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Abstract: Linear quadratic regulator (LQR) and proportional-integral-derivative (PID) control methods, which are generally used

for control of linear dynamical systems, are used in this paper to control the nonlinear dynamical system. LQR is one of the optimal
control techniques, which takes into account the states of the dynamical system and control input to make the optimal control decisions.

The nonlinear system states are fed to LQR which is designed using a linear state-space model. This is simple as well as robust. The
inverted pendulum, a highly nonlinear unstable system, is used as a benchmark for implementing the control methods. Here the control

objective is to control the system such that the cart reaches a desired position and the inverted pendulum stabilizes in the upright

position. In this paper, the modeling and simulation for optimal control design of nonlinear inverted pendulum-cart dynamic system
using PID controller and LQR have been presented for both cases of without and with disturbance input. The Matlab-Simulink models

have been developed for simulation and performance analysis of the control schemes. The simulation results justify the comparative

advantage of LQR control method.

Keywords: Inverted pendulum, nonlinear system, proportional-integral-derivative (PID) control, optimal control, linear quadratic

regulator (LQR).

1 Introduction

The inverted pendulum (IP) is an inherently unstable
system with highly nonlinear dynamics. This is a system
which belongs to the class of under-actuated mechanical

systems having fewer control inputs than the degree of free-
dom. This renders the control task more challenging, mak-
ing the inverted pendulum system a classical benchmark
for the design, testing, evaluating and comparing of differ-

ent classical and contemporary control techniques. Being
an inherently unstable system, the inverted pendulum is
among the most difficult systems, and is one of the most
important classical problems. The control of inverted pen-
dulum has been a research interest in the field of control

engineering. Due to its importance, this is a choice of dy-
namic system to analyze its dynamic model and propose a
control law. The aim of this case study is to stabilize the
inverted pendulum such that the position of the cart on the

track is controlled quickly and accurately so that the pen-
dulum is always erected in its inverted position during such
movements. Realistically, this simple mechanical system is
representative of a class of attitude control problems whose

goal is to maintain the desired vertically oriented position
at all times[1−4].

In general, the control problem consists of obtaining dy-
namic models of systems, and using these models to deter-

mine control laws or strategies to achieve the desired sys-
tem response and performance. The simplicity of control
algorithm as well as guaranteeing the stability and robust-
ness in the closed-loop system is a challenging task in real
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situations. Most of the dynamical systems such as power
systems, missile systems, robotic systems, inverted pendu-
lum, industrial processes, chaotic circuits, etc., are highly
nonlinear in nature. The control of such systems is a chal-
lenging task.

The proportional-integral-derivative (PID) control gives
the simplest and yet the most efficient solution to various
real-world control problems. Both the transient and steady-
state responses are taken care of with its three-term (i.e.,

P, I, and D) functionality. Since its invention, the popular-
ity of PID control has grown tremendously. The advances
in digital technology have made the control system auto-
matic. Even though, the automatic control system offers

a wide spectrum of choices for control schemes, more than
90% of industrial controllers are still implemented based
on the PID algorithms, particularly at the lowest level, as
no other controllers can match the simplicity, clear func-

tionality, applicability, and ease of use offered by the PID
controllers.

The performance of the dynamical systems being con-
trolled is desired to be optimal. There are many optimiza-

tion and optimal control techniques which are present in the
literature for linear and nonlinear dynamical systems[5−7].
The recent development in the area of artificial intelli-
gence (AI), such as artificial neural network (ANN), fuzzy

logic theory (FL), and evolutionary computational tech-
niques such as genetic algorithm (GA), and particle swarm
optimization (PSO), etc., commonly all these are known
as intelligent computational techniques which have given

novel solutions to various control system problems[8−20].
The intelligent optimal control has emerged as a viable ap-
proach by the application of these intelligent computational
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techniques[10].

There are many papers presented which have taken the
inverted pendulum-cart dynamical system for implement-
ing the various control schemes[18−23] . A Lyapunov func-
tion based control of inverted pendulum cart system is

presented in [23]. Quad-rotor, another example of under-
actuated strongly coupled nonlinear system is presented in
[24] in which the adaptive backstepping sliding mode ap-
proach is used for the trajectory tracking control. The op-

timal control design method of linear quadratic Gaussian
(LQG), which is a combination of a linear quadratic estima-
tor (LQE) (i.e., Kalman filter) and a linear quadratic regu-
lator (LQR), has been used for optimal control of pneumatic

Stewart-Gough platform in [25]. In recent trends even the
various advance control approaches[8−20, 24] are developing
and being tried for many dynamical systems control, the
simplicity of control algorithms along with the fulfillment

of control objectives is further desired. The neural net-
work based control design requires a large data set col-
lected from experiments for networks training and test-
ing; the fuzzy control requires framing of rules, which be-

comes complex for higher order systems; and the evolu-
tionary computational techniques are slow in computation.
These drawbacks put limits to their implementations even
they provide automation and intelligent features to the con-
trolled systems. Also the algorithms of several adaptive,

sliding mode and robust control approaches are compara-
tively complex even they have certain merits. The objec-
tive and contribution of this paper is to present a simple
approach to control nonlinear dynamical systems. The sim-

ple control algorithms of LQR and PID control which are
generally used for control of the linear dynamical systems
are used in this paper to control the nonlinear inverted
pendulum-cart dynamical system as presented by us partly

in [3, 4]. In this paper, the performance analysis for both
cases of this system without and with disturbance input
have been presented comprehensively. The comprehensive
performance investigation shows that the proposed control

method is simple, effective, and robust.
This paper is organized in 5 sections. Section 1 presents

the relevance and the general introduction of the paper.
Section 2 describes the mathematical model of the inverted

pendulum-cart system without and with disturbance input.
In Section 3, the control methods of PID control and op-
timal control using LQR are discussed briefly. Section 4
presents Matlab-Simulink modeling, and simulation results

for both cases of without and with disturbance input. Sec-
tion 5 presents conclusions. At the end, a brief list of ref-
erences is given.

2 Mathematical modeling

2.1 Inverted pendulum system equations

The free body diagram of an inverted pendulum mounted

on a motor driven cart is shown in Fig. 1[1−4]. The system
equations of this nonlinear dynamic system can be derived
as follows. It is assumed here that the pendulum rod is
mass-less, and the hinge is frictionless. In such assumption,

the whole pendulum mass is concentrated in the centre of

gravity (COG) located at the center of the pendulum ball.

The cart mass and the ball point mass at the upper end of
the inverted pendulum are denoted as M and m, respec-
tively. There is an externally x-directed force on the cart,
u(t), and a gravity force acts on the point mass at all times.

The coordinate system considered is shown in Fig. 1, where
x(t) represents the cart position, and θ(t) is the tilt angle
referenced to the vertically upward direction.

Fig. 1 Motor driven inverted pendulum-cart system

A force balance on the system in the x-direction can be
written as

M
d2x

dt2
+ m

d2xG

dt2
= u (1)

where the time-dependent centre of gravity (COG) of the

point mass is given by coordinates (xG, yG). For the point
mass assumed here, the location of the center of gravity of
the pendulum mass is

xG = x + l sin θ, yG = l cos θ (2)

where l is the pendulum rod length. Substituting (2) into
(1), we have

(M + m)ẍ − ml sin θθ̇2 + ml cos θθ̈ = u. (3)

In a similar way, a torque balance on the system is per-
formed. Fig. 2 shows the force components acting on the

system. The resultant torque balance can be written as

(Fx cos θ)l − (Fy sin θ)l = (mg sin θ)l (4)

where Fx = m d2

dt2
xG, and Fy = m d2

dt2
yG are the force com-

ponents in the x and y directions, respectively.
After manipulation, (4) is written as

mẍ cos θ + mlθ̈ = mg sin θ. (5)

Equations (3) and (5) are the equations defining this sys-
tem. These two equations are manipulated algebraically to

have only a single second derivative term in each equation.
Finally, we may derive the system equations describing the
cart position dynamics and the pendulum angle dynamics,
respectively. Thus we have

ẍ =
u + ml(sin θ)θ̇2 − mg cos θ sin θ

M + m − m cos2 θ
(6)
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θ̈ =
u cos θ − (M + m)g sin θ + ml(cos θ sin θ)θ̇2

ml cos2 θ − (M + m)l
. (7)

Fig. 2 Vector diagram for force components in torque balance

Equations (6) and (7) represent a nonlinear system which
is relatively complicated from a mathematical point of view.
The following subsection presents the standard state space
form of these two nonlinear equations.

2.2 Nonlinear system state space equa-
tions of inverted pendulum

For numerical simulation of the nonlinear model for the
inverted pendulum-cart dynamic system, it is required to
represent the nonlinear equations (6) and (7) into the stan-

dard state space form:

dxxx

dt
= f(xxx, u, t). (8)

Consider the state variables:

x1 = θ, x2 = θ̇ = ẋ1, x3 = x, x4 = ẋ = ẋ3. (9)

The final state space equation for the inverted pendulum
system may be written as

dxxx

dt
=

d

dt

⎡
⎢⎢⎢⎣

x1

x2

x3

x4

⎤
⎥⎥⎥⎦ =

d

dt

⎡
⎢⎢⎢⎣

θ

θ̇

x

ẋ

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

f1

f2

f3

f4

⎤
⎥⎥⎥⎦ (10)

where

f1 = x2 (11)

f2 =
u cos x1 − (M + m)g sin x1 + ml(cos x1 sin x1)x

2
2

ml cos2 x1 − (M + m)l
(12)

f3 = x4 (13)

f4 =
u + ml(sin x1)x

2
2 − mg cos x1 sin x1

M + m − m cos2 x1
. (14)

If both the pendulum angle θ and the cart position x are

the variables of interest, then the output equation may be
written as

yyy = Cxxx or yyy =

[
θ

x

]
= Cxxx =

[
1 0 0 0

0 0 1 0

]
⎡
⎢⎢⎢⎣

θ

θ̇

x

ẋ

⎤
⎥⎥⎥⎦ .

(15)

Equations (10) and (15) give a complete state space rep-
resentation of the nonlinear inverted pendulum-cart dy-
namic system.

2.3 Linear system state space equations of
inverted pendulum

Since the goal of this particular system is to keep the in-
verted pendulum in the upright position around θ = 0, the
linearization might be considered about this upright equi-

librium point. The linear model for the system around the
upright stationary point is derived by simply linearization
of the nonlinear system given in (10). Since the usual AAA and
BBB matrices are zero for this case, and so every term is put

into the nonlinear vector function fff(xxx, u, t), the linearized
form for the system becomes

dδxxx

dt
= JJJxxx(xxx0, u0)δxxx + JJJu(xxx0, u0)δu (16)

where the reference state is defined by the pendulum in

stationary and upright position with no input force. Under
these conditions, xxx0 = 0, and u0 = 0.

Since the nonlinear vector function is rather complicated,
the components of the Jacobian matrices are determined
systemically term by term. The elements of the first,

second, third, and fourth columns of JxJxJx(xxx0, u0) are given

by ∂fi
∂xxx1

∣∣∣
xxx0,u0

, ∂fi
∂xxx2

∣∣∣
xxx0,u0

, ∂fi
∂xxx3

∣∣∣
xxx0,u0

, and ∂fi
∂xxx4

∣∣∣
xxx0,u0

, respec-

tively. Thus, combining all these separate terms gives

JJJxxx(xxx0, u0) =

⎡
⎢⎢⎢⎣

0 1 0 0
(M+m)g

Ml
0 0 0

0 0 0 1

−mg
M

0 0 0

⎤
⎥⎥⎥⎦ . (17)

For the derivative of the nonlinear terms with respect to u,
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we have

JJJu(xxx0, u0) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂f1

∂u

∂f2

∂u

∂f3

∂u

∂f4

∂u

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

xxx0,u0

=

⎡
⎢⎢⎢⎢⎢⎣

0
cos x1

ml cos2 x1 − (M + m)l
0
1

M + m − m cos2 x1

⎤
⎥⎥⎥⎥⎥⎦

xxx0,u0

=

⎡
⎢⎢⎢⎢⎢⎣

0

− 1

Ml
0
1

M

⎤
⎥⎥⎥⎥⎥⎦

.

(18)

Finally, after all these manipulations, (16) may be written
explicitly as

dδxxx

dt
=

⎡
⎢⎢⎢⎢⎢⎣

0 1 0 0
(M + m)g

Ml
0 0 0

0 0 0 1

−mg

M
0 0 0

⎤
⎥⎥⎥⎥⎥⎦

δxxx +

⎡
⎢⎢⎢⎢⎢⎣

0

− 1

Ml
0
1

M

⎤
⎥⎥⎥⎥⎥⎦

δu.

(19)

This is the open loop linearized model for the inverted pen-
dulum with a cart force δu(t), written in the perturbation

form. Thus, the linear time-invariant (LTI) system is in the
standard state space form. Equation (19) may be written
in general as

dδxxx

dt
= AAAδxxx + BBBδu. (20)

Equation (20) along with the output equation (15) repre-
sents the final linear model of the inverted pendulum-cart
system. This is the simplified model which is used to study
the system behavior in general and to design LQR.

2.4 Inverted pendulum system equations
with disturbance input

The system equations of this nonlinear dynamic system

with disturbance input can be derived as follows. Consider
a disturbance input due to wind effects acting on the in-
verted pendulum in addition to the force on the cart, u(t).
Let Fw represent the horizontal wind force on the pendu-

lum point mass. With this additional force component, the
force balance equation (1) becomes

M
d2x

dt2
+ m

d2xG

dt2
= u + Fw (21)

which can be manipulated to give

(M + m)ẍ − ml sin θθ̇2 + ml cos θθ̈ = u + Fw. (22)

Similarly, the torque in the clockwise direction caused by

the horizontal wind disturbance is (Fw cos θ)l. Adding the

torque contribution of this term the torque balance equation

(4) becomes

(Fx cos θ)l − (Fy sin θ)l = (mg sin θ)l + (Fw cos θ)l (23)

which can be modified to give

mẍ cos θ + mlθ̈ = mg sin θ + Fw cos θ. (24)

Equations (22) and (24) are the defining equations for this
system with a disturbance input.

The state space equation for the inverted pendulum sys-
tem with disturbance input is derived as the same as (10)
with following modifications:

f2 = (25)

u cos x1 − (M + m)g sin x1 + ml(cos x1 sinx1)x2
2−

M

m
Fw cos x1

ml cos2 x1 − (M + m)l
(26)

f4 =
u + ml(sin x1)x

2
2 − mg cos x1 sin x1 + Fw sin2 x1

M + m − m cos2 x1
.

(27)

The output equation of the nonlinear inverted pendulum

system with disturbance input remains the same as (15).
The linearized model can also be developed as

dδxxx

dt
=

⎡
⎢⎢⎢⎢⎢⎣

0 1 0 0
(M + m)g

Ml
0 0 0

0 0 0 1

−mg

M
0 0 0

⎤
⎥⎥⎥⎥⎥⎦

δxxx+

⎡
⎢⎢⎢⎢⎢⎣

0

− 1

Ml
0
1

M

⎤
⎥⎥⎥⎥⎥⎦

δu +

⎡
⎢⎢⎢⎢⎣

0

− 1

ml
0

0

⎤
⎥⎥⎥⎥⎦

δFw. (28)

This is the open loop linearized model for the inverted pen-
dulum with a cart force δu(t), and a horizontal wind dis-

turbance δFw(t). The two inputs have been separated for
convenience, thus the LTI system can be written as

dδxxx

dt
= AAAδxxx + bbb1δu + bbb2δFw. (29)

3 Control methods

The following control methods are presented here to
control the nonlinear inverted pendulum-cart dynamic
system[3, 4].

3.1 PID control

To stabilize the inverted pendulum in the upright posi-
tion and to control the cart at the desired position using

the PID control approach, two PID controllers: Angle PID
controller and cart PID controller have been designed for
the two control loops of the system. The equations of the
PID control are given as

up = Kppeθ(t) + Kip

∫
eθ(t)dt + Kdp

deθ(t)

dt
(30)
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uc = Kpcex(t) + Kic

∫
ex(t)dt + Kdc

dex(t)

dt
(31)

where eθ(t) and ex(t) are angle error and cart position error,
respectively. Since the pendulum angle dynamics and cart
position dynamics are coupled to each other, the change in
any controller parameters affects both the pendulum angle

and cart position, which makes the tuning tedious. The tun-
ing of controller parameters is done by using trial and error
methods and observing the responses of Simulink model to
be optimal.

3.2 Optimal control using LQR

Optimal control refers to a class of methods that can

be used to synthesize a control policy which results in the
best possible behavior with respect to the prescribed cri-
terion (i.e., control policy which leads to maximization of
performance). The main objective of optimal control is to

determine control signals that will cause a process (plant)
to satisfy some physical constraints and at the same time
extremize (maximize or minimize) a chosen performance
criterion (performance index (PI) or cost function). The

optimal control problem is to find a control which causes
the dynamical system to reach a target or follow a state
variable (or trajectory) and at the same time extremize a
PI which may take several forms[1−7].

Linear quadratic regulator (LQR) is one of the optimal
control techniques, which takes into account the states of
the dynamical system and control input to make the opti-
mal control decisions. This is simple as well as robust[1−7].

After linearization of nonlinear system equations about

the upright (unstable) equilibrium position having initial
conditions as xxx0 = [0, 0, 0, 0]T, the linear state-space equa-
tion is obtained as

ẋ̇ẋx = AxAxAx + BBBu (32)

where xxx =
[
θ, θ̇, x, ẋ

]T

.

The state feedback control u = −KxKxKx leads to

ẋ̇ẋx = (AAA −BKBKBK)xxx (33)

where KKK is derived from minimization of the cost function

J =

∫ (
xxxTQxQxQx + uTRRRu

)
dt (34)

where QQQ and RRR are positive semi-definite and positive defi-
nite symmetric constant matrices, respectively.

The LQR gain vector KKK is given by

KKK = RRR−1BBBTPPP (35)

where PPP is a positive definite symmetric constant ma-
trix obtained from the solution of matrix algebraic Riccati
equation (ARE)

AAATPPP + PAPAPA −PBRPBRPBR−1BBBTPPP + QQQ = 0. (36)

In the optimal control of nonlinear inverted pendulum
dynamical system using PID controller and LQR approach,
all the instantaneous states of the nonlinear system, pen-

dulum angle θ, angular velocity θ̇, cart position x, and cart

velocity ẋ are considered available for measurement, which

are directly fed to the LQR. The LQR is designed using
the linear state-space model of the system. The optimal
control value of LQR is added negatively to the PID con-
trol value to have a resultant optimal control. The tuning

of the PID controllers which are used here either as PID
control method or PID+LQR control methods is done by
using trial and error method and observing the responses
achieved to be optimal.

4 Simulation and results

The Matlab-Simulink models for the simulation of model-

ing, analysis, and control of nonlinear inverted pendulum-
cart dynamical system without and with disturbance in-
put are developed. The typical parameters of inverted
pendulum-cart system setup are selected as [3, 4, 18, 22]:

mass of the cart (M): 2.4 kg; mass of the pendulum (m):
0.23 kg; length of the pendulum (l): 0.36 m; length of the
cart track (L): ± 0.5 m; the friction coefficient of the cart
and pole rotation is assumed negligible. The disturbance
input parameters taken in the simulation are[3]: band lim-

ited white noise power = 0.001, sampling time = 0.01, seed
= 23341.

After linearization, the system matrices used to design
LQR are computed as

AAA =

⎡
⎢⎢⎢⎣

0 1 0 0

29.8615 0 0 0

0 0 0 1

−0.9401 0 0 0

⎤
⎥⎥⎥⎦ , BBB =

⎡
⎢⎢⎢⎣

0

−1.1574

0

0.4167

⎤
⎥⎥⎥⎦

CCC =

[
1 0 0 0

0 0 1 0

]
, DDD =

[
0

0

]
.

With the choice of

QQQ =

⎡
⎢⎢⎢⎣

1 0 0 0

0 1 0 0

0 0 500 0

0 0 0 250

⎤
⎥⎥⎥⎦ and RRR = 1

the LQR gain vector is obtained as

K =
[

−137.7896 −25.9783 −22.3607 −27.5768
]
.

Here, three control schemes have been implemented for

the optimal control of nonlinear inverted pendulum-cart dy-
namical system:

1) PID control method having two PIDs, i.e., angle PID
and cart PID;

2) Two PIDs (i.e., angle PID and cart PID) with LQR
control method;

3) One PID (i.e., cart PID) with LQR control method.
The tuned PID controller parameters of these control

schemes for cases of without and with disturbance input
are given as in Tables 1 and 2, respectively.

The Simulink models for control of nonlinear inverted
pendulum system using PID control method for both cases

of without and with disturbance input are shown in Figs. 3
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Table 1 PID controller parameters of control schemes for

without disturbance input case

Control Angle PID control Cart PID control

schemes Kpp Kip Kdp Kpc Kic Kdc

PID −40 0 −8 −1 0 −3

2PID+LQR 1 1 1 1.5 −7.5 5

1PID+LQR – – – 1.5 −7.5 5

Table 2 PID controller parameters of control schemes for with

disturbance input case

Control Angle PID control Cart PID control

schemes Kpp Kip Kdp Kpc Kic Kdc

PID −40 0 −8 −1.25 0 −3.6

2PID+LQR 1 1 1 1.5 −7.5 5

1PID+LQR – – – 1.5 −7.5 5

and 5, respectively. The band limited white noise is added
as the disturbance input to the system. Here only pen-
dulum angle θ and cart position x are considered for the
measurement. The reference angle is set to 0 rad, and ref-

erence cart position is set to 0.1m. The simulation results
for both cases are shown in Figs. 4 and 6, respectively. It
is observed that the pendulum stabilizes in the vertically
upright position after two small overshoots for the case of

without disturbance input, and it also stabilizes upright
with minor oscillations for the case of with continuous dis-
turbance input. The cart position x reaches the desired
position of 0.1 m quickly and smoothly for the case of with-

out disturbance input, and quickly with minor oscillations
for the case of with continuous disturbance input. The con-
trol input u is bounded for both cases in ranges [−0.1 0.1]
and [−1 1], respectively. Thus simulation results justify

the effectiveness and robustness of the PID control.

Fig. 3 PID control of nonlinear inverted pendulum system

The Simulink models for the optimal control of the non-
linear inverted pendulum-cart system using two PID con-
trollers (angle PID and cart PID) with LQR control method
for both cases of without and with disturbance input are

shown in Figs. 7 and 9, respectively. In this approach, all
the states of the system θ, θ̇, x and ẋ are fed to LQR,
which is designed using the linear state-space model of the
system. Here also the angle θ and cart position x are taken

as variables of interest for control, and the band limited

Fig. 4 Responses of pendulum angle θ, cart position x, and con-

trol force u of nonlinear inverted pendulum system with PID

control

Fig. 5 PID control of nonlinear inverted pendulum system with

disturbance input

Fig. 6 Responses of pendulum angle θ, cart position x, and con-

trol force u of nonlinear inverted pendulum system with PID

control with disturbance input

white x noise is added as the disturbance input to the sys-
tem. The reference angle is set to 0 rad, and the reference
cart position is set to 0.1 m. The simulation results for
both cases are shown in Figs. 8 and 10, respectively. The

responses of angle θ, angular velocity θ̇, cart position x,
cart velocity ẋ, and control u are plotted. It is observed



L. B. Prasad et al. / Optimal Control of Nonlinear Inverted Pendulum System Usingp PID Controller and LQR · · · 667

that the pendulum stabilizes in the vertically upright po-

sition quickly and smoothly after two minor undershoots
and a minor overshoot for the case of without disturbance
input, and it also stabilizes in the vertically upright posi-
tion with minute oscillations for the case of with continuous

disturbance input. The angular velocity approaches 0 rad/s
quickly for the case of without disturbance input, and it os-
cillates by approximately +/−0.01 rad/s remaining at most
in the range approximately +/−0.02 rad/s for the case of

with continuous disturbance input. The cart position x
reaches smoothly the desired position of 0.1 m quickly in
approximately 6 s, and the cart velocity reaches zero for
both cases. The control input u is bounded for both cases

in ranges [−0.1 0.1] and [−1 1], respectively. The simu-
lation results justify the effectiveness and robustness of the
2PID+LQR control.

The Simulink models for the optimal control of the non-

linear inverted pendulum-cart system using one PID con-
troller (cart PID) with LQR control method for both cases
of without and with disturbance input are shown in Figs. 11
and 13, respectively. This control method is similar to

2PID+LQR control method in all respects of control tech-
niques but differs only in the number of PID controllers
used. Here only cart PID controller is used, and angle PID
controller is not used. Here only cart position x is taken
as variable of interest for control. The reference cart po-

sition is set to 0.1 m. The desired angle to be zero is di-
rectly taken care of by state feedback control of LQR which
is designed using the linear state-space model of the sys-
tem with vertically upright position as the reference. The

band limited white noise is added as the disturbance input
to the system. The simulation results for both cases are
shown in Figs. 12 and 14, respectively. The responses of
angle θ, angular velocity θ̇, cart position x, cart velocity ẋ,

and control u are plotted. It is observed that the pendu-
lum stabilizes in the vertically upright position quickly and
smoothly after two minor undershoots and a minor over-
shoot for the case of without disturbance input, and it also

stabilizes in the vertically upright position with minute os-
cillations for the case of with continuous disturbance input.
The angular velocity approaches 0 rad/s quickly for the case
of without disturbance input, and it oscillates by approxi-

mately +/−0.01 rad/s remaining at most in the range ap-
proximately +/−0.02 rad/s for the case of with continuous
disturbance input. The cart position x reaches the desired
position of 0.1 m quickly and smoothly in approximately 6 s

for both cases. The cart velocity reaches zero for the case
of without disturbance input, and it oscillates very near to

Fig. 7 Cart PID, Angle PID and LQR control of nonlinear in-

verted pendulum system

zero for the case of with continuous disturbance input. The

control input u is bounded for both cases in ranges [−0.1
0.1] and [−1 1], respectively. The simulation results jus-
tify the effectiveness and robustness of the cart PID+LQR
control.

Fig. 8 Responses of pendulum angle θ (solid line), angular ve-

locity θ̇ (dashed line), cart position x (solid line), cart velocity ẋ

(dashed line), and control force u of nonlinear inverted pendulum

system with cart PID, angle PID and LQR control

Fig. 9 Cart PID, Angle PID and LQR control of nonlinear in-

verted pendulum system with disturbance input

Fig. 10 Responses of pendulum angle θ (solid line), angular ve-

locity θ̇ (dashed line), cart position x (solid line), cart velocity

ẋ (dashed line), and control force u of nonlinear inverted pen-

dulum system with disturbance input using cart PID, angle PID

and LQR control
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Fig. 11 Cart PID and LQR control of nonlinear inverted pen-

dulum system

Fig. 12 Responses of pendulum angle θ (solid line), angular ve-

locity θ̇ (dashed line), cart position x (solid line), cart velocity ẋ

(dashed line), and control force u of nonlinear inverted pendulum

system using cart PID and LQR control

Fig. 13 Cart PID and LQR control of nonlinear inverted pen-

dulum system with disturbance input

The maximum absolute values of system states and con-
trol showing maximum absolute variations with respect to

desired nominal values in simulation for both cases of with-
out and with disturbance input are shown in Tables 3 and
4, respectively.

By comparing the results, it is observed that the re-

sponses of both alternatives of the PID+LQR control
method are better than the PID control, which are also
smooth and fast. It is also observed that the responses of
2PID+LQR control and cart PID+LQR control are simi-

lar. Just the cart position response of 2PID+LQR control
is smoother than cart PID+LQR control and so it is slightly
better, which is due to the additional degree of freedom of
control added by the angle PID controller. But the cart

PID+LQR control has structural simplicity in its credit.

The analysis of the performances of the control schemes of

Fig. 14 Responses of pendulum angle θ (solid line), angular ve-

locity θ̇ (dashed line), cart position x (solid line), cart velocity ẋ

(dashed line), and control force u of nonlinear inverted pendulum

system with disturbance input using cart PID and LQR control

PID control, 2PID+LQR control, and cart PID+LQR con-
trol for the nonlinear inverted pendulum-cart dynamical

system without and with disturbance input gives that these
control schemes are effective and robust. The advantage
of this simulation study is that, it demonstrates that, the
proposed PID+LQR control approach is a simple, effective

and robust technique for the optimal control of nonlinear
dynamical systems.

Table 3 Maximum absolute values of system states and

control for without disturbance input case

Control schemes θ θ̇ x ẋ u

PID 0.0046 – 0.0976 – 0.1402

2PID+LQR 0.0029 0.0070 0.1000 0.0330 0.1500

1PID+LQR 0.0029 0.0067 0.1000 0.0331 0.1500

Table 4 Maximum absolute values of system states and

control for with disturbance input case

Control schemes θ θ̇ x ẋ u

PID 0.0118 – 0.1481 – 1.3598

2PID+LQR 0.0030 0.0209 0.0993 0.0441 1.3774

1PID+LQR 0.0030 0.0204 0.1019 0.0439 1.3882

5 Conclusions

PID control and LQR, an optimal control technique to

make the optimal control decisions have been implemented
to control the nonlinear inverted pendulum-cart system
without and with continuous disturbance input. To com-
pare the results of proposed PID+LQR control method, the

PID control method has been implemented. In the optimal
control of nonlinear inverted pendulum dynamical system
using PID controller and LQR approach, all the instanta-
neous states of the nonlinear system are considered avail-

able for measurement, which are directly fed to the LQR.
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The LQR is designed using the linear state-space model of

the system. The optimal control value of LQR is added
negatively to the PID control value to have a resultant
optimal control. The Matlab-Simulink models have been
developed for simulation and performance analysis of the

control schemes. The tuning of the PID controllers which
are used here either as PID control method or PID+LQR
control methods is done by using trial and error method
and observing the responses achieved to be optimal. The

simulation results justify the comparative advantage of the
optimal control using LQR method. The pendulum stabi-
lizes in the upright position and the cart reaches the de-
sired position quickly and smoothly even under the con-

tinuous disturbance input such as wind force justify that
the control schemes are effective and robust. The analy-
sis of the responses of control schemes gives that the per-
formance of proposed PID+LQR control method is better

than PID control. This comparative performance investi-
gation for this benchmark system shows that the proposed
PID+LQR control approach is a simple, effective and ro-
bust control scheme for the optimal control of nonlinear

dynamical systems. The performance investigation of this
control approach with tuning of PID controller parameters
using GA and PSO instead of trial and error method may
be done as a future work.
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[23] C. A. Ibañez, O. G. Frias, M. S. Castanon. Lyapunov-based
controller for the inverted pendulum cart system. Nonlinear
Dynamics, vol. 40, no. 4, pp. 367–374, 2005.



670 International Journal of Automation and Computing 11(6), December 2014

[24] X. Gong, Z. C. Hu, C. J. Zhao, Y. Bai, Y. T. Tian. Adap-
tive backstepping sliding mode trajectory tracking control
for a quad-rotor. International Journal of Automation and
Computing, vol. 9, no. 5, pp. 555–560, 2012.

[25] K. S. Grewal, R. Dixon, J. Pearson. LQG controller design
applied to a pneumatic Stewart-Gough platform. Interna-
tional Journal of Automation and Computing, vol. 9, no. 1,
pp. 45–53, 2012.

Lal Bahadur Prasad obtained his
B.Eng. degree in electrical engineering
from Madan Mohan Malaviya Engineer-
ing College Gorakhpur, India in 1994, and
his M.Tech. degree in electrical engineer-
ing (control systems) from Indian Institute
of Technology (B.H.U.), Varanasi, India in
1997. He was an officer of Indian Defence
Service of Engineers and served as assis-
tant executive engineer (electrical) in Mili-

tary Engineer Services, Ministry of Defence, Government of India
during 1997–1999. In 1999, he switched to engineering teaching
career. He is assistant professor (selection grade) in Department
of Electrical Engineering, Madan Mohan Malaviya Engineering
College Gorakhpur, India. Since 2009, he is pursuing his Ph. D.
research work in the Department of Electrical Engineering, In-
dian Institute of Technology Roorkee, India under QIP scheme.

He has supervised 11 M.Tech. dissertations and many
B.Eng./B. Tech. projects. He is life member of Institution of
Engineers (India), and life member of Institution of Electronics
& Telecommunication Engineers (India). He is member of Au-
tomatic Control and Dynamic Optimization Society (ACDOS),
India. He is graduate student member of IEEE and IEEE Con-
trol Systems Society, IEEE Computational Intelligence Society,
IEEE Systems, Man and Cybernetics Society, and IEEE Indus-
trial Applications Society.

His research interests include control systems and applica-
tions, adaptive and optimal control, nonlinear control, intelligent
control systems and applications, power and energy systems con-
trol.

E-mail: erlbprasad@gmail.com, ibpeedee@iitr.ac.in (Corre-
sponding author)

Barjeev Tyagi received his B.Eng. de-
gree in electrical engineering from Indian
Institute of Technology, Roorkee (IIT Roor-
kee) (formally University of Roorkee), India
in 1987, M.Tech. degree in electrical engi-
neering (control system) from IIT Kharag-
pur in 2000, and Ph.D. degree in electrical
engineering from IIT Kanpur in 2005. He
has been faculty in the Department of Elec-
trical Engineering, IIT Roorkee since 2007,

and presently serving as associate professor. He has supervised
many M.Tech. dissertations and two Ph. D. theses. He has pub-
lished many papers in refereed journals and conferences. He is
member of IEEE.

His research interests include power system deregulation,
power system optimization, distributed generation and control.

E-mail: btyagfee@iitr.ac.in

Hari Om Gupta obtained his B.Eng.
degree in electrical engineering from the
Government Engineering College, Jabalpur
securing 1st position in Jabalpur Univer-
sity, India. He received his M.Eng. degree
in systems engineering and operations re-
search and Ph. D. degree from the Indian
Institute of Technology, Roorkee (IIT Roor-
kee) in 1975 and 1980, respectively. At
present, he is working as director, JIIT

Sector-128, NOIDA, India and professor (on leave) in the De-
partment of Electrical Engineering, IIT, Roorkee, India.

He has published over 260 research papers, 35 technical re-
ports, and edited proceedings of four conferences and two books.
He has supervised 25 Ph.D. and over 45 M.Tech. scholars. He
has worked for 6 sponsored and over twenty industrial consul-
tancy projects. He is a senior member of IEEE, a fellow IE
(India), a life member of NIQR, ISTE, and System Society of
India.

His research interests include computer-aided design, reliabil-
ity engineering, power network optimization, distribution system
automation, power quality, power and distribution transformers
and DBMS.

E-mail: harifee@iitr.ac.in


