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Nonlinear Adaptive Robust Control Design for Static
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Surface Method
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Abstract: In view of single machine to infinite bus system with static synchronous compensator, which is affected by internal and

external disturbances, a nonlinear adaptive robust controller is constructed based on the improved dynamic surface control method

(IDSC). Compared with the conventional DSC, the sliding mode control is introduced to the dynamic surface design procedure, and the

parameter update laws are designed using the uncertainty equivalence criterions. The IDSC method not only reduces the complexity

of the controller but also greatly improves the system robustness, speed and accuracy. The derived controller cannot only attenuate

the influences of external disturbances against system output, but also has strong robustness to system parameters variance because

the damping coefficient is considered in the internal parameter uncertainty. Simulation result reveals that the designed controller can

effectively improve the dynamic performances of the power system.
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1 Introduction

The static synchronous compensator (STATCOM) is one

of the important flexible alternative current transmission

systems (FACTS) devices and can be used for dynamic

compensation of power systems to provide voltage sup-

port and stability improvement[1−3]. Over the past two

decades, various kinds of linear controllers for STATCOM

have been studied. The synthesized feedback controller was

proposed to improve phase margin in inductive load[4], a lin-

ear quadratic regulator (LQR) control was proposed in [5],

and the feedforward techniques and high gain full state feed-

back approach were used based on a linearization of the dq

inverter model in [6]. But these linear feedback controllers

cannot guarantee the uniform performance at all operating

points. It is necessary to analyze the STATCOM system

from the nonlinear control standpoint.

So far, some nonlinear controllers have been designed

for STATCOM system, such as input-output feedback

linearization[7−9] . The input-output feedback linearization

method allows the reference tracking or regulating prob-

lems to be solved by linear output feedback controllers.

However, although the stability and tracking performance

of the system are ensured by feedback controller, the sta-

bility and transient behavior of internal dynamics cannot

be guaranteed. In [10], the semi-global stability using Lya-

punov stability method for the modified damping controller

was proved. In [11−13], passivity-based control (PBC) was

proposed and the effectiveness of the PBC methodology for

STATCOM to achieve a robust performance was researched.
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Based on the adaptive fuzzy sliding mode controller and the

Nussbaum gain, a new power system stabilizer which en-

hances damping and improves transient dynamics of power

system stabilizers was introduced in [14]. The Nussbaum

gain was used to avoid the positive sign constraint and the

problem of controllability of the system.

Although these existing nonlinear control methods are

effective in some ways, one of the main problems of them

is that the parameter uncertainty, unmodelled dynamic

state and external disturbance have not been considered[15].

However, practical power systems are highly nonlinear, of

large scale and multivariables, so they are inevitably sub-

jected to the effects of external disturbances in the opera-

tion states, such as system faults, different hand operations

and load variations. Besides, there are other general distur-

bances from different sources, for instance, the inaccurate

description of system model, and errors of the controlled

plant or the noise of measurement components. Therefore,

it is a key point to tackle effectively these parameter uncer-

tainties, unmodelled dynamic states and external distur-

bances in the controller design procedure.

In this paper, we extend the previous control methods

for actual systems[16, 17]. Contribution made in this pa-

per consists in an adaptive robust control scheme which

incorporates the improved dynamic surface control method

with disturbance attenuation techniques. Compared with

the conventional backstepping and dynamic surface control

(DSC)[18], for the single machine to infinite bus system

(SMIB) with STATCOM including parametric uncertain-

ties and exogenous disturbances, the sliding mode control

is introduced into the dynamic surface design, and the pa-

rameters updated law is based on the uncertainty principle

of equivalence[19]. As a result, the computation is reduced

and system robustness is improved. In addition, the ex-

ternal disturbances are attenuated based on the Lyapunov
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stability theorem, and the robust stability and uniform ul-

timate boundedness are ensured for the controlled system.

As the entire design process does not use any linearization

processing, we can fully make use of the system nonlinear-

ity to ensure the applicability of the proposed control law

in the nonlinear systems. Further, simulation results are

shown to verify the effectiveness of the proposed control

law in an SMIB system.

The rest of the paper is organized as follows. Section 2

is devoted to the modelling of power system. The details

of controller design and the main results are described in

Section 3. Simulation studies are given in Section 4, and

Section 5 concludes the work.

2 System model description

The configuration of an SMIB system equipped with a

STATCOM is shown in Fig. 1.

Fig. 1 An SMIB system with STATCOM

In this system, the STATCOM is the parallel control

which is based on power converter, and it is supposed that

the components in it have no limitations of natural commu-

tation and work as forced commutation. Then the STAT-

COM could be modeled as a reactive flow resource, which

could inject lead or lag current to the power system. If the

mechanical input power of the generator is constant, then

the generator is represented by the constant voltage source

after transient reactance, and the STATCOM is described

by a first-order inertial loop. The whole system model is

expressed as follows.
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

δ̇ = ω − ω0

ω̇ =
ω0

H
{Pm − D

ω0
(ω − ω0) − E′

qVS sin δ

X1 + X2
[1+

X1X2Iq
√

(X2E′
q)2 + (X1VS)2 + 2X1X2E′

qVS cos δ
]}

İq =
1

T
(−Iq + Iq0 + u)

(1)

where δ is the rotor angle of the generator, ω is the rotor

speed of the generator, Pm is the mechanical power of the

prime motor, H is the inertial coefficient of the generator,

T is the equivalent time constant of the STATCOM, D and

E′
q are damping coefficient and transient EMF of gener-

ator q axis, respectively, X1 is the reactance between the

generator′s internal bus and STATCOM location bus, X2

is the equivalent reactance between the middle bus and the

infinite bus, VS is the infinite bus voltage, Iq is the output

reactive current of STATCOM, and u is the control input.

For system (1), we redefine the state variables as x1 =

δ − δ0, x2 = ω −ω0, x3 = Iq − Iq0, where δ0, ω0, Iq0 are the

initial values of corresponding variables. Then system (1)

is rewritten as
⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ẋ1 = x2

ẋ2 = −D

H
x2 +

ω0

H
{Pm − E′

qVS sin δ

X1 + X2
[1+

X1X2 (x3 + Iq0)
√(

X2E′
q

)2
+ (X1VS)2 + 2X1X2E′

qVS cos δ
]}

ẋ3 =
1

T
(−x3 + u) .

(2)

Define k1 = ω0
H

, k2 =
ω0E′

qVS

H(X1+X2)
, and assume they are

known constants. If D is an unknown constant parameter,

then θ2 = −D
H

is also an unknown parameter.

Define a known nonlinear function as

f(x1) =
X1X2

√
(X2E′

q)2 + (X1VS)2 + 2X1X2E′
qVS cos(x1 + δ0)

.

(3)

We also consider the external disturbance w = [w1 w2]
T,

which is unknown bounded. Then system (2) is transformed

into

ẋ1 = x2 (3a)

ẋ2 = θx2 + k1Pm − k2 sin(δ0 + x1)×
[1 + f(x1)(x3 + Iq0)] + w1 (3b)

ẋ3 =
1

T
(−x3 + u) + w2. (3c)

At the same time, the following assumptions are made

for system (3).

Assumption 1. xi, (i = 1, · · · , 3) is both measurable

and bounded.

Assumption 2. wi ∈ R and satisfies wi � ai, where ai

is a known positive constant, i = 1, 2.

Assumption 3. The reference trajectory x1d and its

first- and second-order derivatives are known and bounded.

For system (3) with parameter uncertainty and external

disturbances, we can use the IDSC method to design the

nonlinear robust controller. The control object is to con-

struct a control law u such that the output y = x1 of the

controlled system tracks the reference trajectory x1d, and

the tracking error |x − x1d| converges to a small neighbor-

hood of zero.

3 Design of nonlinear adaptive robust

controller

For system (3), we first define the surface error as

ei = xi−xid (4)

where x1d is the reference trajectory, xid (i = 2, 3) will be

given later on by the first-order filter.

Define the boundary layer errors as

yi+1 = x(i+1)d−x∗
i+1 (5)

where x∗
i+1(i=1, 2) is the stabilizing function which will also

be designed later on.



336 International Journal of Automation and Computing 11(3), June 2014

Now we shall show a new dynamic surface control proce-

dure of the robust adaptive controller for the system defined

in (3).

Step 1. For the first subsystem of (3), viewing x2 as the

virtual control, we have

ė1 = ẋ1 − ẋ1d = x2 − ẋ1d = e2 + y2 + x∗
2 − ẋ1d. (6)

We select the first virtual stabilizing function as

x∗
2 = −c1e1 + ẋ1d (7)

where c1 is a positive design constant. Substituting (7) into

(6) yields

ė1 = −c1e1 + e2 + y2. (8)

Let x∗
2 be an input and pass through a first-order filter

as

τ2ẋ2d + x2d = x∗
2 (9)

where τ2 is a given time constant, and x2d(0) = x∗
2(0).

Step 2. For the second subsystem of (3), viewing x3 as

the virtual control, we have

ė2 = ẋ2 − ẋ2d = θx2 + k1Pm − k2 sin(δ0 + x1)×
[1 + f(x1)(x3 + Iq0)] + w1 − ẋ2d =

k1Pm − k2 sin(δ0 + x1) [1 + f(x1)(e3 + y3 + x∗
3+

Iq0)] + x2

(

θ̂ +
1

2
x2

2 − z

)

+ w1 − ẋ2d (10)

where θ̂ is the parameter estimation of θ, and z is the pa-

rameter estimation errors which is given by

z = θ̂ − θ +
x2

2

2
. (11)

Select the second virtual stabilizing function

x∗
3 =

1

k2 sin(δ0 + x1)f(x1)
[−c2e2 − k1Pm − x2(θ̂ +

1

2
x2

2)−
e2

(2γ2)2
+ ẋ2d − k2 sin(δ0 + x1)] − Iq0 (12)

where c2, γ2 are positive design constants, and the adaptive

law to the uncertain parameter is selected as follows based

on the uncertainty equivalence criterion.

˙̂
θ = − x2[k1Pm − k2 sin(δ0 + x1)[1 + f(x1)(x3 + Iq0)]+

x2(θ̂ +
1

2
x2

2)]. (13)

Therefore, the dynamics of the estimation error is

ż = −x2
2z + x2w1. (14)

Substituting (11) and (12) into (10) yields

ė2 = − c2e2 − e2

(2γ2)2
− x2z + k2 sin(δ0 + x1)f(x1)×

(e3 + y3) + w1. (15)

Let x∗
3 be an input and pass through a first-order filter

as

τ3ẋ3d + x3d = x∗
3 (16)

where τ3 is a given time constant, and x3d(0) = x∗
3(0).

Step 3. For the third subsystem of (3), in light of (4),

we have

ė3 = ẋ3 − ẋ3d =
1

T
(−x3 + u) + w2 − ẋ3d. (17)

Define the sliding mode s = d1e1 + d2e2 + e3 =0 which

satisfies the asymptotic reaching condition, where d1 and

d2 are positive design constants, and define the Lyapunov

function of the whole system as

V =
1

2

2∑

i=1

e2
i +

1

2

3∑

i=2

y2
i +

1

2
s2 +

ε

2
z2 (18)

where ε >0 is a design constant. The time derivative of V

is

V̇ =
2∑

i=1

eiėi +
3∑

i=2

yiẏi + sṡ + εzż. (19)

Noting that (10) and ẋ(i+1)d =
x∗

i+1−x(i+1)d
τi+1

, we can get

ẏi+1 = ẋ(i+1)d − ẋ∗
i+1 =

x∗
i+1 − x(i+1)d

τi+1
− ẋ∗

i+1 =

− yi+1

τi+1
− ẋ∗

i+1. (20)

From (7), we have ẋ∗
2 = −c1ė1 + ẍ1d, based on Assump-

tions 1 – 3, we know ẋ∗
2 is also bounded, i.e., there exists a

positive constant D2 such that sup |ẋ∗
2| � D2.

Besides, we can get from (12)

ẋ∗
3 =

− cos(δ0 + x1)f(x1)ẋ1 − sin(δ0 + x1)ḟ(x1)ẋ1

k2[sin(δ0 + x1)f(x1)]2
×

(−c2ė2 − ẋ2θ̂ − x2
˙̂
θ − 3

2
x2

2ẋ2 − ė2

(2γ2)2
+ ẍ2d−

k2 cos(δ0 + x1)ẋ1).

So ẋ∗
3 can be written as the function form, i.e., ẋ∗

3 =

f(x1, ẋ1, ẋ2, θ̂, x2d). By using Assumptions 1 – 3 and noting

the system model (3), we can know that all the variables

in ẋ∗
3 are bounded, and there exists a positive constant D3

such that sup|ẋ∗
3| � D3.

Then we have

V̇ =e1(−c1e1 + e2 + y2) + e2[−c2e2 − e2

(2γ2)2
− x2z+

k2 sin(δ0 + x1)f(x1)(e3 + y3) + w1]+

3∑

i=2

yi(−yi

τi
+ Di) + s[d1ė1 + d2ė2+

1

T
(−x3 + u) + w2 − ẋ3d] − εx2

2z
2 + εx2zw1. (21)

Select the real control input u as

u = x3 + T [−β1s − β2sgn(s) − d1ė1 − d2ė2 − s

(2γ3)2
+ ẋ3d]

(22)

where β1, β2 and γ3 are positive design constants. Substi-

tuting (22) into (17) yields

ė3 = −β1s − β2sgn(s) − d1ė1 − d2ė2 − s

(2γ3)2
+ w2. (23)
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In the new coordinates defined by (6)–(23), we have an

important theorem as follows.

Theorem 1. For the nonlinear systems (3) in the param-

eter feedback form with parameter uncertainty and external

disturbances, the closed-loop error system will be globally

and uniformly ultimately bounded if we apply the robust

adaptive control law (22), the stabilizing functions (7), (12)

and the parameter adaptive laws (13). Furthermore, given

any constant μ∗, there exists T such that e(t) � μ∗ for all

t � T .

Proof. The time derivative of V gives

V̇ = − c1e
2
1 − c2e

2
2 − e2

2

(2γ2)2
− e2x2z − εx2

2z
2 + e2k2×

sin(δ0 + x1)f(x1)(e3 + y3) + e2w1 + εx2zw1−

β1s
2 − β2 |s| − s2

(2γ3)2
+ sw2 +

3∑

i=2

yi

(−yi

τi
+ Di

)

�

− c1e
2
1 − c2e

2
2 − β1s

2 − β2 |s| + 1

2
e2
2 +

1

2
(x2z)2−

εx2
2z

2 −
[ e2

2

(2γ2)2
− e2w1

]
+ εx2zw1 −

[ s2

(2γ3)2
−

sw2

]
+ e2g(x1)(e3 + y3) −

3∑

i=2

y2
i

τi
+

3∑

i=2

|yi| |Di| �

− c1e
2
1 −

(

c2 − 1

2

)

e2
2 − β2 |s| − (ε − 1)(x2z)2−

β1[(d1e1 + d2e2)
2 + e2

3 + 2(d1e1 + d2e2)e3]+

3∑

i=2

γ2
i w2

i +
ε2

2
w2

1 +
|g(x1)|

2
(2e2

2 + e2
3 + y2

3)−

3∑

i=2

y2
i

τi
+

3∑

i=2

σy2
i

2
+

3∑

i=2

D2
i

2σ
(24)

where σ > 0 is a design constant, and g(x1) = k2 sin(δ0 +

x1)f(x1).

It follows that

V̇ � − c1e
2
1 −

(

c2 − 1

2
− |g(x1)|

)

e2
2 − β2 |s| −

(ε − 1)(x2z)2 + m1e
2
1 + m2e

2
2+

m3e
2
3 +

|g(x1)|
2

e2
3−

(
1

τ2
− σ

2

)

y2
2 −

[
1

τ3
− σ

2
− |g(x1)|

2

]

y2
3+

(
γ2
2 +

ε

2

)
w2

1 + γ2
3w2

2 +
D2

2 + D2
3

2σ
(25)

where m1 = −β1d
2
1+β1d1d2+β1d1, m2 = −β1d

2
1+2β1d1d2+

β1d1, and m3 = −β1 + β1d1 + β1d2.

In the normal operation of power system, g(x1) and wi

are bounded, then we can suppose |g(x1)| � Gmax, |wi| �
wmax, and select γ = max{

√
γ2
2 + ε

2
, γ3}. Then we get

V̇ � − (c1 − m1)e
2
1 −

(

c2 − 1

2
− m2 − Gmax

)

e2
2−

(

−m3 − Gmax

2

)

e2
3 − β2 |s| − (ε − 1)×

(x2z)2 −
(

1

τ2
− σ

2

)

y2
2 −

[
1

τ3
− σ

2
−

Gmax

2

]

y2
3 + 2γ2w2

max +
D2

2 + D2
3

2σ
. (26)

Select c1 > m1, c2 > 1
2
+m2+Gmax, m3+ Gmax

2
< 0, β2 >

0, ε > 1, 1
τ2

> σ
2
, 1

τ3
> σ

2
+ Gmax

2
, a0 = min

{
ci, βi, ε,

1
τi+1

}
,

and b0 = 2γ2d2
max +

∑n
i=2

D2
i

2σ
. Then we have

V̇ � −a0

( 3∑

i=1

e2
i +

3∑

i=2

y2
i

)
+ b0. (27)

If ‖EEE‖ >
√

b0
a0

and ‖YYY ‖ >
√

b0
a0

, then V̇ � 0, where

EEE = [e1, e2, e3]
T and YYY = [y2, y3]

T. So the system errors

are uniformly ultimately bounded. �
Remark 1. The above inequality guarantees that ei

will converge to b0
a0

in an exponential rate, and when the

external disturbances wi disappear, the whole system will

still be globally uniformly ultimately bounded.

Remark 2. For the selection of designed constants, it

seems that the value of Gmax needs to be decided. But in

fact, this is not completely such. When the control gain

g(x1) is constant, we can know the real value of Gmax def-

initely. When g(x1) is a bounded function, we only set ci

and 1
τi

large enough to guarantee the stability and some

performance of system by trial and error.

4 Simulation results

In this section, we simulate the closed-loop system under

the designed controller. The used system parameters are in

the following: H = 8, E
′
q = 1, Vs = 1, X1 = 0.6, X2 = 0.4,

δ0 = π
3
, and ω0 = 314.159 rad/s.

The relevant design parameters are taken as follows: d1 =

0.6, d2 = 0.1, d3 = 2, β1 = 80, β2 = 2, c1 = 2, c2 = 30, ε =

4, σ = 10, γ = 0.2, and τ2 = τ3 = 0.01.

The closed-loop system is simulated in two cases: small-

signal stability and large-disturbances stability.

Case 1. Small-signal stability.

The simulation results are shown in Figs. 2–4.

From the responding curves of the system states, we can

see that the system has very good convergence performance

though it is subjected to the influence of external distur-

bances and parameter uncertainty. The states of the closed-

loop system go into the steady states in no more than 0.5

seconds.

At the same time, the parameter estimation is also con-

vergent to steady state, just like what the response curve

depicted in Fig. 4. Thus, all of these do verify the conclusion

of Theorem 1.
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Fig. 2 The time response of rotor in Case 1

Fig. 3 The response curves of x2, x3

Fig. 4 The time response of parameter estimations

Case 2. Large-disturbances stability.

The system is in a pre-fault steady-state. Suppose that

a symmetrical three-phase short-circuit fault occurs at the

outlet of the transformer at t = 0.2 s. In order to show the

effectiveness of the proposed IDSC controller, we compare

it with the adaptive backstepping controller under the same

initial condition and system parameters.

The corresponding results are shown in Figs. 5 and 6.

One can see that the rotor angle for the proposed IDSC in

this paper approaches to the required operation points more

quickly than the case of backstepping control, and that the

local oscillation amplitudes of power angle and relative bus

voltage under the IDSC are smaller. The simulation results

show that the IDSC controller enhances the rotor angle and

voltage stability in the presence of the fault.

Fig. 5 Rotor angle responding curves

Fig. 6 Bus voltage Vs responding curves of the system

5 Conclusions

A novel adaptive control strategy is presented in this pa-

per based on the perturbed nonlinear mathematic model

using the IDSC. The parameter uncertainty and the ex-

ternal disturbances are considered comprehensively, and fi-

nally the uniformly ultimately bounded is achieved. Com-

pared with the conventional backstepping methods, this ap-

proach reduces the requirements of the controlled systems,

such as matching condition and so on, while the robustness

to model errors and external disturbances and the adapt-

ability to uncertain parameters are reserved. Based on this

approach, the robust adaptive controller has been designed

and simulation studies are conducted. Simulation results

demonstrate that the suggested controller can effectively

improve the dynamic performances of the power systems.
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