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Abstract: The trajectory tracking control is considered for nonholonomic mechanical systems with affine constraints and dynamic
friction. A new state transformation is proposed to deal with affine constraints, and then an integral feedback compensation strategy
is used to identify the dynamic friction. The proposed controller ensures that the output tracking errors converge to zero as t → ∞.
As an application, a detailed example is presented to illustrate the effectiveness of the control scheme.
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1 Introduction

Nonholonomic constraints arise in many mechanical sys-

tems when there is a rolling or sliding contact, such as

wheeled mobile robots, n-trailer systems, space robots,

underwater vehicles, multi-fingered robotic hands and so

on. Control of these systems has received considerable

attention[1−7] due to the demand for control of the above-

referred systems.

The tracking problem for nonholonomic systems, as a

much more interesting issue in practice, is to make the

state of the closed-loop system track a given desired tra-

jectory. For example, Wang et al.[8] presented an adaptive

robust control strategy for a class of mechanical systems

with both holonomic and nonholonomic constraints. Based

on physical properties, adaptive robust motion/force con-

trol for wheeled inverted pendulums is investigated in [9].

For mobile manipulators under both holonomic and non-

holonomic constraints, the authors of [10] and [11] proposed

state-feedback control strategies by introducing an appro-

priate state transformation, and adaptive robust output-

feedback force/motion control strategies, respectively. It is

worth pointing out that tracking control of nonholonomic

systems with linear constraints (J(q)q̇ = 0) has been widely

studied[8−14] to date. In fact, there is another large class

of constraints which are affine in velocities, called affine

constraints[15−17] (J(q)q̇ = A(q)), such as a boat on a run-

ning river with the varying stream, ball on rotating table

with invariable angular velocity, under-actuated mechanical

arm, etc. Kai[15] defined rheonomous affine constraints and

explained a geometric representation method for them, then

derived a necessary and sufficient condition for completing
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nonholonomicity of the rheonomous affine constraints. In

[16], Kai et al. derived very good results about nonholo-

nomic dynamic systems with affine constraints. To be spe-

cific, he got several preliminary properties of this system, in-

vestigated local accessibility and local controllability based

on both Sussmann′s theorem and linear approximation ap-

proaches, and derived conditions for local asymptotic sta-

bilizability by linear state feedback and nonlinear smooth

state feedback at last. However, tracking control for such

systems has not been investigated until now. Hence, re-

searching tracking control for such mechanical systems is

an innovatory and significative work.

A new continuous control mechanism compensated for

uncertainty in a class of high-order, multiple-input multiple-

output nonlinear systems, was presented in [18]. Based on

this control strategy, Makkar et al. considered modeling

and compensation for parameterizable friction effects for a

class of mechanical systems in [19]. In [20], Patre et al.

developed a novel adaptive nonlinear control design which

achieves modularity between the controller and the adap-

tive update law. Based on this compensatory strategy for

the uncertainties and the asymptotic tracking idea for un-

certain multi-input nonlinear systems, the trajectory track-

ing control for nonholonomic mechanical systems with affine

constraints and dynamic friction is considered in this paper.

The rest of this paper is organized as follows. System de-

scription and control design are given in Section 2. Section

3 addresses the main results. For the application, a practi-

cal example is considered in Section 4. Section 5 gives some

concluding remarks.
Notations. ‖x‖ denotes the Euclidean norm of x;

sgn(·) denotes the standard signum function; we say that
x(t) ∈ L∞ when ‖x‖∞ � supt�0 |x(t)| exists; a continu-

ous function h : R+ → R+ is said to be a K function if it
is strictly increasing and vanishes at zero. For simplicity,
sometimes the arguments of functions are dropped.
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2 System description and control de-
sign

2.1 Dynamics model

In this paper, we consider a class of nonholonomic me-
chanical systems described by Euler-Lagrangian equation:

M(q)q̈ + V (q, q̇)q̇ + G(q) + F (q, q̇) = τ + f (1)

where q = [q1, · · · , qn]T ∈ Rn is the generalized coordi-
nates, and q̇, q̈ ∈ Rn represent the generalized velocity vec-
tor and acceleration vector, respectively; M(q) ∈ Rn×n is
the inertia matrix; V (q, q̇)q̇ ∈ Rn presents the centripetal,
Coriolis forces; G(q) ∈ Rn represents the gravitational
force; F (q, q̇) ∈ Rn represents the friction force; τ ∈ Rn

is the vector of control input; f = J(q)λ ∈ Rn denotes the
vector of constraint force, where J(q) ∈ Rn×m is constraint
matrix, and λ ∈ Rm is Lagrangian multiplier corresponding
to m nonholonomic affine constraints which are represented
by analytical relations between the generalized coordinates
q and velocity vectors q̇, and can be written as:

JT(q)q̇ = A(q) (2)

where J(q) = [j1(q), · · · , jm(q)] ∈ Rn×m is of full rank,
and A(q) = [a1(q), · · · , am(q)]T ∈ Rm is a known vector
function.

Remark 1. It is worth emphasizing that the system
studied in this paper is more general than that in some ex-
isting literatures such as [9, 12, 14], where dynamic equation
satisfies the classical linear constraint. In fact, by taking
A(q) = 0, (2) transforms to linear constraints, whose track-
ing problem has received considerable attention.

The subsequent development is based on the assumption
that M(q), V (q, q̇), G(q) are known and bounded if their el-
ements are all bounded. Moreover, in order to facilitate the
subsequent design and analysis, the following assumptions
will be exploited:

Assumption 1. If q and q̇ are bounded, the inertia ma-
trix M(q) satisfies ∂M(q)

∂q
∈ L∞.

Assumption 2. The dynamic friction term F (q, q̇) sat-
isfies F (q, q̇) ∈ L∞, Ḟ (q, q̇) ∈ L∞, F̈ (q, q̇) ∈ L∞, if their
elements are bounded.

2.2 State transformation

This part mainly focuses on reducing the number of state
variables which provide motion complying with the affine
constraints.

It is easy to find a full-rank matrix S(q) ∈ Rn×(n−m)

satisfying

JT(q)S(q) = 0. (3)

Define ξ(t) = [q, −t]T, then (2) can be expressed con-
cisely as

[
JT(q) A(q)

]
ξ̇(t) = 0. (4)

Let

E(q) =

[
S(q) η(q)

0 −1

]
∈ R(n+1)×(n−m+1)

where η(q) ∈ Rn satisfies JT(q)η(q) = A(q). One can de-
duce that E is a full-rank matrix and satisfies

[
JT(q) A(q)

]
E(q) = 0. (5)

From (4) and (5), we know that there exists a (n−m+1)-
dimensional vector ˙̄z = [ ˙̄zT

n−m, ˙̄zn−m+1]
T such that ξ̇ = E ˙̄z,

that is
[

q̇

−1

]
=

[
S(q) η(q)

0 −1

] [
˙̄zT
n−m

˙̄zn−m+1

]
(6)

which implies ˙̄zn−m+1 = 1. For convenience, define z �
z̄n−m ∈ Rn−m. In view of the relationship (6), the gener-
alized velocity vectors can be written as

q̇ = S(q)ż + η(q). (7)

It is clear that z corresponds to the internal state variable.
Substituting (7) into (1), pre-multiplying ST(q) on both

sides of it, and using JT(q)S(q) = 0, the dynamics of the
mechanical system made up by (1) and (2) can be described
clearly as

M1(q)z̈ + V1(q, q̇)ż + G1(q, q̇) + F1(q, q̇) = τ1 (8)

where M1(q) = ST(q)M(q)S(q), V1(q, q̇) = ST(q)(
M(q)Ṡ(q) + V (q, q̇)S(q)

)
, G1(q, q̇) = ST(q)

(
M(q)η̇(q)

+V (q, q̇)η(q) + G(q)
)
, τ1 = ST(q)τ , F1(q, q̇) = ST(q)

F (q, q̇).
Property 1[21]. The matrix M1 is symmetric and satis-

fies

a‖x‖2 � xTM1(x)x � ā(‖x‖)‖x‖2

where a is a known positive constant, ā(x) is a known pos-
itive function.

Remark 2. The above transformations consist of (3)
and (7) ensure that the transformed system (8) still satisfies
constraint equation (2), and possesses the practical physical
meaning, for further detail, see [8, 9]. This can also be
confirmed by the practical example in Section 4.

Remark 3. The aforementioned transform method dif-
fers from the traditional ones in [8−11]. More specifically,
when the affine constraints are imposed on the mechani-
cal system, it is difficult to find linearly independent vector
fields to proceed with a simple diffeomorphism transforma-
tion for canceling the constraint forces in dynamic equa-
tions. Hence, we present the aforementioned transform to
achieve this goal.

2.3 Control design

The control objective of this paper can be specified as
follows. Given the desired trajectories zd(t) and żd(t) which
are assumed to be bounded and should satisfy constraint
(2). In addition, z̈d(t) and

...
z d(t) are assumed to exist and

be bounded. We determine a control law such that the
internal state z(t) and ż(t) are globally bounded and the
output tracking error

e1(t) = zd(t) − z(t). (9)

And its time derivative ė1(t) converges to zero.
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To achieve the desired control objective, the following
filtered tracking errors[19, 20] are defined as

{
e2(t) = ė1(t) + α1e1(t)

ρ(t) = ė2(t) + α2e2(t)
(10)

where e2(t), ρ(t) ∈ Rn−m, and α1 > 0, α2 > 0 are design
constants. The filtered tracking error ρ(t) is not measurable
because its expression depends on z̈(t). In view of (8) and
(9), pre-multiplying (10) by M1, the following expression
can be obtained

M1(q)ρ(t) =M1(q)z̈d(t) + V1(q, q̇)ż(t)+

G1(q, q̇) + F1(q, q̇) − τ1+

α1M1(q)ė1(t) + α2M1e2(t). (11)

Based on (11), the control torque input is designed as

τ1 =M1(q)z̈d(t) + V1(q, q̇)ż(t) + G1(q, q̇)+

α1M1(q)ė1(t) + α2M1e2(t) + u(t) (12)

where u(t) ∈ Rn−m denotes a subsequently designed con-
trol term. Substituting (12) into (11), one can get

M1(q)ρ(t) = F1(q, q̇) − u(t). (13)

It is evident that if ρ(t) → 0, then u(t) will identify
the friction model F1(q, q̇). Hence, the next objective is to
design the control term u(t) to ensure ρ → 0. To facilitate
the design of u(t), differentiating (13) yields:

M1(q)ρ̇(t) = Ḟ1(q, q̇) − u̇(t) − Ṁ1(q)ρ(t). (14)

Similar to [19], u(t) is designed as

u(t) =(ks + 1)e2(t) − (ks + 1)e2(0)+∫ t

0

(
(ks + 1)α2e2(τ ) + βsgn(e2(τ ))

)
dτ (15)

where ks ∈ R is control gain, and β ∈ R is a positive
constant which will be specified later. u(t) expressed in
(15) does not depend on the unmeasurable filtered tracking
error term ρ, but its time derivative of u(t) can be expressed
as a function of ρ(t). Taking the time derivative of (15), one
can get

u̇(t) = (ks + 1)ρ(t) + βsgn(e2(t)). (16)

Substituting (16) into (14), the following closed-loop er-
ror system can be obtained:

M1(q)ρ̇(t) = − 1

2
Ṁ1(q)ρ(t)− (ks + 1)ρ(t) − e2(t)−

βsgn(e2(t)) + Θ(q, q̇, t) (17)

where Θ(q, q̇, t) = Ḟ1(q, q̇) − 1
2
Ṁ1(q)ρ(t) + e2(t). We define

Θd =
∂F1(zd, żd)

∂zd
żd(t) +

∂F1(zd, żd)

∂żd
z̈d(t).

In view of Assumption 2 and Remark 1, it is noted that
żd, z̈d and

...
z d are all bounded. Hence, one can find known

positive constants B1 and B2, such that

‖Θd‖ � B1, ‖Θ̇d‖ � B2.

Define Θ̃(t) = Θ(t) − Θd(t), then the closed-loop error sys-
tem (17) can be rewritten as

M1(q)ρ̇(t) = − 1

2
Ṁ1(q)ρ(t) − (ks + 1)ρ(t) − e2(t)−

βsgn(e2(t)) + Θ̃(t) + Θd(t). (18)

3 Main results

Now, we are ready to present the following theorem,
which summarizes the main results of the paper.

Theorem 1. Consider the nonholonomic mechanical
system described by (1) and (2), subject to Assumptions
1 and 2, if we select parameter β satisfying β > B1 + 1

α2
B2,

then the controller given in (12) and (15) ensure that all the
signals of closed-loop system are bounded and the tracking
errors e1(t), ė1(t) → 0 as t → ∞.

Proof. Let D ∈ R3(n−m)+1 be a domain contain-
ing y(t) = 0, where y(t) ∈ R3(n−m)+1 is defined as

y(t) =
[
xT(t),

√
P (t)

]T
, x(t) ∈ R3(n−m) is defined as

x(t) = [eT
1 (t), eT

2 (t), ρT(t)]T, and the function P (t) ∈ R
is defined as

P (t) = β‖e2(0)‖ − e2(0)
TΘd(0) −

∫ t

0

L(τ )dτ

where the auxiliary function L(t) is defined as

L(t) = ρT
(
Θd(t) − βsgn(e2(t))

)
.

Then, if β > B1 + 1
α2

B2, with manipulations similar to

Appendix A in [18], the following inequality can be obtained

∫ t

0

L(τ )dτ � β‖e2(0)‖ − e2(0)
TΘd(0).

Hence, one can deduce P (t) � 0.
Choose a candidate Lyapunov function[19, 20] as

V (t) =eT
1 (t)e1(t) +

1

2
eT
2 (t)e2(t)+

1

2
ρT(t)M1(q)ρ(t) + P (t). (19)

Taking the time derivative of V (t) along the solutions of
(8), and substituting (9), (10) and (18) into it, we have

V̇ (t) =2eT
1 (t)ė1(t) + eT

2 (t)ė2(t) + ρT(t)M1(q)ρ̇(t)+

1

2
ρT(t)Ṁ1(q)ρ(t) + Ṗ (t) �

− 2α1‖e1(t)‖2 − α2‖e2(t)‖2 − (ks + 1)‖ρ(t)‖2+

2eT
1 (t)e2(t) + ρT(t)Θ̃. (20)

Since Θ is continuously differentiable, according to the
mean value theorem, we can get the upper bound of Θ̃ as
follows[18] :

‖Θ̃‖ � ϕ(‖x(t)‖)‖x(t)‖
where ϕ(‖x(t)‖) is an appropriate K function. In view of
2eT

1 (t)e2(t) � ‖e1(t)‖2 + ‖e2(t)‖2, V̇ (t) can be simplified as

V̇ (t) � −λ‖x(t)‖2 −
(
ks‖ρ(t)‖2 − ϕ(‖x(t)‖)‖ρ(t)‖‖x(t)‖

)
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where λ = min{2α1 − 1, α2 − 1, 1}, and α1, α2 satisfy α1 >
1
2
, α2 > 1.
Completing the squares for third term in above inequal-

ity, one can easily get

ϕ(‖x(t)‖)‖ρ(t)‖‖x(t)‖ � ks‖ρ(t)‖2 +
ϕ2(‖x(t)‖)‖x(t)‖2

4ks
.

With this inequality in mind, inequality (20) reduces to

V̇ (t) � −λ‖x(t)‖2 +
ϕ2(‖x(t)‖)‖x(t)‖2

4ks
. (21)

Now we define a compact set:

N1 =
{

y(t) ∈ R3(n−m)+1
∣∣‖y(t)‖ � ϕ−1

(
2
√

λks

)}
.

The inequality (21) can be used to show that V (t) �
V (0) in N1, hence, all the the signals e1(t), e2(t), ρ(t) on
the right-hand side of function (19) are bounded in N1.
From the definition of e1(t), e2(t) and ρ(t), we can fur-
ther get ė1(t), ė2(t) ∈ L∞ in N1. The assumption that
zd(t), żd(t), z̈d(t) are bounded can be used to conclude that
z(t), ż(t), z̈(t) ∈ L∞ are in N1. We know M1(q), V1(q, q̇),
G1(q) are all bounded in N1. Hence, τ1 ∈ L∞ is in N1.

Now, let N2 ⊂ N1 denote a set defined as follows:

N2 =

{
y(t) ⊂ N1

∣∣∣δ2(y(t))‖y(t)‖2 < δ1

(
ϕ−1(2

√
λks)

)2
}

where δ1 = 1
2

min{1, a}, δ2(y(t)) = max{1, 1
2
ā(y(t))}, and

the definition of a and ā(y(t)) have been given in Property 1.
From (21), one can obtain that there must exist a positive
function U(y(t)) = c‖x(t)‖2, such that

V̇ (t) � −U(y(t)).

Invariance-like Theorem[22] can be used to show that

U(y(t)) = c‖x(t)‖2 → 0, t → ∞, ∀y(0) ∈ N2.

Based on the definitions of x(t), one has e1(t), e2(t) → 0 as
t → ∞, ∀y(0) ∈ N2. From (10), we finally get ė1(t) → 0 as
t → ∞, ∀y(0) ∈ N2.

�

4 Simulation

Consider a boat with payload on a running river[17] (see
Fig. 1). The x-axis and y-axis denote the transverse direc-
tion and the downstream direction of the river, respectively.
Here, we suppose the stream of the river only depends on
transverse position x in the simulation. According to the
motion of boat on the river, one can get the following kine-
matic equations:

Fig. 1 Boat on a running river

{
ẋ = V cos θ − C(x) cos θ sin θ

ẏ = V sin θ + C(x) cos2 θ

where C(x) denotes the stream of the river. After some
simple calculations, the affine constraints can be obtained
as

ẏ cos θ − ẋ sin θ = C(x) cos θ

where C(x) cos θ corresponds to A(q) in (2).
After imposing the constraint forces, and noting

V (q, q̇)q̇ = 0, G(q) = 0, one can get the following dynamic
equation:

M(q)q̈ + F (q, q̇) = τ + J(q)λ (22)

where q = [y, x, θ]T, M(q) = diag{m, m, I} and JT(q) =
[cos q3,− sin q3, 0], m is the mass of the boat, and I is the
inertia of the boat. For the sake of simplicity, select m =
1kg, I = 1kg · m2, C(q2) = q2, F (q) = [cos q3, 0, 0]T.

We select

S(q) =

⎡
⎢⎣

tan q3 0

1 0

0 1

⎤
⎥⎦

η(q) =
[

q2 0 0
]T

.

It follows from the transformation (7) that

⎧⎪⎨
⎪⎩

q̇1 = ż1 tan q3 + q2

q̇2 = ż1

q̇3 = ż2.

(23)

Substituting (23) into (22), pre-multiplying both sides of
it by ST(q), and using JT(q)S(q) = 0, one can get

[
1 + tan2 θ 0

0 1

] [
z̈1

z̈2

]
+

⎡
⎣

sin θ

cos3 θ
0

0 0

⎤
⎦

[
ż1

ż2

]
+

[
q̇2 tan θ

0

]
+

[
sin θ

0

]
= τ1
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For the given J(q), S(q) and η(q), the desired trajectory
qd = [sin t − cos t, sin t, π

4
]T satisfies kinematic constraint

JT(qd)q̇d = A(qd) and transform q̇d = S(qd)żd + η(qd) with
zd = [sin t, π

4
]T. The control objective is to determine a

feedback controller so that z follows zd and ż follows żd,
respectively.

Based on the previous control design (12) and (15), we
get the actual controller as

τ1 =

[
1 + tan2 θ 0

0 1

] [
z̈1d

z̈2d

]
+

⎡
⎣

sin θ

cos3 θ
0

0 0

⎤
⎦

[
ż1

ż2

]
+

[
q̇2 tan θ

0

]
+ α1

[
1 + tan2 θ 0

0 1

]
ė1+

α2

[
1 + tan2 θ 0

0 1

]
e2 + (ks + 1)e2 − (ks + 1)e2(0)+

∫ t

0

(
(ks + 1)α2e2(ς) + βsgn(e2(ς))

)
dς

where e1 = [e11, e12]
T = [sin t − z1,

π
4

− z2]
T, e2 =

[e21, e22]
T = [sin t + cos t − z1 − ż1,

π
4
− z2 − ż2]

T.
In the simulation study, we chose α1 = 1, α2 = 2, ks = 1,

β = 2 and z1(0) = ż1(0) = z2(0) = ż2(0) = 1. Fig. 2 shows
the position tracking errors of z(t)− zd(t) converge to zero,
and Fig. 3 shows the velocity tracking errors of ż(t) − żd(t)
converge to zero. At the end of the simulation, we should
explain why the given signal z2d is a constant. In fact,
according to transformation (23), we know z2 = θ, so the
control torques ensure asymptotical tracking all the time
in the unchanged yaw angle with the different velocity of
flow. Hence, the practical simulation example confirms the
validity of the proposed algorithm.

Fig. 2 The trajectories of e1

5 Conclusions

In this paper, a systematic approach has been developed
to design a tracking controller for the nonholonomic me-
chanical systems with affine constraints. The controller
guarantees that the internal state tracks the desired tra-
jectory.

Fig. 3 The trajectories of ė1
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