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Abstract: The stabilization problem for a class of linear continuous-time systems with time-varying non differentiable delay is solved
while imposing positivity in closed-loop. In particular, the synthesis of state-feedback controllers is studied by giving sufficient conditions
in terms of linear matrix inequalities (LMIs). The obtained results are then extended to systems with non positive delay matrix by
applying a memory controller. The effectiveness of the proposed method is shown by using numerical examples.
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1 Introduction

This paper focuses on linear time-varying delay systems.
The main objective is to build state-feedback controllers
that make the closed-loop system with time-varying delay
α-exponentially stable and positive. This class of systems
is frequently encountered in many fields of science and engi-
neering, especially in biological modeling, economics, phys-
iology and many others (see [1–4]). Since the existence of
delay is generally a source of instability and degradation of
performance, many researches and contributions have been
done to analyze stability of linear systems with time-varying
delay (see [5–8]).

In the literature, systems with nonnegative states are re-
ferred as positive systems (see [9–12] for general references).
These systems appear in many practical problems, when
the states represent physical quantities that have an intrin-
sically positive sign (absolute temperatures, levels, heights,
concentrations, etc). The stabilization of systems with de-
lays has been extensively studied in the literature (see [13–
18] and references therein), but only few authors have con-
sidered positive systems in this context of time-delay sys-
tems: we can quote [11, 14–16, 19, 20]. In fact, all the lat-
est references are only interested in asymptotic stability.
While, in practice, it is judicious that the system can con-
verge quickly (with a certain decay rate). It is well demon-
strated that, unlike asymptotic stability of this class of sys-
tems, the exponential stability (with given decay rate) of
positive time-varying and even constant delay systems is
dependent on the magnitude of delays. Consequently, it is
enough motivation to investigate the exponential stability
of positive systems with delay.

For the stabilization purpose of systems with delays,
some works on global stabilization via memoryless control
laws have been proposed (see [5, 13] and references therein).
On the other hand, other works were interested in the syn-
thesis of controllers with memory as in [15, 18, 21].

Generally, the time-varying delay is represented by a dif-
ferentiable function as in [12] for positive systems. However,
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some new studies treat the case of non differentiable delays
as [22].

In this paper, the results of [8] based on the idea of [23],
by considering a Lyapunov function composed of four terms,
are extended to positive systems. The stabilization problem
is then addressed for positive systems while correcting the
proposed LMI in [23] which seems to need some rectifica-
tions. Thus, this work studies the problem of stabilization
in the nonnegative state space for systems with varying-
time non differentiable delays. This problem, can be solved
by using two types of control laws, memoryless and mem-
ory controllers to be able to apply the proposed technique
to a large class of systems non initially positive and called
controlled positive.

The remainder of the paper is structured as follows:
Section 2 deals with the problem statement while some
preliminary results are presented in Section 3. Section 4
presents the main results together with illustrative exam-
ples. Finally, Section 5 gives some concluding remarks.

Notations. Rn
+ denotes the non-negative orthant of the

n-dimensional real space Rn.
MT denotes the transpose of the real matrix M .
A matrix M ∈ Rn×n is called a Metzler matrix if its

off-diagonal elements are nonnegative. That is, if M =
{mij}n

i,j=1, M is Metzler if mij > 0 when i �= j.
A matrix M ∈ Rn×n is called a M -matrix if and only if

there exists a positive vector λ such that Mλ > 0.
A matrix M (or a vector) is said to be nonnegative if

all its components are nonnegative (by notation M � 0).
It is said to be positive if all its components are positive
(M > 0).

A positive definite matrix P ∈ Rn×m is denoted as P >
0.

A positive (nonnegative) vector x ∈ Rn is noted x >
0 (x � 0).

2 Problem definition

This paper deals with the following set of governed de-
layed linear systems:



654 International Journal of Automation and Computing 11(6), December 2014

⎧
⎪⎨

⎪⎩

ẋ(t) = Ax(t) + A1x(t − h(t)) + Bu(t), t ∈ R+

x(t) = φ(t) � 0, t ∈ [−h2, 0]

A1 � 0

(1)

where x ∈ Rn is the state, u ∈ Rm is the control vector,
and the matrices A ∈ Rn×n, A1 ∈ Rn×n and B ∈ Rn×m

are supposed to be constant and known. h(t) ∈ R is the
time-varying delay considered as a continuous function not
necessarily differentiable, however bounded as

0 � h1 � h(t) � h2. (2)

Definition 1. Proposing two times ha = 0.5(h2 + h1),
and hr = 0.5(h2−h1), the time-varying delay h(t) satisfying
(2) can be expressed as

h(t) = ha + hrτ (t) (3)

where

τ (t) =

⎧
⎨

⎩

2h(t) − (h2 + h1)

h2 − h1
, h2 > h1

0, h2 = h1.
(4)

The main problem considered in this paper is the follow-
ing: The state feedback control u ∈ Rn×m is designed in
two ways: firstly as a memoryless one and secondly as a
memory control. In both cases, the controller must be de-
signed in such a way that the resulting system in closed-loop
is positive and α-exponentially stable for any delay function
h(t) satisfying (2), no matter differentiable.

3 Preliminaries

In order to solve this problem, some useful results on
delayed positive systems are now presented.

Define the following autonomous delayed continuous-
time system:

{
ẋ(t) = Ax(t) + A1x(t − h(t))

x(t) = φ(t) � 0, t ∈ [−h2, 0]
(5)

where matrix A is Metzler and matrix A1 � 0.
Definition 2. Given any positive initial condition x(t) =

φ(t) ∈ Rn
+, t ∈ [−h2, 0], the delayed system (5) is said to be

positive if the corresponding trajectory is never negative:
x(t) ∈ Rn

+ for all t � 0.
According to this definition, we need to find the condi-

tion under which the delayed system (1) is positive (see for
example [19, 24]).

Lemma 1. System (5) is positive (i.e., x(t) ∈ Rn
+) if

and only if A is a Metzler matrix and A1 is a nonnegative
matrix.

The following definition of α-exponential stability is also
recalled.

Definition 3. For given scalar α > 0, system (5) is called
α-exponentially stable if there exists a scalar δ > 0 such that
the solution of system (5) satisfies ‖x(t)‖ � δ ‖φ‖c e−αt,
∀t > 0, where ‖φ‖c = sup−τ�s�0 ‖φ(s)‖.

The following results for positive systems are recalled for
their use in the sequel.

Lemma 2. Matrix M is Metzler if and only if there
exists a positive scalar γ such that: M + γI > 0.

Theorem 1[25]. Let M be a Metzler matrix. Then, −M
is an M -matrix if and only if there is a positive definite ma-
trix W such that matrix MTW + WM is negative definite.

4 Main results

4.1 Stability

The following result presents a sufficient condition for the
α-exponential stability of the delayed system (5).

Theorem 2. For some given scalars h1, h2, α >
0, the positive system (5) is α-asymptotically stable for
h(t) satisfying (2), if there exist positive definite matrices
P, U, S, W, Ti, matrices Mi, (i = 1, 2, 3) with appropriate
dimensions such that the following LMIs hold:

Ω =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

Ω11 Ω12 Ω13 2haMT
1 hrT

T
1 A1

∗ Ω22 Ω23 2haMT
2 hrT

T
2 A1

∗ ∗ Ω33 2haMT
3 hrT

T
3 A1

∗ ∗ ∗ −2haS 0

∗ ∗ ∗ ∗ −hrW

⎤

⎥
⎥
⎥
⎥
⎥
⎦

< 0 (6)

where

Ω11 = 2αP + U + MT
1 + M1 + TT

1 A + ATT1

Ω12 = −M2 + MT
1 + TT

1 A1 + ATT2

Ω13 = P + M3 + MT
1 − TT

1 + ATT3

Ω22 = −e−2αhaU − M2 − MT
2 + TT

2 A1X + AT
1 T2

Ω23 = −M3 − TT
2 + AT

1 T3

Ω33 = haS + hrW − TT
3 − T3. (7)

Proof. See the Appendix. �

4.2 Stabilization by memoryless controller

This section presents the main results. First, the stabi-
lization problem for general systems is studied and solved.

In other words, the main problem reduces to looking for
a memoryless state feedback law u(t) = Kx(t), leading to
the delayed closed-loop system defined by

{
ẋ(t) = (A + BK)x(t) + A1x(t − h(t))

x(t) = φ(t) � 0, t ∈ [−h2, 0]
(8)

where matrix K ∈ Rm×n has to be selected to ensure the
following problem:

Find sufficient conditions on matrices A, A1 ∈ Rn×n,
B ∈ Rn×m, such that there exists a matrix K ∈ Rm×n

satisfying:
1) Positivity in closed-loop (Ac = A + BK is a Metzler

matrix).
2) Closed-loop α-exponential stability.
Note that no assumption on matrix A to be Metzler is

needed.
Theorem 3. For some given scalars h1, h2, α > 0,

γ > 0, system (8) is α-exponentially stable and positive for
h(t) satisfying (2), if there exist positive definite matrices
P, U, S, W , diagonal positive matrices Xi, matrices M̃i, (i =
1, 2, 3) and Yi with appropriate dimensions such that the
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following LMIs hold:
⎡

⎢
⎢
⎢
⎢
⎢
⎣

Ω̂11 Ω̂12 Ω̂13 2haM̂T
1 hrA1X1

∗ Ω̂22 Ω̂23 2haM̂T
2 hrA1X2

∗ ∗ Ω̂33 2haM̂T
3 hrA1X3

∗ ∗ ∗ −2haŜ 0

∗ ∗ ∗ ∗ −hrŴ

⎤

⎥
⎥
⎥
⎥
⎥
⎦

< 0 (9)

AX + BY + γX > 0 (10)

with Ti = ρiX , K = Y X−1 and

Ω̂11 = 2αP̂ + Û + M̂T
1 + M̂1 + AX1+

BY1 + X1A
T + Y T

i BT

Ω̂12 = −M̂2 + M̂T
1 + A1X1 + ρ2A

T + ρ2Y
TBT

Ω̂13 = P̂ + M̂3 + M̂T
1 − ρ1X + ρ3XAT + ρ3Y

TBT

Ω̂22 = −e−2αha Û − M̂2 + M̂T
2 + ρ2A1X + ρ2XAT

1

Ω̂23 = −M̂3 − ρ2X + ρ3XAT
1

Ω̂33 = haŜ + hrŴ − 2ρ3X.

Proof. We begin by the proof of the α-exponential sta-
bility.

Pre- and post-multiply LMI (6), where matrix A is re-
placed by A + BK, by X̂ = diag{X, X, X, X, X}. Let
Ti = ρiX , one obtains

XΩ11X = 2αXPX + XUX + XMT
1 X + XM1X+

ρ1(A + BK)X + ρ1X(A + BK)T

XΩ12X = −XM2X + XMT
1 X+

ρ1A1X + ρ2X(A + BK)T

XΩ13X = XPX + XM3X + XMT
1 X−

ρ1X + ρ3X(A + BK)T

XΩ14X = 2haXMT
1 X

XΩ15X = hrρ1A1X

XΩ22X = −e−2αhaXUX − XM2X + XMT
2 X+

ρ2A1X + ρ2XAT
1

XΩ23X = −XM3X − ρ2X + ρ3XAT
1

XΩ33X = haXSX + hrXWX − 2ρ3X

XΩ44X = −2haXSX

XΩ55X = −hrXWX. (11)

Thus, we replace XΩijX, i, j = 1, · · · , 5 by Ω̂ij . The
same treatment is done to matrices P, U, S, W , and Mi, i =
1, · · · , 3. Finally, letting K = Y X−1, we obtain φ =
X̂ΩX̂ < 0, where X̂ = diag{X, X, X, X, X}. Hence, the
resulting closed-loop system (8) is α-exponentially stable
with the feedback control u(t) = Kx(t).

To complete the proof, one has to show the positivity
condition (10) by using the idea of Theorem 1. Let con-
dition (10) be satisfied. Since matrix X is diagonal pos-
itive, X−1 is also diagonal positive. By post-multiplying
(10) by X−1, one obtains A + BY X−1 + γI > 0, that is
A + BK + γI > 0, for γ > 0, according to Lemma 2, the
matrix in closed-loop A + BK is Metzler while matrix A1

is assumed to be non negative. The system in closed-loop,
which is α-exponentially stable, is then positive. �

Remark 1. It is worth noting that in [23], only matrices
A+BK are pre and post multiplied by X to have XΩ11X =
2αP + U + MT

1 + M1 + ρ1(A + BK)X + ρ1X(A + BK)T,
which is obviously wrong.

4.3 Stabilization by memory controller

This section deals with memory controller to avoid any
assumption of positivity on the delay matrix A1. For this,
consider the following control law:

u(t) = Kx(t) + Fx(t − h(t)). (12)

The system in closed-loop becomes

{
ẋ(t) = (A + BK)x(t) + (A1 + BF )x(t− h(t))

x(t) = φ(t) � 0, t ∈ [−h2, 0]
(13)

where both matrices K, F ∈ Rm×n are selected to ensure
that this closed-loop system is simultaneously positive and
α-exponentially stable. In other words, find sufficient condi-
tions on matrices A, A1 ∈ Rn×n, B ∈ Rn×m, K, F ∈ Rm×n

satisfying:
1) Positivity in closed-loop (Ac = A + BK is a Metzler

matrix and A1c = A1 + BF is non-negative).
2) Closed-loop α-exponential stability.
Note that assumptions on matrices A, A1 are no more

needed.
Theorem 4. For some given scalars h1, h2, α > 0,

γ > 0, system (13) is α-exponentially stable and positive
for h(t) satisfying (2) if there exist positive definite matrices
P, U, S, W , diagonal positive matrix X, matrices M̂i, (i =
1, 2, 3), Y and Z with appropriate dimensions such that the
following LMIs hold:

Ψ < 0 (14)

AX + BY + γX > 0 (15)

A1X + BZ � 0 (16)

with Ti = ρiX , K = Y X−1, F = ZX−1 and

Ψ=

⎡

⎢
⎢
⎢
⎢
⎢
⎣

Ω̃11 Ω̃12 Ω̃13 2haM̃T
1 ρ1hrA1X + ρ1hrBZ

∗ Ω̃22 Ω̃23 2haM̃T
2 ρ2hrA1X + ρ2hrBZ

∗ ∗ Ω̃33 2haM̃3
T

ρ3hrA1X + ρ3hrBZ

∗ ∗ ∗ −2haS̃ 0

∗ ∗ ∗ ∗ −hrW̃

⎤

⎥
⎥
⎥
⎥
⎥
⎦

and

Ω̃11 = 2αP̃ + Ũ + M̃T
1 + M̃1 + ρ1AX+

ρ1BY + ρ1XAT + ρ1Y
TBT

Ω̃12 = −M̃2 + M̃T
1 + ρ1A1X+

ρ1BZ + ρ2A
T + ρ2Y

TBT

Ω̃13 = P̃ + M̃3 + M̃T
1 − ρ1X+

ρ3XAT + ρ3Y
TBT
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Ω̃22 = −e−2αha Ũ − M̃2 + M̃T
2 +

ρ2A1X + ρ2BZ + ρ2XAT
1 +

ρ2Z
TBT

Ω̃23 = −M̃3 − ρ2X + ρ3XAT
1 + ρ3Z

TBT

Ω̃33 = haS̃ + hrW̃ − 2ρ3X. (17)

Proof. We begin by the proof of the α-exponential sta-
bility. Pre- and post-multiply LMI (6), where matrix A
is replaced by A + BK and matrix A1 by A1 + BF , by
X̂ = diag{X, X, X, X, X}. Let Ti = ρiX , one obtains

XΩ11X = 2αXPX + XUX + XMT
1 X + XM1X+

ρ1(A + BK)X + ρ1X(A + BK)T

XΩ12X = −XM2X + XMT
1 X + ρ1(A1 + BF )X+

ρ2X(A + BK)T

XΩ13X = XPX + XM3X + XMT
1 X − ρ1X+

ρ3X(A + BK)T

XΩ14X = 2haXMT
1 X

XΩ15X = hrρ1A1X

XΩ22X = −e−2αhaXUX − XM2X + XMT
2 X+

ρ2(A1 + BF )X + ρ2X(A1 + BF )T

XΩ23X = −XM3X − ρ2X + ρ3X(A1 + BF )T

XΩ33X = haXSX + hrXWX − 2ρ3X

XΩ44X = −2haXSX

XΩ55X = −hrXWX. (18)

Thus, we replace XΩijX, i, j = 1, · · · , 5, by Ω̃ij . The
same treatment is done to matrices P , U , S, W and Mi, i =
1, · · · , 3. Finally, letting K = Y X−1 and F = ZX−1, we
obtain X̂ΩX̂ < 0, where X̂ = diag{X, X, X, X, X}. Hence,
the resulting closed-loop system (8) is α-exponentially sta-
ble with the feedback control u(t) = Kx(t) + Fx(t − h(t)).

To complete the proof, one has to show the positivity
conditions (15) and (16) by using the idea of Theorem 1.
Let condition (15) and (16) be satisfied. Since matrix
X is diagonal positive, X−1 is also diagonal positive.
By post-multiplying (15) and (16) by X−1, one obtains
A + BY X−1 + γI > 0 and A1 + BZX−1 respectively, that
is A + BK + γI > 0, for γ > 0, according to Lemma 2, the
matrix in closed-loop Ac = A+BK is Metzler while matrix
A1c = A1 + BF is non negative. The system in closed-loop
which is α-exponentially stable is then positive. �

5 Examples

In this section, two examples are studied, one for memo-
ryless controller and one for controller with memory.

Example 1. Memoryless state-feedback stabiliza-
tion. Consider a delayed system described by (1), with the
following system matrices:

A =

[
−1 −0.5

−3 −0.7

]

, A1 =

[
0.1 0.2

0.3 0.1

]

,

B =

[
−0.4 0

0 −0.2

]

.

In order to show the effectiveness of our results, two types
of delay functions, differentiable and not differentiable, are
used to plot the evolution of the system trajectories.

The first delay function is given by

h(t) =
0.5

1 + t
. (19)

The second delay function is given by

h(t) =

{
0.1 + 0.4sin2(t), if t ∈ [0, π]

0.5, elsewhere.
(20)

It can be seen that the open-loop system is not positive
(although A1 is nonnegative, there are off-diagonal negative
elements in A). The objective is to design a state feedback
controller u = Kx that stabilizes the system and makes the
closed-loop states nonnegative for any value of the delay
h(t) (starting from any nonnegative initial condition). For
this, conditions of Theorem 3 must be fulfilled. The gain of
a stabilizing control is given by any feasible solution to the
above LMIs. It is very important to notice that we should
choose Ti, i = 1, · · · , 3 with different values to obtain the
feasibility of this example. In other words, we should have
T1 �= T2 �= T3 and likewise . Otherwise, the LMIs may not
be feasible.

For this example, the LMIs are feasible and their solu-
tions are given for γ = 20, α = 0.2, ρ1 = 0.9, ρ2 = 0.5, ρ3 =
0.4, by

K =

[
18.0074 −1.4762

−15.1436 37.4535

]

Ac =

[
−8.2029 0.0905

0.0287 −8.1907

]

X =

[
0.5757 0

0 0.5776

]

P =

[
1.3700 0.0063

0.0063 1.3701

]

.

It can be seen that with this controller, the feedback
system is positive and the state evolution for the system re-
mains always within the nonnegative orthant. For example,
the state trajectories from several different initial positive
conditions can be seen as follows: Fig. 1 for differentiable
delay (19), and Fig. 2 for non differentiable delay (20) which
is presented in Fig. 3.
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Fig. 1 Trajectories of the states from different initial values ob-

tained with delay function (19)

Fig. 2 Trajectories of the states from different initial values ob-

tained with delay function (20)

Fig. 3 Trajectory of the non differentiable time-varying delay

(20)

Example 2. Memory state-feedback stabilization.
Consider a delayed system described by (1), with the fol-
lowing system matrices:

A =

[
−1 −0.5

−3 −0.7

]

, A1 =

[
−0.1 −0.2

0.3 −0.1

]

,

B =

[
−0.5 0

0 −0.2

]

.

In order to show the effectiveness of our results, the same
delay functions (19) and (20) are considered.

It can be seen that the open-loop system is not positive
(although A1 is nonnegative, there are off-diagonal negative
elements in A). The objective is to design a memory state
feedback controller u = Kx + Fx(t − h(t)) that stabilizes
the system and makes the closed-loop states nonnegative for
any value of the delay h(t) (starting from any nonnegative
initial condition). For this, conditions of Theorem 4 must

be fulfilled. The gain of the stabilizing controller is given by
any feasible solution to the above LMIs. It is very impor-
tant to notice that we should choose Ti, i = 1, · · · , 3 with
different values to obtain the feasibility of this example. In
other words, we should choose T1 �= T2 �= T3.

For this example, the LMIs are feasible with γ = 20, α =
0.2, ρ1 = 0.9, ρ2 = 0.5, ρ3 = 0.4. The results are given by

K =

[
17.3689 −1

−15 44.9221

]

F =

[
−2.7447 −0.4

1.5 −6.8617

]

Ac =

[
−9.6844 0

0 −9.6844

]

A1c =

[
1.2723 0

0 1.2723

]

X =

[
230.7098 0

0 230.7098

]

P =

[
696.7876 0

0 696.7876

]

.

It can be seen that with this controller, the feedback sys-
tem is positive and the state evolution of the system remains
always within the nonnegative orthant. For example, the
state trajectories from several initial positive conditions can
be seen in Fig. 4 for differentiable delay (19) and Fig. 5 for
non differentiable delay (20).

Fig. 4 Trajectories of the states from different initial values ob-

tained with delay function (19)

Fig. 5 Trajectories of the states from different initial values ob-

tained with delay function (20)
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6 Conclusions

This paper has solved the problem of imposing non neg-
ativity to closed-loop states using state feedback control
for continuous-time systems with non differentiable time-
varying delay. First, sufficient conditions of stability for
the system, by using LMIs, have been proposed. The same
idea was then followed to solve the problem of stabiliza-
tion while guaranteeing positivity of the state even for non
positive systems in open-loop. The obtained results are
then extended to systems with non positive delay matrix by
applying a memory controller. Some examples have been
presented to illustrate the proposed approach, showing its
feasibility and simplicity.

Appendix

Proof of Theorem 2. The proof follows the same ar-
guments as in the work of [23] without constant delay, but
with additional slack variables as shown in [8] for the α-
exponential stability part. It is worth noting that for sta-
bility purpose, matrix T1 is not necessarily diagonal as sug-
gested by Theorem 1.

For the proof, the following Lyapunov-Krasovskii func-
tion was used as in [8]:

V (x(t)) =

4∑

i=1

Vi(t) (A1)

where

V1(t) = e2αtxT(t)Px(t) (A2)

V2(t) =

∫ T

t−ha

e2αtxT(s)Ux(s)ds (A3)

V3(t) =

∫ t−ha

−ha

∫ T

t+s

e2αtẋ(θ)T(s)Sθ̇(s)dθds (A4)

V4(t) =

∫ −h1

−ha

∫ T

t+s

e2αtẋ(θ)T(s)Wθ̇(s)dθds. (A5)

By derivating these functionals, we obtain

V̇ (x(t)) =

3∑

i=1

V̇i(t) (A6)

where

V̇1(t) = 2αe2αtxT(t)Px(t) + 2e2αtxT(t)P ẋ(t)

V̇2(t) = e2αt[xT(t)Ux(t) − e−2αhaxT(t − ha)Ux(t − ha)]

V̇3(t) = e2αt[ẋT(t)haSẋ(t) −
∫ T

t−ha

e−2α(s−t)ẋT(s)Sẋ(s)ds]

V̇4(t) = e2αt[ẋT(t)hrWẋ(t) −
∫ t−h1

t−ha

e−2α(s−t)×

ẋT(s)Wẋ(s)ds]. (A7)

Certainly, for any scalar s ∈ [t − ha, t], we have

e−2αha � e−2α(s−t) � 1

and

−
∫ T

t−ha

e−2α(s−t)ẋT(s)Sẋ(s)ds �

− e−2αha

∫ T

t−ha

ẋT(s)Sẋ(s)ds. (A8)

For any scalar s ∈ [t − ha, t − hr] , we have

e−2αhr � e−2α(s−t) � 1

and

−
∫ t−h1

t−ha

e−2α(s−t)ẋT(s)Wẋ(s)ds �

− e−2αhr

∫ t−h1

t−ha

ẋT(s)Wẋ(s)ds �

− e−2αhr

∫ t−h(t)

t−ha

ẋT(s)Wẋ(s)ds. (A9)

Using (A8) and (A9), we obtain

V̇ (x(t)) � 2αe2αtxT(t)Px(t) + 2e2αtxT(t)P ẋ(t)+

e2αt[xT(t)Ux(t)− e−2αhaxT(t − ha)×
Ux(t − ha)] + e2αt[ẋT(t)haSẋ(t)−

e−2αha

∫ T

t−ha

ẋT(s)Sẋ(s)ds]+

e2αt[ẋT(t)hrWẋ(t)−

e−2αhr

∫ t−h(t)

t−ha

ẋT(s)Wẋ(s)ds] =

e2αt[xT(t)(2αP + U)x(t) + 2xT(t)P ẋ(t)+

ẋT(t)(haS + hrW )ẋ(t)−
e−2αhaxT(t − ha)Ux(t − ha)−

e−2αha

∫ T

t−ha

ẋT(s)Sẋ(s)ds−

e−2αhr

∫ t−h(t)

t−ha

ẋT(s)Wẋ(s)ds]. (A10)

Expanding the Newton-Leibniz formula, we have

x(t) − x(t − ha) −
∫ T

t−ha

ẋ(s)ds = 0. (A11)

Thus, by introducing the matrices Mi and Ti, i = 1, 2, 3,
we obtain the following equalities:

2e2αt[xT(t)MT
1 + xT(t − ha)MT

2 + ẋT(t)MT
3 ]×

[x(t) − x(t − ha) −
∫ T

t−ha

ẋ(s)ds] = 0 (A12)

and

2e2αt[xT(t)TT
1 + xT(t − ha)TT

2 + ẋT(t)TT
3 ] × [Ax(t)−

Bx(t − ha) − B

∫ T

t−ha

ẋ(s)ds − Bẋ(t)] = 0. (A13)
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Adding (A12) and (A13) to (A10) , we obtain

V̇ (x(t)) � 2αe2αtxT(t)Px(t) + 2e2αtxT(t)P ẋ(t)+

e2αt[xT(t)Ux(t) − e−2αhaxT(t − ha)×
Ux(t − ha)] + e2αt[ẋT(t)haSẋ(t)−

e−2αha

∫ T

t−ha

ẋT(s)Sẋ(s)ds]+

e2αt[ẋT(t)hrWẋ(t)−

e−2αhr

∫ t−h(t)

t−ha

ẋT(s)Wẋ(s)ds] =

e2αt[xT(t)(2αP + U)x(t) + 2xT(t)P ẋ(t)+

ẋT(t)(haS + hrW )ẋ(t)−
e−2αha xT(t − ha)Ux(t − ha)−

e−2αha

∫ T

t−ha

ẋT(s)Sẋ(s)ds−

e−2αhr

∫ t−h(t)

t−ha

ẋT(s)Wẋ(s)ds]+

2e2αt[xT(t)MT
1 + xT(t − ha)MT

2 + ẋT(t)MT
3 ]×

[x(t) − x(t − ha) −
∫ T

t−ha

ẋ(s)ds]+

2e2αt[xT(t)TT
1 + xT(t − ha)TT

2 + ẋT(t)TT
3 ]×

[Ax(t) − Bx(t − ha) − B

∫ T

t−ha

ẋ(s)ds − Bẋ(t)].

Then, we have

V̇ (x(t)) � e2αt[ξT(t)Ωξ(t)] (A14)

where ξ(t) = [xT(t) xT(t − ha) ẋT(t)]T. Consequently,
condition (6) is sufficient to obtain V̇ (x(t)) < 0 ensuring
the α-asymptotic stability of the positive system (5) with
varying-time delay. �
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