],Rn) to Rn with the topology of uniform con-
vergence. I represents identity matrix with appropriate di-
mension. P > 0(�, <,� 0) denotes a positive definite (pos-
itive semi-defined, negative definite, negative semi-definite)
matrix. λmin(·) and λmax(·) denote the minimal and max-
imal eigenvalues of a square matrix. σmax(·) means the
maximal singular value of a matrix. The superscript “T”
stands for matrix transpose and the symmetric terms in a
symmetric matrix are denoted by ∗. Let xt ∈ Cn be defined
by xt(θ) = x(t + θ), θ ∈ [−τ, 0]. ‖ · ‖ denotes the usual 2-
norm, and ‖ xt ‖cl= sup−τ�θ�0{‖ x(t+ θ) ‖, ‖ ẋ(t+ θ) ‖}.
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2 Problem formulation and preliminar-
ies

Consider the switched nonlinear system with time-
varying delay

ẋ(t) = fσ(x(t)) +Aσx(t) +Dσx(t− d(t)) +Bσu(t) + ω(t)

y(t) = Cσx(t)

x(t) = ϕ(t), −τ � t � 0 (1)

where x ∈ Rn is the system state vector, u(t) ∈ Rp is the
control input, y(t) ∈ Rq is the output, ω(t) ∈ Rn is the
bounded exogenous disturbance which belongs to L2[0,∞)
and L loc

1 ([�,∞),Rn). fσ(·) : Rn → Rn is a known non-
linear function; σ(t) : [t0,∞) → M � {1, 2, · · · ,m0} is the
switching signal. d(t) denotes the time-varying delay satis-
fying 0 < d(t) � τ ; ϕ(t) is a continuous vector-valued initial
function. Moreover, σ(t) = i means that the i-th subsys-
tem is activated, Ai, Bi, Ci, Di are known constant matrices
with appropriate dimensions. Without loss of generality, we
state that the following assumptions hold.

Assumption 1. Ui ∈ Rn×n, i ∈ M are known constant
matrices, the function fi(x(t)) is Lipschitz for all x(t) ∈ Rn

and x̂(t) ∈ Rn, and satisfies

‖ fi(x(t)) − fi(x̂(t)) ‖�‖ Ui(x(t) − x̂(t)) ‖ . (2)

Assumption 2. For i ∈ M , the subsystem (Ai, Ci, Di)
are detectable[21] and Bi are full row rank.

Definition 1[10]. System (1) is said to be exponentially
stabilizable under control law u(t) and switching law σ(t),
if the solution x(t) of system (1) through (t0, ϕ) ∈ R+×Cn

satisfies

‖ x(t) ‖� κ ‖ xt0 ‖cl e−λ(t−t0), ∀t � t0 (3)

for some constants κ � 0 and λ > 0.
Suppose that the state observer is of the form

˙̂x(t) = fσ(x̂(t)) +Aσx̂(t) +Dσx̂(t− d(t))+

Bσu(t) + Lσ(y(t)− ŷ(t))

ŷ(t) = Cσx̂(t) (4)

where y(t) is the measurable output of system (1), and Lσ

is the observer gain matrix to be determined later.
The reference model is given as

ẋr(t) = Arxr(t) + r(t) (5)

where xr(t) ∈ Rn is the reference state, Ar is a Hurwitz
matrix, r(t) is the bounded reference input which belongs
to L2[0,∞) and L loc

1 ([�,∞),Rn), respectively.
Now, define tracking error er(t) = x(t)− xr(t), and con-

sider the H∞ tracking performance as[22]

∫ ∞

t0

e−α(t−t0)eTr (t)er(t)dt � γ2

∫ ∞

t0

ω̄T(t)ω̄(t)dt, t � t0

(6)

where ω̄(t) = [ωT(t), rT(t)]T, α, γ are positive constants.
Define the difference between the real state and the ob-

server state, the observer state and the reference state as

e(t) = x(t) − x̂(t), êr(t) = x̂(t) − xr(t).

Design the output feedback controller

u(t) = Kσx̂(t) + Fσxr(t) −BT
σ (BσB

T
σ )−1fσ(x̂(t)) (7)

where Kσ, Fσ are the output feedback gains. Combining
(1), (4), (5) and (7), we can obtain the augmented systems

ė(t) = (Aσ − LσCσ)e(t) +Dσe(t− d(t)) + fσ(x(t))−
fσ(x̂(t)) + ω(t) (8)

˙̂x(t) = (Aσ +BσKσ)x̂(t) +BσFσxr(t) +Dσx̂(t− d(t))+

LσCσe(t)

ẋr(t) = Arxr(t) + r(t). (9)

Let

x̄(t) =

[
x̂(t)

xr(t)

]
, Āσ =

[
Aσ +BσKσ BσFσ

0 Ar

]
,

gσ(t) =

[
LσCσe(t)

r(t)

]
, D̄σ =

[
Dσ 0

0 0

]
.

Then, system (9) can be rewritten as

˙̄x(t) = Āσx̄(t) + D̄σx̄(t− d(t)) + gσ(t). (10)

Define the switching sequences of system (8) and (9)

Σ � {(i0, t0), (i1, t1), · · · , (ik, tk), · · · | ik ∈M} (11)

which means the ik-th subsystem is activated at time tk.
Definition 2[20, 21]. For system (1), if there exist control

input u(t) and switching law σ(t), such that: 1) the closed-
loop (8) and (9) are exponentially stable when ω̄(t) ≡ 0; 2)
performance index (6) is satisfied when ω̄(t) 	= 0 under zero
initial conditions, that is, x(t) = 0, xr(0) = 0, x̂(t) = 0, t ∈
[−τ, 0]. Then system (1) is said to have observer-based H∞
model reference tracking performance.

Definition 3[1]. For the switched signal σ(t) and any
t � τ � 0, Nσ(t, τ ) denotes the system switching times in
the open interval (τ, t). If

Nσ(t, τ ) � N0 +
t− τ

τa
(12)

holds for τa > 0 and N0 � 0, then τa is called average
dwell-time. Without loss of generality, as commonly used
in the literature, we assume N0 = 0.

To conclude this section, we recall the following lemmas.
Lemma 1[9]. Let U, V be real matrices of appropriate

dimensions. Then, for any matrix Q > 0 of appropriate
dimension and scalar ε > 0, it holds that

UV + V TUT � ε−1UQ−1UT + εV TQV.

Lemma 2[13]. For any constant matrix N > 0, scalar
τ > 0, any t ∈ [0,+∞), vector function y : [t − τ, t] → Rn,
such that the integrations in the following are well defined,
then(∫ t

t−τ

y(s)ds

)T

N

∫ t

t−τ

y(s)ds � τ

∫ t

t−τ

y(s)TNy(s)ds.

Consider the linear time-varying delay system (10) with-
out switching and its homogeneous system as

˙̄x(t) = Āx̄(t) + D̄x̄(t− d(t)) + g(t) (13)

˙̄x(t) = Āx̄(t) + D̄x̄(t− d(t)). (14)
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It can be rewritten in operator form[21]

˙̄x(t) = L(t, xt) + g(t), t � �

˙̄x(t) = L(t, xt), x̄� = φ, t � �

where the operator L(t, φ) is linear in φ, and has the form
L(t, φ) = Aφ(0) +Dφ(−d(t)), in which φ(θ) = x(t+ θ), θ ∈
[−τ, 0]. Suppose there is an m ∈ L loc

1 ([�,∞),R+) such
that

| L(t, φ) |� m(t) | φ | (15)

for all t ∈ (−∞,∞), φ ∈ Cn.
Lemma 3 (Variation-of-constants). Let x̄(�, φ, g)(t)

denote the solution of system (13), and x̄(�, φ, 0)(t) de-
note the solution of the corresponding homogeneous system
(14). Denote x̄(�, φ, 0)(t+ θ) by x̄t(�, φ, 0)(θ),−τ � θ � 0,

X0(θ) =

{
0, − τ � θ < 0

I, θ = 0
. If x̄t(�, φ, 0) � T (t, �)φ, then

T (t, �) is a continuous linear operator. And if (15) is satis-
fied and g(t) ∈ L loc

1 ([�,∞),R2n), then

x̄t(�, φ, g) = T (t, �)φ+

∫ t

�

T (t, s)X0g(s)ds, t � �. (16)

Proof. The proof follows the same lines as in [21, 27]. �

3 Main results

3.1 Observer gain matrix design

Consider the simplified system of (8) when ω(t) = 0

ė(t) = (Aσ − LσCσ)e(t) +Dσe(t− d(t))+

fσ(x(t)) − fσ(x̂(t)). (17)

Theorem 1. For system (17), if there exist scalar α >
0, τ > 0, matrices Hi > 0, Gi > 0, L̄i,∀i ∈ M and any
invertible matrix Yi with appropriate dimensions, such that
the following LMIs hold

Θi =

⎡
⎢⎢⎢⎣
ϕ11i ϕ12i Yi −τYiDi

∗ ϕ22i Yi −τYiDi

∗ ∗ −I 0

∗ ∗ ∗ −τe−ατGi

⎤
⎥⎥⎥⎦ < 0 (18)

and the average dwell-time satisfies

τa1 >
lnμ1

α
(19)

where ϕ11i = Yi(Ai +Di)+(Ai +Di)
TY T

i − L̄iCi−CT
i L̄

T
i +

αHi+U
T
i Ui, ϕ12i = Hi−Yi+(Ai+Di)

TY T
i −CT

i L̄
T
i , ϕ22i =

τGi − Yi − Y T
i and μ1 � 1 satisfies

Hi � μ1Hj , Gi � μ1Gj , ∀i, j ∈M, i 	= j. (20)

Then, system (17) is exponentially stable and the observer
gain matrix is given by Li = Y −1

i L̄i.
Proof. Choose the piecewise Lyapunov functional can-

didate as

V (e(t)) = Vσ(e(t)) = V1σ(e(t)) + V2σ(e(t))

V1σ(e(t)) = eT(t)Hσe(t)

V2σ(e(t)) =

∫ 0

−τ

∫ t

t+θ

e−α(t−s)ėT(s)Gσė(s)dsdθ. (21)

During any interval [tk, tk+1), we let σ(t) = ik = i, then
V (e(t)) = Vi(e(t)). Along the trajectories of system (17),
the time derivative of Vi(e(t)) is given as

V̇i(e(t)) = 2eT(t)Hiė(t) − αV2i(e(t)) + τ ėT(t)Giė(t)−∫ t

t−τ

e−α(t−s)ėT(s)Giė(s)ds. (22)

From Assumption 1, we can get

[fi(x(t)) − fi(x̂(t))]
T[fi(x(t)) − fi(x̂(t))] �

eT(t)UT
i Uie(t). (23)

Substituting (23) into (22), one has

V̇i(e(t)) + αVi(e(t)) � eT(t)(αHi + UT
i Ui)e(t)+

2eT(t)Hiė(t) + τ ėT(t)Giė(t) − e−ατ

∫ t

t−d(t)

ėT(s)Giė(s)ds−

[fi(x(t)) − fi(x̂(t))]
T[fi(x(t))− fi(x̂(t))]. (24)

For the free weighting matrix Yi and
∫ t

t−d(t)
ė(s)ds = e(t)−

e(t− d(t)), it holds that

2[eT(t), ėT(t)]

[
Yi

Yi

]
[(Ai +Di − LiCi)e(t) − ė(t)−

Di

∫ t

t−d(t)

ė(s)ds+ fi(x(t)) − fi(x̂(t))] = 0. (25)

Let ξ(t, s) = [eT(t), ėT(t), fT
i (x(t))−fT

i (x̂(t)), ėT(s)]T. Sub-
stituting (25) into (24), it yields

V̇i(e(t)) + αVi(e(t)) � 1

d(t)

∫ t

t−d(t)

ξT(t, s)Θ̄iξ(t, s)ds (26)

where Θ̄i =

⎡
⎢⎣

ϕ11i ϕ12i Yi −d(t)YiDi

∗ ϕ22i Yi −d(t)YiDi

∗ ∗ −I 0

∗ ∗ ∗ −d(t)e−ατ Gi

⎤
⎥⎦ < 0. By

proper transformation to (18), we can get Θ̄i < 0, then

V̇i(e(t)) + αVi(e(t)) � 0. (27)

Let t−k be the left limit of tk, which is before the switching
at tk. Using (20) and (21), one has

Vi(e(tk)) � μ1Vj(e(t
−
k )), ∀i, j ∈M, i 	= j. (28)

Let any t ∈ [tk, tk+1), then Nσ(t, t0) = k. Combining (11),
(27) and (28), we can obtain

Vik (e(t)) �Vik (e(tk))e−α(t−tk) �
μ1Vik−1(e(tk−1))e

−α(t−tk−1) � · · · �
μk

1Vi0(e(t0))e
−α(t−t0) =

e−α(t−t0)+k ln μ1Vi0(e(t0)). (29)

From Definition 3, we can get k lnμ1 � t−t0
τa1

lnμ1. Let

2λ = α− ln μ1
τa1

> 0, then,

a ‖ e(t) ‖2� e−2λ(t−t0)Vi0(e(t0)) � b e−2λ(t−t0) ‖ et0 ‖2
cl

(30)
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where a = mini∈M{λmin(Hi)}, b = maxi∈M{λmax(Hi) +
τ2

2
λmax(Gi)}. From (30), we can obtain

‖ e(t) ‖�
√
b

a
e−λ(t−t0) ‖ et0 ‖cl . (31)

By Definition 1, we know that system (17) is exponentially
stable. �

3.2 Stability and H∞H∞H∞ performance

Theorem 2. For system (10), if there exist scalars α >
0, τ > 0, γ > 0, and matrices Pi > 0, Si > 0,∀i ∈ M , such
that the following inequalities hold

Φi =

⎡
⎢⎢⎢⎢⎣

φ11i PiD̄i Pi τ (Āi + D̄i)
T

∗ φ22i 0 τD̄T
i

∗ ∗ −1

2
γ2I τI

∗ ∗ ∗ −S−1
i

⎤
⎥⎥⎥⎥⎦ < 0 (32)

and the average dwell-time satisfies

τa = max{τa1 , τa2}, τa2 >
lnμ2

α
(33)

where φ11i = Pi(Āi + D̄i)+(Āi + D̄i)
TPi +αPi + Q̄, φ22i =

−e−ατSi, Q̄ =

[
I −I
−I I

]
, and μ2 � 1 satisfies

Pi � μ2Pj , Si � μ2Sj , ∀i, j ∈M, i 	= j. (34)

Then system (10) is exponentially stable, and the H∞
model reference tracking performance in (1) is guaranteed.

Proof. From (32), using Schur complement, it yields

Λi =

⎡
⎢⎣

φ
′
11i PiD̄i Pi

∗ φ22i 0

∗ ∗ −1

2
γ2I

⎤
⎥⎦ + τ 2

[
Āi + D̄i D̄i I

]T

Si

[
Āi + D̄i D̄i I

]
<

⎡
⎣−Q̄ 0 0

0 0 0

0 0 0

⎤
⎦ (35)

where φ
′
11i = φ11i − Q̄.

First, consider the nominal system of system (10):

˙̄x(t) = Āσx̄(t) + D̄σx̄(t− d(t)). (36)

Define the piecewise Lyapunov functional candidate as

V (x̄(t)) = Vσ(x̄(t)) = V1σ(x̄(t)) + V2σ(x̄(t))

V1σ(x̄(t)) = x̄T(t)Pσx̄(t)

V2σ(x̄(t)) = τ

∫ 0

−τ

∫ t

t+θ

e−α(t−s) ˙̄xT(s)Sσ ˙̄x(s)dsdθ.

Let − ∫ t

t−d(t)
˙̄x(s)ds = z(t) = x̄(t− d(t))− x̄(t), then ˙̄x(t) =

(Āi + D̄i)x̄(t) + D̄iz(t). Then, along the trajectories of
system (36), the time derivative of Vi(x̄(t)) is given by

V̇i(x̄(t)) �x̄T(t)[Pi(Āi + D̄i) + (Āi + D̄i)
TPi]x̄(t)+

2x̄T(t)PiD̄iz(t) − αV2i(x̄(t)) + τ 2 ˙̄xT(t)Si ˙̄x(t)−

τe−ατ

∫ t

t−d(t)

˙̄xT(s)Si ˙̄x(s)ds. (37)

By Lemma 2, it can be obtained that

−τ
∫ t

t−d(t)

˙̄xT(s)Si ˙̄x(s)ds � −zT(t)Siz(t). (38)

Let η(t) = [x̄T(t), zT(t)]T. Substituting (38) into (37), it
yields

V̇i(x̄(t)) + αVi(x̄(t)) � ηT(t)Φ̄iη(t) (39)

where

Φ̄i =

[
Pi(Āi + D̄i) + (Āi + D̄i)TPi + αPi PiD̄i

∗ −e−ατSi

]
+

τ 2
[
Āi + D̄i D̄i

]T

Si

[
Āi + D̄i D̄i

]
. (40)

From (35), (39) and (40), one can obtain

V̇i(x̄(t)) + αVi(x̄(t)) � 0. (41)

By using the same means as the proof of Theorem 1, we
can get

‖ x̄(t) ‖�
√
b1
a1

e−λ1(t−t0) ‖ x̄t0 ‖cl . (42)

where 2λ1 = α − ln μ2
τa2

> 0, a1 = mini∈M{λmin(Pi)}, b1 =

maxi∈M{λmax(Pi)+ τ3

2
λmax(Si)}. Then, system (36) is ex-

ponentially stable.
Next, the stability of system (10) will be analysed with

gi(t) 	= 0 when ω̄(t) = 0, gi(t) =

[
LiCie(t)

0

]
. Since gσ(t) ∈

L loc
1 ([�,∞),R2n), for any t ∈ [tj , tj+1), by Lemma 3, we

get the solution of (10) with the initial condition (t0, φi0):

x̄t(t0, φi0 , gσ) = Tij (t, tj)φij +

∫ t

tj

T (t, s)X0gij (s)ds =

Tij (t, tj)Tij−1(tj , tj−1)φij−1 + Tij (t, tj)∫ tj

tj−1

T (tj, s)X0gij−1(s)ds+

∫ t

tj

T (t, s)X0gij (s)ds = · · · =

T (t, t0)φi0 +

∫ t

t0

T (t, s)X0gσ(s)ds (43)

where T (t, t0) = Tij (t, tj) · Tij−1(tj , tj−1) · · ·Ti0(t1, t0) is a
continuous piecewise linear operator.

Recalling the above analysis, system (36) is exponentially
stable. There exist η1 > 0, κ1 > 0 such that

‖ T (t, t0) ‖� κ1e
−η1(t−t0)

‖ T (t, s)X0 ‖� κ1e
−η1(t−s), t � s � t0. (44)

If (18), (19) and (20) hold, system (8) is exponentially stable

by Theorem 1. From (31), there exists a scalar B0 =
√

b
a

‖ et0 ‖cl maxi∈M{σmax(LiCi)}, such that

‖ gσ(t) ‖�‖ LσCσ ‖‖ e(t) ‖� B0e
−λ(t−t0), t � t0. (45)

Substituting (44) and (45) into (43), and choosing η1 	= λ,
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it yields

‖ x̄t(t0, φi0 , gσ) ‖� κ1e
−η1(t−t0) ‖ φi0 ‖ +∫ t

t0

κ1e
−η1(t−s)B0e

−λ(s−t0)ds �

κ1e
−η1(t−t0) ‖ φi0 ‖ +

κ1B0

η1 − λ
(e−λ(t−t0) − e−η1(t−t0)) �

κ1(‖ φi0 ‖ +
B0

| η1 − λ | )e
−β(t−t0) (46)

where β = min{λ, η1}. We know that system (10) is expo-
nentially stable when ω̄(t) = 0.

Second, we will prove that performance index (6) is sat-
isfied under zero initial condition x̄(t0) = 0, e(t0) = 0 with
ω̄(t) 	= 0. Let ς(t) = [x̄T(t), zT(t), gT

i (t)]T. Using the same
method as the above analysis, it implies

V̇i(x̄(t)) + αVi(x̄(t)) � ςT(t)Λiς(t) +
1

2
γ2gT

i (t)gi(t) �

ςT(t)

⎡
⎢⎣
−Q̄ 0 0

0 0 0

0 0 0

⎤
⎥⎦ ς(t) +

1

2
γ2gT

i (t)gi(t) =

− êTr (t)êr(t) +
1

2
γ2gT

i (t)gi(t). (47)

Letting Q = 1
2
I ∈ Rn×n, by Lemma 1, we can get

− êTr (t)êr(t) = −[e(t) − er(t)]
T[e(t) − er(t)] =

− eTr (t)er(t) − eT(t)e(t) + 2eTr (t)e(t) �
− eTr (t)er(t) − eT(t)e(t) + eTr (t)Qer(t)+

eT(t)Q−1e(t) = −1

2
eTr (t)er(t)+ ‖ e(t) ‖2 .

(48)

Similar to the reasoning in the above proof, let
et(t0, ψi0 , ω) denote the solution of system (8) with the ini-
tial condition (t0, ψi0), ψi0 = e(t0) = 0, T1(t, t0) denotes a
continuous piecewise linear operator. As the nominal sys-
tem of (8) is exponentially stable, by Lemma 3, there exist
κ2 > 0, η2 > 0 such that

et(t0, ψi0 , ω) = T1(t, t0)ψi0 +

∫ t

t0

T1(t, s)X0ω(s)ds

‖ T1(t, t0) ‖� κ2e
−η2(t−t0)

‖ T1(t, s)X0 ‖� κ2e
−η2(t−s), t � s � t0. (49)

According to Cauchy-Schwartz Inequality, one can get from
(49):

‖ e(t) ‖2�
∫ t

t0

κ2
2e

−η2(t−s)ds

∫ t

t0

e−η2(t−s) ‖ ω(s) ‖2 ds �

κ2
2

η2

∫ t

t0

e−η2(t−s) ‖ ω(s) ‖2 ds. (50)

Let λ2 = maxi∈M{σmax(LiCi)}, it has

gT
i (t)gi(t) =eT(t)CT

i L
T
i LiCie(t) + rT(t)r(t) �

λ2
2 ‖ e(t) ‖2 +rT(t)r(t). (51)

Combining (47), (48), (50) and (51), it holds that

V̇i(x̄(t)) + αVi(x̄(t)) � −1

2
eTr (t)er(t) + (1 +

1

2
γ2λ2

2)

κ2
2

η2

∫ t

t0

e−η2(t−s) ‖ ω(s) ‖2 ds+
1

2
γ2rT(t)r(t),

t ∈ [tk, tk+1). (52)

Let Γ(s) = − 1
2
eTr (s)er(s) + (1 +

1
2
γ2λ2

2)
κ2
2

η2

∫ s

t0
e−η2(s−θ) ‖ ω(θ) ‖2 dθ + 1

2
γ2rT(s)r(s),

Vik(x̄(t)) = Vik (x̄(tk)) +

∫ t

tk

V̇ik(x̄(s))ds �

Vik(x̄(tk)) − α

∫ t

tk

Vik(x̄(s))ds+

∫ t

tk

Γ(s)ds �

μ2Vik−1(x̄(tk−1)) − μ2α

∫ tk

tk−1

Vik−1(x̄(s))ds+

μ2

∫ tk

tk−1

Γ(s)ds− α

∫ t

tk

Vik(x̄(s))ds+

∫ t

tk

Γ(s)ds � · · · �

μk
2Vi0(x̄(t0) − μk

2α

∫ t1

t0

Vi0(x̄(s))ds+

μk
2

∫ t1

t0

Γ(s)ds− · · · − α

∫ t

tk

Vik(x̄(s))ds+

∫ t

tk

Γ(s)ds �

μ
Nσ(t,t0)
2 Vi0(x̄(t0) − α

∫ t

t0

Vik(x̄(s))ds+

∫ t

t0

μ
Nσ(t,s)
2 Γ(s)ds. (53)

Under zero initial condition, V (x̄(t0)) = 0, and Vik (x̄(t)) �
0, we can get

∫ t

t0

μ
Nσ(t,s)
2 Γ(s)ds � 0. (54)

When t→∞, pre- and post-multiplying (54) by

e−Nσ(t,t0) ln μ2 and letting
2κ2

2
η2
2−κ2

2λ2
2

� γ2, it can be

concluded that

1

2

∫ ∞

t0

eTr (s)er(s)e
−Nσ(s,t0) ln μ2ds �

(1 +
1

2
γ2λ2

2)
κ2

2

η2

∫ ∞

t0

∫ s

t0

e−η2(s−θ) ‖ ω(θ) ‖2 dθds+

1

2
γ2

∫ ∞

t0

rT(s)r(s)ds =

(1 +
1

2
γ2λ2

2)
κ2

2

η2
2

∫ ∞

t0

‖ ω(s) ‖2 ds+

1

2
γ2

∫ ∞

t0

rT(s)r(s)ds � 1

2
γ2

∫ ∞

t0

ω̄T(s)ω̄(s)ds. (55)

By Definition 3 and (33), Nσ(s, t0) lnμ2 � s−t0
τa2

lnμ2 �
α(s− t0), it follows from (55) that

1

2

∫ ∞

t0

e−α(t−t0)eTr (t)er(t)dt � 1

2
γ2

∫ ∞

t0

ω̄T(t)ω̄(t)dt.

�
Remark 1. The average dwell-time τa1 is designed to

guarantee that system (17) is exponentially stable, and τa2
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can guarantee system (36) is exponentially stable. The av-
erage dwell-time τa of the whole system is chosen as the
maximum value between τa1 and τa2, which can guarantee
that system (8) and (9) are exponentially stable with H∞
performance index. In [21], a condition is required to hold
that (8) has the common Lyapunov function and the de-
signed switching law relies on the states x̄(t), ˙̄x(t) and ˙̄x(s)
which contains the derivative term. The proposed method
just needs that (8) satisfies the average dwell-time (19) low-
ering the conservatism, which is one of the main contribu-
tions of this paper. The asymptotic stability of system (10)
is obtained in [21], while the proposed method can guaran-
tee that system (10) is exponentially stable with gi(t) 	= 0.

3.3 H∞H∞H∞ controller design

First, let

Ω11i =

[
ψ11i BiF̄i

∗ ψ22i

]
,Ω12i =

[
DiS1i 0

0 0

]

Ω14i =

[
ψ17i 0

F̄T
i B

T
i X2iA

T
r

]
,Ω15i =

[
X1i

−X2i

]

where ψ11i = X1i(Ai+Di)
T+(Ai+Di)X1i+αX1i +BiK̄i+

K̄T
i B

T
i , ψ22i = ArX2i + X2iA

T
r + αX2i, ψ17i = X1i(Ai +

Di)
T + K̄T

i B
T
i , and Ω24i = ΩT

12i.
Theorem 3. Consider the augmented system (10), and

suppose that Assumptions 1 and 2 and (18)–(20) hold. For
the given scalars τ > 0, α > 0, γ > 0, there exist matrices
X1i > 0, X2i > 0, S1i > 0, S2i > 0, K̄i, F̄i,∀i ∈ M , such
that the following LMIs hold

Ωi =

⎡
⎢⎢⎢⎢⎣

Ω11i Ω12i I τΩ14i Ω15i

∗ −e−ατ S̄i 0 τΩ24i 0

∗ ∗ −1

2
γ2I τI 0

∗ ∗ ∗ −S̄i 0

∗ ∗ ∗ ∗ −I

⎤
⎥⎥⎥⎥⎦ < 0

(56)

and average dwell-time satisfies (33), μ2 � 1 satisfies

X1i � μ2X1j ,X2i � μ2X2j ,

S1i � μ2S1j , S2i � μ2S2j , ∀i, j ∈M, i 	= j. (57)

Then, the system (10) is exponentially stable, and (1)
has the H∞ model reference tracking performance. The
designed controller gain matrices are given by Ki =
K̄iX

−1
1i , Fi = F̄iX

−1
2i .

Proof. Choose the form of positive definite matri-

ces as Pi =

[
P1i 0

∗ P2i

]
, Si =

[
Ŝ1i 0

∗ Ŝ2i

]
. Pre-

and post-multiplying (32) by diag{P−1
i , S−1

i , I, I}, de-

note Xi = P−1
i =

[
X1i 0

∗ X2i

]
, S̄i = S−1

i =[
S1i 0
∗ S2i

]
, K̄i = KiX1i, F̄i = FiX2i, and XiQ̄Xi =[

X1i

−X2i

] [
X1i −X2i

]
. By using Schur complement for

(32) in Theorem 2, we can easily get (56). �
Remark 2. The work in [22] proposed an exponential

stability criterion for a class of switched nonlinear systems
with time-varying delay. However, the designed controller

relies on the system state x(t) and reference state xr(t). In
this paper, we design an observer to deal with the unavail-
able state x(t) and construct an output feedback controller
to track the reference signal xr(t).

4 Numerical example

Consider system (1) and reference system (5) with

A1 =

[
3.5 1.5

1.5 4.5

]
, B1 =

[
−0.6 −0.2

0.2 −0.4

]

C1 =
[

−0.2 0.8
]
,D1 =

[
0.25 0.15

0.25 −0.15

]

A2 =

[
4.5 2

−1.5 3

]
, B2 =

[
−0.5 0.1

−0.1 −0.25

]

C2 =
[

1.0 −0.7
]
,D2 =

[
−0.1 0.1

0.2 0

]

Ar =

[
−5 0.5

−1.5 −4.5

]
, f1(x(t)) =

[
0.1 cos(0.01x1)

0.1 cos(0.01x2)

]

f2(x(t)) =

[
0.2 cos(0.01x1)

0.2 cos(0.01x2)

]
.

We adopt the parameters below: d(t) = 0.16+0.14 sin t, τ =
0.3, α = 1, γ = 0.5, and the Lipschitz matrices are given by

U1 =

[
0.1 0

0 0.1

]
, U2 =

[
0.2 0

0 0.2

]
.

First, let μ1 = 7, by Theorem 1, we obtain

H1 =

[
0.6095 −1.3686
−1.3686 3.3900

]
, L1 =

[
73.9087
46.4478

]

H2 =

[
1.0839 −1.2598

−1.2598 1.6531

]
, L2 =

[
23.8485

9.8203

]

G1 =

[
0.3475 −0.6217

−0.6217 1.2153

]
, G2 =

[
0.4400 −0.6056

−0.6056 0.9653

]

and the average dwell-time satisfies τa1 > 1.9459 s. How-
ever, by using the proposed method in [21], we cannot ob-
tain the feasible solutions, so we cannot get the correspond-
ing common Lyapunov function.

Then, considering the system (9), and using Theorem 3,
we can get the common Lyapunov function and a set of
solutions

X1i =

[
2.0301 0

0 1.9886

]
,X2i =

[
2.5081 −0.0537

−0.0537 2.7959

]

S1i =

[
21.0670 −0.0569

−0.0569 22.7170

]
, S2i =

[
24.4292 −0.0840

−0.0840 24.3988

]

K1 =

[
14.3934 −5.6477

12.1647 26.0282

]
,K2 =

[
20.2412 11.0896

−13.5763 35.8298

]

F1 =

[
−2.6262 1.3188

−1.1708 −3.7332

]
, F2 =

[
−3.5098 −1.3707

1.3485 −6.7497

]

where i = 1, 2, thus, we can get the average dwell-time
τa2 > 0.
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According to the switching law (33), we choose the av-

erage dwell-time τa = 2 s. Let w(t) =

[
w1(t)

w2(t)

]
, r(t) =

[
r1(t)

r2(t)

]
, ωi(t) = ri(t) =

⎧⎨
⎩

2
sin t

t
, 5 s � t � 20 s

0, others

, i = 1, 2,

and choose the initial conditions ϕ(t) = 0, t ∈
[−0.3, 0), x(0) = [0.4,−0.3]T, x̂(0) = [0.3,−0.2]T, xr(t) =
[0.6,−0.5]T. Then, the simulation results are shown in
Figs. 1–4.

It can be seen that the state error is exponentially sta-
ble after 2 s when ω̄(t) = 0, and the real state tracks the
reference state perfectly. When the system is subjected to
the bounded exogenous disturbance, we can see that it has
H∞ tracking performance under the designed controller and
switching law.

Fig. 1 The designed switching signal σ(t)

Fig. 2 State error e(t)

Fig. 3 The state x1 and the reference state xr1

Fig. 4 The state x2 and the reference state xr2

5 Conclusions

In this paper, output feedback tracking control for
switched nonlinear system with time-varying delay has been
studied. A new switching law is designed and exponential
stability criterion for the system is derived. Average dwell-
time and piecewise Lyapunov function have been used to ob-
tain the stability of the augmented system and H∞ tracking
performance when the system has the bounded exogenous
disturbance. Besides, the designed observer and controller
can be obtained by solving a set of LMIs, and the proposed
method does not need that a common Lyapunov function
exists for the switched nonlinear systems. A numerical ex-
ample is given to show the effectiveness of the proposed
method. If the nonlinear function fσ(·) is unknown, how to
deal with this problem will be our further study issue.
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