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Abstract: Online automatic fault diagnosis in industrial systems is essential for guaranteeing safe, reliable and efficient operations.
However, difficulties associated with computational overload, ubiquitous uncertainties and insufficient fault samples hamper the engi-
neering application of intelligent fault diagnosis technology. Geared towards the settlement of these problems, this paper introduces
the method of dynamic uncertain causality graph, which is a new attempt to model complex behaviors of real-world systems under
uncertainties. The visual representation to causality pathways and self-relied “chaining” inference mechanisms are analyzed. In par-
ticular, some solutions are investigated for the diagnostic reasoning algorithm to aim at reducing its computational complexity and
improving the robustness to potential losses and imprecisions in observations. To evaluate the effectiveness and performance of this
method, experiments are conducted using both synthetic calculation cases and generator faults of a nuclear power plant. The results
manifest the high diagnostic accuracy and efficiency, suggesting its practical significance in large-scale industrial applications.

Keywords: Fault diagnosis, causality model, probabilistic graphical model, uncertain knowledge representation, weighted logic
inference.

1 Introduction

Early detection and localization of process faults while
the industrial system is still operating in a controllable re-
gion can significantly avoid abnormal event progression and
reduce productivity loss. The most straightforward solution
is to integrate an automated diagnostic procedure into the
supervisory system, so as to suggest operators with deci-
sions of system recovery and protective measures in partic-
ular in emergency cases. However, when faced with large-
scale applications, fault diagnosis approaches that employ
quantitative modeling and diagnostic reasoning usually suf-
fer from high computational overheads and adapt poorly to
the operational instabilities and configuration changes[1].
The robustness to uncertainties is a common challenge for
the fault diagnosis technology. As efforts towards this direc-
tion, various formalisms have been investigated, including
the Dempster-Shafer theory[2], fuzzy logic[3, 4], support vec-
tor machines[5, 6], neuro-fuzzy networks[7], hidden Markov
models[8, 9], etc. During the last two decades, a gradual shift
towards the use of probability theory as the foundation of
many works was mainly due to the impact, both theoret-
ically and practically, of the introduction of Bayesian net-
works (BNs)[10−12] and the related probabilistic graphical
models[13, 14] into this field. BNs offer a powerful frame-
work for modeling uncertain interactions among variables.
As is well-known, the number of parameters needed in a
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conditional probability table of BN is exponential to the
number of parent variables and states involved, and the
probabilistic reasoning is NP-hard[15, 16]. The complex-
ity becomes particularly problematic for large and multi-
connected network[17]. Therefore, some studies on effi-
cient inference algorithms and the structure compilation
or conversions to BNs have been emerging, such as vari-
able elimination[18] , recursive conditioning algorithms[19] ,
the enhanced qualitative probabilistic network[20], the de-
composable negation normal form[21], multiplicative fac-
torization for the noisy-MAX[22], weighted CNF encoding
algorithm[23] , the qualitative characterization method of
ICI models[24], etc.

However, challenges also lie in the insufficiency of his-
torical fault dada. Many of current approaches employ
means of learning in structure selection or parameter es-
timation. A suitable set of training cases is essential that
well represents the phenomena to be investigated and cov-
ers as many as possible failure modes[25]. What is unde-
niable is that both components of structure learning —
the scoring function and the search procedure — are con-
siderably complicated in the cases of incomplete data[13].
This is particularly true for some costly systems with strin-
gent requirements for reliability, such as the nuclear power
equipment and spacecraft. High reliability and the conse-
quent low failure rate inevitably lead to the fact that avail-
able failure statistical data are scarce, scattered and ran-
dom, which decreases the rationality of learning method.
Even though never happened before, some major accidents
cannot be excluded from consideration definitely. More-
over, different individuals are usually different from each
other in many aspects including structure design, equip-
ment type, environment and system configuration such as
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parameter fluctuation intervals, alarm thresholds, protec-
tion and trigger mechanisms, etc. Although common dada
might be a reluctant choice, strictly speaking, the under-
lying failure modes of specific system may never be univ-
ersal.

Another problem arises from the interpretability or com-
prehensibility associated with the conclusions and inference
processes formulated by the diagnostic approaches. Peo-
ple are unwilling to use both a new technology and a new
decision strategy that might modify their established rou-
tines. Therefore, it is preferable that a diagnostic reason-
ing approach can intuitively clarify how its conclusions are
drawn and why these conclusions are appropriate. Only
in that way, can the operators possibly accept, approve of
and follow the suggestions. Indeed, many current methods
are deficient in such an explanation facility. This conse-
quently hinders their engineering applicability, especially
under scenarios with inevitable incomplete or erroneous
evidence[26].

All these problems can be summarized as a synthesis is-
sue of developing a fault diagnosis method for subsystems
of a nuclear power plant: Suppose that there are hundreds
or even thousands of observable variables and hundreds
of failure modes; the domain knowledge is imperfect, for
there are no sufficient historical fault data for scenarios re-
garding some rare malfunctions; the calculation efficiency
must meet the timeliness requirement of online operational
maintenance; the diagnosis and prediction should be mean-
ingful, accessible and reliable; the safety implications of
nuclear reactor operations mandate severe requirement to
decision-making accuracy. To solve these problems, this pa-
per describes a method for complex system modeling and
fault diagnosis based on dynamic uncertain causality graph
(DUCG)[27], which is pioneered by Prof. Qin Zhang as a
new attempt for uncertain knowledge representation and
probabilistic inference.

The remainder of this paper is organized as follows. Sec-
tion 2 introduces the principal concepts of DUCG and
Section 3 analyzes the diagnostic inference algorithm. In
Section 4, the diagnostic reasoning cases involving two
groups of synthetic failures are put forward with elabo-
rate calculations. Section 5 presents the results of verifi-
cation experiments with real industrial fault data. Section
6 discusses the theoretical and practical significance of this
method.

2 Introduction to DUCG: Concepts
and terms

The fundamental theory of DUCG is preliminarily de-
fined by Zhang[27]. DUCG aims to represent uncertain
causal knowledge compactly and intuitively, provide effi-
cient probabilistic reasoning, and make the inference re-
sults explanatory. The complex causalities among system
components are explicitly represented in DUCG in forms of
graphical symbols. The probability parameters of DUCG
can be incomplete (only those in concern need to be spec-
ified), while the exact probabilistic inference can still be
made, which provides people with great convenience in en-
gineering applications. As a preliminary, some concepts of
DUCG are introduced here.

2.1 Graphical representation and causal-
ity definition of DUCG

For the ease of understanding DUCG′s modeling mech-
anism, we take Fig. 1 as a reference in the introduction.
Also, Fig. 1 will be used as a diagnostic reasoning case in
the following sections.

Fig. 1 An illustrative example of DUCG

We first introduce the variables of DUCG. As shown in
Fig. 1, the ellipse-shaped variable “X” represents an observ-
able event; variable “B” represents a basic or root event (the
fault origin), which can be further classified into initiating
event (in the shape of square with single border) and non-
initiating event (in the shape of square with double border)
within a process system, depending on whether or not it
can independently trigger the system abnormality; the de-
fault cause of Xn is defined as the diamond-shaped variable
“Dn”, which usually denotes the unknown or unspecified
cause of an event; the logic gate variable “Gi” represents
the complex combinational logic relationships among vari-
ables, e.g., the logic gate variables G1, G2 and G3 in Fig. 1
(their logic gate specifications are listed in Table 1). In
the variable state expression Vi,ji , V ∈ {X, B, D, G}, the
first subscript, i, indexes the variable, and the second sub-
script, ji, indexes the current state of variable Vi. For an
X type variable, the state 0 denotes the normal state, and
nonzero state values indicate different abnormal states: the
odd numbers 1, 3, · · · respectively signify “mildly low”, “se-
riously low”, · · · ; the even numbers 2, 4, · · · respectively
signify “mildly high”, “seriously high”, and so on. For sim-
plicity, subscript “ji” can be written as “j”, and symbol
“Vi,j” can be abbreviated to “Vij” in the cases without
confusion.

Table 1 The logic gate specifications of Fig. 1

Logic gate State State expression

G1

0 Remnant state

1 X16,1 · X7,1

2 X7,2 + X7,0 · X16,2

G2

0 Remnant state

1 X10,2 · X9,1

2 X9,2

G3

0 Remnant state

1 X4,1

2 X4,2 · B7,1
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The directed arc stands for weighted functional variable,
Fn;i ≡ (rn;i/rn)An;i, which indicates the directed cause-
effect relationship between the parent variable Vi and child
variable Xn. An;i is an event matrix with Ank;ij as its
elements where k indexes the row and j indexes the col-
umn; Ank;ij represents the uncertain physical mechanism
that Vij causes Xnk, with the parameter value ank;ij quan-
tifying the strength of causal influence. (rn;i/rn) is the
weighting factor associated with An;i, where rn;i > 0 is
called the causal relationship intensity between Vi and Xn,
rn ≡ ∑

i

rn;i. The cause of every variable state and the

causal relationships between a pair of child-parent variables
are all represented separately in DUCG. The essential con-
cept underlying the causality definition of a variable is the
“weighted event outspread”[27], which can be formalized as

Xnk =
∑

i

Fnk;iVi =
∑

i

(rn;i/rn)
∑

j

Ank;ijVij =

∑

i

∑

j

(rn;i/rn)Ank;ijVij .
(1)

The basic operators included in DUCG event expressions
are “·” and “+”, which are respectively used to represent
logic “AND” and the sum of multiple independent causal
effects. In (1), for a specific child variable Xn, the sum of all
weighted functions from its parent variables Vi governs Xn

′s
final probability distribution, and therefrom determines its

current state. So the general query Pr
{

Xnk | ∩
i

Viji

}
on the

causality graph can be calculated as (2), which is “Eq. (35)”
in [27].

Pr
{

Xnk | ∩
i
Viji

}
=
∑

i

(rn;i/rn) ank;iji . (2)

For example, consider the causal relationships between
X5 and its parent variables {X1, X3}, which are illustrated
in Fig. 1. Suppose that they are all three-state variables
and the parameters of A5;1 and A5;3 are

a5;1 =

⎛

⎜
⎝

a5,0;1,0 a5,0;1,1 a5,0;1,2

a5,1;1,0 a5,1;1,1 a5,1;1,2

a5,2;1,0 a5,2;1,1 a5,2;1,2

⎞

⎟
⎠ =

⎛

⎜
⎝

− − −
− 0.5 0.7

− 0.4 0

⎞

⎟
⎠

a5;3 =

⎛

⎜
⎝

a5,0;3,0 a5,0;3,1 a5,0;3,2

a5,1;3,0 a5,1;3,1 a5,1;3,2

a5,2;3,0 a5,2;3,1 a5,2;3,2

⎞

⎟
⎠ =

⎛

⎜
⎝

− − −
− 0 0

− 0.8 0.6

⎞

⎟
⎠

r5;1 = 1, r5;3 = 2, in which, “−” indicates that the causal-
ities associated with normal states are not in concern. In-
deed, normal state can neither be the cause nor the effect
of an abnormal event, thereby its function is equivalent to
0. The value 0 of ank;ij (e.g. a5,2;1,2, a5,1;3,1 and a5,1;3,2)
indicates that the causal relationship between Vij and Xnk

does not exist. With regard to the child event X5,2, we ob-
viously have r5 = r5;1 + r5;3 = 1 + 2 = 3, (r5;1/r5) = (1/3),
and (r5;3/r5) = (2/3).

According to (1) and (2), we get that X5,2 =
(r5;1/r5) A5,2;1,1 + (r5;3/r5) A5,2;3,1 + (r5;3/r5) A5,2;3,2, and
Pr {X5,2 | X1,1X3,1} = (r5;1/r5)a5,2;1,1 +(r5;3/r5) a5,2;3,1 =
0.667. Likewise, for X5,1 only X1 behaves as its par-
ent event because of a5,1;3,1 = a5,1;3,2 = 0. So we have

r5 = r5;1 = 1, (r5;1/r5) = 1, and X5,1 = (r5;1/r5)A5,1;1,1 +
(r5;1/r5)A5,1;1,2. Thus we get Pr {X5,1 | X1,1X3,1} =
a5,1;1,1 = 0.5.

2.2 The chaining inference mechanisms

Benefited from the equilibrium effect of weighting fac-
tors, the “auto-normalization” property[27] of the vari-
able state probability can be proven as

∑
k Xnk =∑

k

∑
i (rn;i/rn)

∑
j Ank;ijVij = 1. Such a property al-

ways holds automatically and no imposed normalization
formula is needed. This is because of the definitions and
facts: rn ≡∑i rn;i,

∑
i (rn;i/rn) = 1,

∑
k An,k;i,j = 1, and∑

j Vi,j = 1. Therefore, for the calculation of Pr {Xnk}, the

values of Ank′;ij are not necessarily known (k′ �= k), and
Pr{Xnk′} can be excluded from consideration too. Such an
algorithm is characterized as “self-relied” inference, which
achieves the sufficiency and separability that are desired for
compact representation[28].

Fundamentally, the usual causal process of diagnostic in-
ference is: When significant deviations are detected, pri-
mary faults are hypothesized and the propagation pathways
in the directed graph are analyzed to determine whether
a candidate hypothesis (supposed as a fault origin) can
account for current failures. For this purpose, with fea-
tures of “auto-normalization” and “self-relied” probabilis-
tic reasoning as a basis, DUCG resorts to the scheme of
“chaining” inference[27] in the diagnosis process. Chain-
ing inference is to independently outspread an observed
event into logic expressions in forms of disjoint “sum-of-
products” composed of independent events Bij and Ank;ij

associated with weighting factors (rn;i/rn). For each event,
such a logical outspreading process follows this event′s all
upstream causality chains and ancestors towards its root
causes. For example, suppose that the upstream events
of X8,2 are {X5,1, X1,1, B6,1, B2,1} as shown in Fig. 1, and
r8;5 = r8;6 = 1. So the chaining logic outspread result of
X8,2 is

X8,2 = F8,2;6,1B6,1 + F8,2;5,1X5,1 =

F8,2;6,1B6,1 + F8,2;5,1F5,1;1,1F1,1;2,1B2,1 =

(1/2) A8,2;6,1B6,1 + (1/2) A8,2;5,1A5,1;1,1A1,1;2,1B2,1.

As we can see that some of the parameters not involved
in the causality chains of the target event can be absent,
while the reasoning procedure is not affected at all. In
other words, even though the parameters needed to spec-
ify a CPT are not given completely, we can still calculate
the exact probability of a variables state in concern. Above
all, chaining inference, plus the fact that accurate inference
can be performed by using incomplete knowledge, brings us
significant convenience in knowledge base construction and
probabilistic reasoning.

3 The probabilistic reasoning method

This section introduces how to conduct exact and effi-
cient probabilistic reasoning based on DUCG, under situ-
ations of incomplete representations and ubiquitous uncer-
tainties. The fundamental probabilistic reasoning method
is divided into four reasoning steps as follows.

Step 1. Causal simplification
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Simplification is to eliminate unlikely and meaningless
causalities and variables from a graph with the evidence re-
ceived. Simplification is indispensable in the diagnostic in-
ference of DUCG, and as long as some causal dependencies
are not supported by the evidence, they are removed from
the graph and excluded from consideration. As well, the ir-
relative parts are eliminated. The 11 simplification rules of
DUCG are initially presented in [27], whereby the causality
graph can be significantly reduced in scale. Furthermore,
the problem area gets promptly focused since unnecessary
details are excluded, and the calculation complexity may be
decreased without any loss of accuracy. Sometimes, fault
origins can be determined in the early reasoning stage be-
fore numerical calculations. Limited by the length, we can-
not present the simplification rules of DUCG. Readers can
refer to [27] for details.

Step 2. Structure decomposition – the “divide
and conquer” strategy

As is well-known, the method of probabilistic risk/safety
assessment (PRA/PSA, e.g., the “WASH-1400” report pro-
posed by N.C.Rasmussen, et al.) has been generally fol-
lowed as the safety-assessment of modern nuclear power
plants, aerospace and other fields. According to the analysis
of PRA, during a process system′s continuous and smooth
operation, once the system state changes from normality to
abnormality, the concurrence probability of more than one
initiating events is a high-order small value, compared with
the concurrence probability of one initiating event with any
(including none) non-initiating event[27]. This approves the
assumption that the DUCG under abnormal conditions is
decomposable without affecting the diagnostic reasoning ac-
curacy. Specifically, by assuming different initiating events,
a large and complex DUCG can be divided into a set of lo-
cal diagnostic structures, which are overall exhaustive and
mutually exclusive. Any sub-graph is valid (meaningful) if
and only if it can account for all abnormal evidences re-
ceived, and only the initiating event in a valid sub-graph
can serve as candidate root cause to the abnormal observa-
tions. All the meaningless sub-DUCGs are excluded from
consideration during diagnostic reasoning. Obviously, the
decomposition strategy can accelerate the inference process.

Step 3. Weighted logic inference
Before numerical probabilistic calculation, weighted

event outspread and weighted logic operations are first car-
ried out on the observed evidence E[27] to get the hypoth-
esis space of each meaningful sub-DUCG g (g = 1, 2, · · · ).
The evidence E ≡ ∩

i
Ei = ∩

i
Vi,ji is also called “complete

evidence”, in which each Ei ≡ Vi,ji is an observed evi-
dence included in sub-DUCG g. Among them, we denote
the abnormal evidence as E′ (namely, incomplete evidence
E′ ≡ ∩

i
Ei

′) and the normal evidence as E′′, thereby we have

E = E′E′′. Let Hk,j represent a candidate hypothesis that
is a possible root cause of evidence E. Thus the hypothesis
space is defined as SHg = {Hk,j | Hk,j ∈ sub-DUCGg},
in which all the candidate hypotheses on sub-DUCGg are
included. Along with the event outspread, static logic cy-
cles are broken, and some ordinary logic operations, such
as AND, OR, XOR, NOT, absorption, exclusion and com-
plement, are conducted. The products including exclusive
events within a logic expression are removed, and the inclu-

sive events within any products of expressions are absorbed.
Eventually we get the final logic expressions of evidences,
in the form of “sum-of-products” of independent events as
stated above. This process will be demonstrated in detail in
Section 4 by using diagnostic reasoning cases with synthetic
failures.

The subsequent probabilistic calculation is implemented
on the basis of logic event expressions. Such a reasoning
procedure as a whole is referred to as “two-phase algo-
rithm”. The main motivation behind the logic operation is
to reduce redundant probabilistic calculations and to lower
the overall computation cost.

Step 4. Probability calculation
Now the posterior probabilities in concern can be calcu-

lated by simply replacing the events with their probabili-
ties in logic event expressions yielded by logic operations.
What deserves mention is that most of current qualitative or
deductive-based expert systems only incorporate abnormal
process information into the diagnostic inference. Indeed,
some abnormal symptoms that were expected to appear
according to specific candidate hypothesis might not be ob-
served yet, which naturally should decrease our confidence
in this hypothesis′ failure interpretation. This inclusion of
positive symptoms (normal variable) into the fault diag-
nosis process may bring about a more accurate diagnosis.
Therefore, DUCG takes normal observations into account
by means of regarding them as negative evidences to the
hypothesis. The incomplete evidence E′ is first employed
to get an approximate state probability of Hk,j , namely

hs′
k,j ; then this result is modified by supplementing normal

evidence E′′, if any. Thus, the exact state probability for
complete evidence is obtained, namely hs

k,j . The calcula-
tion formulas are (3)–(5) as below, and will be applied to
and analyzed in the calculation cases of Section 4.

hs′
k,j ≡ Pr

{
Hk,j | E′} =

Pr {Hk,jE
′}

Pr {E′} (3)

hs
k,j ≡ Pr {Hk,j | E} =

Pr {Hk,jE}
Pr {E} =

Pr

{

Hk,j ∩
i

Vi,ji

}

Pr

{

∩
i

Vi,ji

} (4)

hs
k,j = hs′

k,j · σk,j . (5)

In (5), σk,j =
Pr{E′′|Hk,jE′}

Pr{E′′|E′} indicates a modification fac-
tor between the exact result and approximate result.

According to the definition of state probability, the nor-
malization

∑
Hk,j∈SHg

hs
k,j = 1 can be obtained within each

sub-DUCGg. If there are more than one meaningful sub-
DUCGs remaining in concern (i.e., not being eliminated for
its meaninglessness to any abnormal evidence), the local
state probability hs

k,j will be modified by a weight asso-
ciated with the priori probability of the evidence in each
sub-DUCGg that contains the hypothesis Hk,j to get a
global state probability hs

k,j . This hs
k,j quantifies our confi-

dence degree of whether this hypothesis is exactly the root
cause of current failures. Therefore, the most probable
root cause is the one that maximizes the posterior hypoth-
esis, i.e., the one that best explains observed symptoms:
arg maxHk,j

(
hs

k,j

)
, where Hk,j ∈ SH , SH ≡ ∪

g
SHg is the
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complete hypothesis space compromising the root causes
from all meaningful sub-DUCGs.

4 Diagnostic reasoning cases with syn-
thetic failures

In order to validate the effectiveness of the diagnostic in-
ference algorithm and demonstrate the calculation details,
we simulate two groups of failure observations on the model
illustrated in Fig. 1. The specifications to parameter matri-
ces are listed in Appendix, and all the weighting factors are
supposed to be rn;i = 1 for simplicity.

4.1 Diagnostic reasoning case 1

Suppose that the evidences received currently are
Abnormal evidences: E′

1 = X3,1; E′
2 = X4,1; E′

3 =
X6,2; E′

4 = X11,2; E′
5 = X13,1; E′

6 = X14,1;
Normal evidences: E′′

7 = X1,0; E′′
8 = X2,0; E′′

9 = X9,0;
E′′

10 = X15,0; E′′
11 = X17,0; E′′

12 = X18,0; E′′
13 = X19,0;

E′′
14 = X20,0; E′′

15 = X21,0; E′′
16 = X22,0.

Except for the above evidences, suppose that the ob-
served signal X14,1 appears earlier than X6,2. Any X type
variable not listed here implies unconfirmed or unidenti-
fiable signal which is due to possible symptom losses or
time-delay, etc. By applying simplification rules to Fig. 1,
we get a simplified DUCG shown in Fig. 2. The colored-
area ellipses are used to graphically distinguish X type
variable′s symptom state as a supplement to numerical state
tags: green indicates normal state indexed by 0; sky blue
indicates state 1; yellow and brown respectively indicate
states 2 and 4; gray indicates one state of the binary vari-
able (the color figures can be seen in the electronic ver-
sion) Among them, the brown and gray ellipses will be pre-
sented in Section 5. Any X type variable without color
implies a state-unknown signal. We can speculate a state-
unknown variable′s only possible state by analyzing the pa-
rameters and evidences given. The ellipses with dashed
lines denote these speculated states. For example, on ac-
count of evidences E′

4 = X11,2, E′
5 = X13,1 and parame-

ter a13,1;11,2 = 0, only X12,2 can serve as a possible cause
to abnormal event X13,1; considering the parameter vector
a12,2;1 = (− 0.9 0), G1,1 becomes the only choice being an
explanation to X12,2, hence both X16,1 and X7,1 can be in-
ferred according to the logic expression G1,1 = X16,1 ·X7,1,
and so on.

Fig. 2 The partially simplified DUCG of Case 1

Note that B4 and B6 are the initiating events finally re-
mained in Fig. 2, which can be further divided and simpli-

fied into two exclusive and exhaustive sub-DUCGs (Fig. 3)
with each one containing an initiating event. X22,0 has
been eliminated from Fig. 3 (a) for its irrelativeness to the
hypothesis in concern (B4), or mathematically speaking,
X22,0 is not a negative evidence to B4 (E′′ = φ). As we
can see that both Figs. 3 (a) and (b) cover all abnormal ev-
idences, hence they are meaningful in the context of causal
interpretation. The causal graphs can vividly tell users how
the influences of a fault origin propagate through causal
pathways and eventually result in current abnormal condi-
tions.

(a) The sub-DUCG associated with B4

(b) The sub-DUCG associated with B6

Fig. 3 The simplified sub-DUCGs of Case 1

4.1.1 Reasoning process for BBB4 on Fig. 3 (a)

The event outspread operations are first performed on
Fig. 3 (a) to generate the hypothesis space SH1 . Within the
following outspread expressions, superscript 8 indicates the
node where the causal cycle is broken, and the solutions to
directed cyclic graphs (DCGs) will be presented in detail in
another paper.

E′
1 =X3,1 = F3,1;4B4 + F3,1;8F8;5,2F5,2;3,1X3,1 =

F
{8}
3,1;4B4 = A3,1;4B4

E′
2 =X4,1 =

(
F4,1;4 + F4,1;3,1F

{8}
3,1;4

)
B4 =

1

2
(A4,1;4 + A4,1;3,1A3,1;4) B4

E′
3 =X6,2 = F6,2;4,1

(
F4,1;4 + F4,1;3,1F

{8}
3,1;4

)
B4 =

1

2
A6,2;4,1 (A4,1;4 + A4,1;3,1A3,1;4)B4

E′
4 =X11,2 = F11,2;8F8;5,2F5,2;3,1F

{8}
3,1;4B4 =

A11,2;8A8;5,2A5,2;3,1A3,1;4B4
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E′
5 =X13,1 =

1

2
A13,1;12,2A12,2;1,1A16,1;16DA7,1;3,1 (A4,1;4+

A4,1;3,1A3,1;4) B4

E′
6 =X14,1 = F14,1;11,2F11,2;8F8;5,2F5,2;3,1F

{8}
3,1;4B4 =

A14,1;11,2A11,2;8A8;5,2A5,2;3,1A3,1;4B4.

Thus, we get that

E′ =E′
1E

′
2E

′
3E

′
4E

′
5E

′
6 =

1

2
(A6,2;4,1A13,1;12,2A12,2;1,1A16,1;16DA7,1;3,1A4,1;4,1) ·

(A14,1;11,2A11,2;8A8;5,2A5,2;3,1A3,1;4,1)B4,1+

1

2
(A6,2;4,1A13,1;12,2A12,2;1,1A16,1;16DA7,1;3,1A4,1;4,2) ·

(A14,1;11,2A11,2;8A8;5,2A5,2;3,1A3,1;4,2)B4,2+

1

2
(A6,2;4,1A13,1;12,2A12,2;1,1A16,1;16DA7,1;3,1A4,1;3,1) ·

(A14,1;11,2A11,2;8A8;5,2A5,2;3,1) A3,1;4,1B4,1+

1

2
(A6,2;4,1A13,1;12,2A12,2;1,1A16,1;16DA7,1;3,1A4,1;3,1) ·

(A14,1;11,2A11,2;8A8;5,2A5,2;3,1) A3,1;4,2B4,2.

So we get Pr {E′} = 0.0000005901984. By ignoring all
A type events and weighing factors from the outspread
expression of E′, we get the hypothesis space SH1 =
{H1,1, H1,2} = {B4,1, B4,2}, where H1 ≡ B4, H1,1 ≡ B4,1

and H1,2 ≡ B4,2. Now we turn to calculate Pr {Hk,jE
′}.

Pr
{
H1,1E

′} =

Pr

{
1

2
(A6,2;4,1A13,1;12,2A12,2;1,1A16,1;16DA7,1;3,1A4,1;4,1) ·

(A14,1;11,2A11,2;8A8;5,2A5,2;3,1A3,1;4,1)B4,1+

1

2
(A6,2;4,1A13,1;12,2A12,2;1,1A16,1;16DA7,1;3,1A4,1;3,1) ·

(A14,1;11,2A11,2;8A8;5,2A5,2;3,1) A3,1;4,1B4,1

}

=

0.0000000653184.

Likewise, we get Pr {H1,2E
′} = 0.00000052488.

The state probabilities of Hk,j ∈ SH1 conditioned on
incomplete evidence E′ are

hs′
1,1 =

Pr {H1,1E
′}

Pr {E′} = 0.110672

hs′
1,2 =

Pr {H1,2E
′}

Pr {E′} = 0.889328.

Since E′′ = φ, we get that Pr {E} = Pr {E′} =
0.0000005901984, and the modification factor σk,j between

hs
k,j and hs′

k,j is 1. Therefore, the local state probabilities
conditioned on complete evidence are

hs
1,1 = hs′

1,1 = 0.110672

hs
1,2 = hs′

1,2 = 0.889328.

4.1.2 Reasoning process for BBB6 on Fig. 3 (b)

Now we proceed to perform the similar reasoning on
Fig. 3 (b) with B6 supposed to be a fault hypothesis. We

get the outspreaded evidence as

E′ =A6,2;4,1A13,1;12,2A12,2;1,1A16,1;16DA7,1;3,1A4,1;3,1

A3,1;8,1A14,1;11,2A11,2;8,1 (A8,1;6,1B6,1 + A8,1;6,2B6,2) .

The hypothesis space is SH2 = {H2,1, H2,2} =
{B6,1, B6,2}, where H2 ≡ B6, H2,1 ≡ B6,1 and H2,2 ≡ B6,2.
The state probabilities of Hk,j ∈ SH2 conditioned on E′ are

hs′
2,1 = 0.0625 and hs′

2,2 = 0.9375. The normal evidence is
E′′ = X22,0, which can be outspreaded as

X22,0 = A22,0;8A8;6B6 =
(

− A22,0;8,1 A22,0;8,2

)
·

⎛

⎜
⎝

− − −
− A8,1;6,1 A8,1;6,2

− A8,2;6,1 0

⎞

⎟
⎠ ·

⎛

⎜
⎝

−
B6,1

B6,2

⎞

⎟
⎠ =

(A22,0;8,1A8,1;6,1 + A22,0;8,2A8,2;6,1) · B6,1 + A22,0;8,1

A8,1;6,2B6,2.

Note that the parameter value a22,0;8,1 is not given ex-
plicitly. As the quantification of causality between X22

and X8, the value of a22,0;8,1 can be inferred as a22,0;8,1 =
1 − a22,1;8,1 − a22,2;8,1 according to the fact of X22,0 =
X22,1 + X22,2.

Thus we get that Pr {E} = 0.0000001990656, and σ2,1 =
σ2,2 = 1. The local state probabilities of Hk,j ∈ SH2 are

hs
2,1 = hs′

2,1 · σ2,1 = 0.0625

hs
2,2 = hs′

2,2 · σ2,2 = 0.9375.

4.1.3 Reasoning result

By combination of the candidate hypotheses from two
meaningful sub-DUCGs in Fig. 3, we get the complete hy-
pothesis space SH = ∪

g
SHg = {B4,1, B4,2, B6,1, B6,2}. The

final global state probabilities of Hk,j ∈ SH are obtained
as hs

1,1 = 0.082758, hs
1,2 = 0.665022, hs

2,1 = 0.015764,
hs

2,2 = 0.236456.
As a conclusion of this diagnostic inference case, B4,2, out

of the candidate hypothesis space {B4,1, B4,2, B6,1, B6,2} is
identified as the most probable root cause of current ab-
normalities, for it best interprets all the observations in an
independent and self-contained manner.

4.2 Diagnostic reasoning Case 2

Now we proceed to calculate another diagnosis case.
While the original DUCG (Fig. 1) and parameters are kept
unchanged, the observed values are partly replaced in this
case in order to simulate a new scenario with a different un-
derlying failure mode. Suppose that the evidences received
are as follows

Abnormal evidences: E′
1 = X3,1; E′

2 = X4,2; E′
3 =

X6,2; E′
4 = X8,2; E′

5 = X11,4; E′
6 = X13,1; E′

7 = X14,1;
Normal evidences: E′′

8 = X1,0; E′′
9 = X2,0; E′′

10 =
X9,0; E′′

11 = X15,0; E′′
12 = X17,0; E′′

13 = X18,0; E′′
14 = X19,0;

E′′
15 = X20,0; E′′

16 = X21,0; E′′
17 = X22,0.

After simplification and decomposition for Fig. 1, we get
the two graphs in Fig. 4 with each one containing an initiat-
ing event. As we can see that Fig. 4 (a) is invalid for contain-
ing no causal explanation to the abnormal evidences X4,2
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and X6,2. Therefore, Fig. 4 (a) is discarded and Fig. 4 (b)
becomes the only meaningful sub-DUCG.

(a) The invalid sub-DUCG

(b) The sub-DUCG associated with B4

Fig. 4 The simplified sub-DUCGs of Case 2

4.2.1 Reasoning for BBB4 on Fig. 4 (b)

Based on Fig. 4 (b), we implement event outspread oper-
ations on evidence E′,

E′ = (A6,2;4,2 (A13,1;12,2A12,2;1,1A16,1;16DA7,1;3,2))A4,2;4,2·
(A14,1;11,4A11,4;8,2A8,2;5,2A5,2;3,1A3,1;4,2) B4,2B7,1.

The hypothesis space is SH1 = {H1,1} = B4,2B7,1,
and Fig. 4 (b) is further simplified as Fig. 5. There is only
one hypothesis B4,2B7,1 remained in the hypothesis space,
so that we can even determine the diagnostic conclusion
without any numerical calculation. In fact, because of
H1,1E

′ = E′, the incomplete state probability of H1,1 can

be obtained as hs′
1,1 =

Pr{H1,1E′}
Pr{E′} = 1. Since the normal

evidence E′′ = φ in Fig. 5, we finally get that hs
1,1 = 1.

Fig. 5 The finally simplified DUCG of Case 2

4.2.2 Concurrency of multiple faults

As a result, the hypothesis event B4,2B7,1 is uniquely de-
termined as the root cause of current failures. This hypoth-
esis denotes a joint function (concurrent multiple faults) of
initiating event B4,2 and non-initiating event B7,1 which
together account for all the abnormalities observed.

5 Verification experiments with indus-
trial failure data

The purpose of the verification experiment with real-
world data is to characterize the diagnostic performance
of this method. As is known to all, the scalability and ef-
ficiency are vital for an algorithm′s applicability, because
more observable variables usually lead to perplexing de-
pendencies among them and aggregate the complexity of
probabilistic reasoning. We have developed an engineer-
ing application of DUCG to the operational maintenance
on two turbine generator set systems (rated active power
1150 MW, half-speed) installed in China Lingdong Nuclear
Power Plant (LNPT). A total of 659 variables and 2852 arcs
are involved, and the causality graph is shown in Fig. 6. The
fault data sets are extracted from the Supervisory Informa-
tion System (SIS) of LNPT, containing discrete, continuous,
switching and vibrating types of signals.

Fig. 6 The complete DUCG for generator diagnosis system of

LNPT

Totally, we′ve conducted 38 diagnostic experiments for
258 failure modes of this generator system. The inferences
can be completed within about 324–700 ms, and the timing
measurements are made on a personal computer (Intel Core
i7 1.73 GHz processor, 4 GB random access memory). Some
disturbances, such as losses and spurious observations, are
intentionally inserted for the purpose of robustness testing.
Even so, the generated fault hypothesis space is as concise
as possible with all unlikely hypotheses being excluded. As
an example, the experiment results for vibration fault of
generator tilting pad journal bearing are presented in detail.

5.1 The vibration fault of generator tilting
pad journal bearing

Because the vibration fault is fairly complicated in log-
ical causality and the potential root causes are numerous,
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only the situations regarding retaining ring breakup are dis-
cussed here. We introduce two experiments for different
failure scenarios.

This generator′s rated speed is 1500 rpm. During its
start/shutdown, the changing rotation speed may pass
through certain intervals (800–1000 rpm or 1100–1300 rpm),
which can normally increase the vibration amplitude of the
tilting pad journal bearing. Such a situation is called “gen-
erator in critical speed”. Besides this, the fault of genera-
tor retaining ring breakup may also induce the abnormally
high vibration amplitude of the tilting pad journal bearing.
Typically, the fault event “rotor windings being thrown out
of magnetic core due to retaining ring breakup” may dam-
age generator stator insulation, resulting in short circuit,
and the generator may be tripped due to the triggering
of “generator and power transmission protection (GPA)”.
Fig. 7 demonstrates the sub-DUCG constructed for this fail-
ure mode. The logic gate variables G2, G3, G4 and G5 are
specified in Table 2, and Table 3 lists the variable defini-
tions.

Fig. 7 The sub-DUCG for vibration fault of generator tilting

pad journal bearing caused by the retaining ring breakup

Table 2 The logic gate specifications of Fig. 7

Logic gate State State expression

G2

0 Remnant state

1 X495,1 · X171,2

2 X171,4

G3
0 Remnant state

1 X495,1 · X172,2

G4

0 Remnant state

1 X495,1 · X173,2

2 X173,4

G5
0 Remnant state

1 X495,1 · X174,2

Note that this example demonstrates a property of
DUCG-modularized modeling and automatic synthesis
scheme, which means that the domain knowledge can both
be divided into a set of semi-independent fragments and be
incorporated into multiple perspectives. Solutions of con-
sistency check play a major role in dealing with ambiguous
and contradictory knowledge during the combination of all

sub-DUCGs. With this property, we can flexibly describe
various aspects of targets and processes at arbitrary gran-
ularities. While the difficulties for knowledge engineers to
ensure consistency in knowledge base have been considered
as a major limitation of diagnostic expert system[29], this
scheme makes the task of DUCG modeling to complex sys-
tem significantly decreased in difficulty.

Table 3 The definitions of variables in Fig. 7

Name Description of the online measurement point

X171–X174
Vibration amplitude of generator tilting pad

journal bearing (GME401/402/406/407MV XQ01)

X175–X178
High vibration alarm of generator tilting pad

journal bearing (GME401/402/406/407MV3 XG01)

X179/X180
Seriously high vibration alarm of generator tilting

pad journal bearing (GME401/406MV4 XG03)

X185/X186 GPA protection is triggered (GPA001/2SYT XG37)

X187 Generator is tripped (GPA001KS1 XV01)

X495 Generator in critical speed (GME014MC XQ01)

B4
The rotor windings are thrown out of the magnetic

core due to generator retaining ring breakup.

D495

This variable represents a normal situation that the

high bearing vibration amplitude appears when the

generator speed passes through critical speed ranges.

5.2 The verification Experiment 1

In the first experiment, the abnormal evidence received is
E′ = X171,4X175,1X179,1X185,1X186,1X187,1. Other X type
variables not listed here are observed as normal.

Simplification is first performed during the diagnostic
reasoning process. In effect, the huge causality graph of
Fig. 6 is simplified into Fig. 8 (a), in which only five B type
variables out of the total 230 B type variables are identi-
fied as candidate root causes. This significantly reduces
the computational cost. According to Fig. 8 (a), all the
fault signals observed might be caused by “rotor fan blades
breakup”(B3)/“retaining ring breakup”(B4)/“the retaining
pin of generator fan loosened”(B77)/“the retaining bolt of
fan counterweight loosened”(B78)/“the retaining screw of
wind guider at stator end loosened”(B189). Each one can in-
dividually account for all the abnormalities. Among them,
Fig. 8 (b) illustrates the causal relationships with “retain-
ing ring breakup”(B4) being supposed to be a root cause.
The global state probabilities of the five candidate hypothe-
ses are: hs

1,1 = 0.0844, hs
2,1 = 0.9117, hs

3,1 = 0.0028,
hs

4,1 = 0.0002 and hs
5,1 = 0.0008. Therefore, B4,1 is deter-

mined as the most probable origin of current system fail-
ures.

5.3 The verification Experiment 2

We now change the evidence with another group of ab-
normal signals: E′ = X171,2X175,1X495,1. Other X type
variables are observed as normal or unknown.
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(a) The simplified DUCG of Experiment 1

(b) The sub-DUCG of the fault of generator retaining ring

breakup

Fig. 8 The diagnostic Experiment 1 for generator faults

Given the relatively fewer evidences than Experi-
ment 1, the diagnostic inference in this experiment
can still be performed accurately. The results re-
veal that these abnormal vibration observations may be
caused by “rotor fan blades breakup”(B3)/“retaining ring
breakup”(B4)/“winding interturn short circuit”(B8)/“the
rotor magnetization”(B167), etc. The most probable causal
source of current system abnormalities is regarded as B8,1,
with the maximum probability of 0.2435. The resulting
graph in Fig. 9 (a) indicates the circumstance with “retain-
ing ring breakup” (B4,1) being a root cause. Based on
Fig. 9 (a) and the descendant causality chains illustrated in
original DUCG, we can make predictions for future fault
developments. Such as, Fig. 9 (b) is the 2-step prediction re-
sult. As we can see, X172,2, X174,2 and X180,1 are inferred as
possible upcoming failures, indicating the abnormally high
vibration amplitude signals and the seriously high vibration
alarm signal of generator tilting pad journal bearing. The
state-unknown prediction result of X173 means that there
are two possibilities for its abnormal states to be induced,
i.e., the high or seriously high vibration amplitude signal.

Validated by the operational maintenance affairs of
LNPT and specialists′ diagnostic conclusions, the diagnos-
tic results of two experiments are both accurate. This
method offers intuitive insights into underlying patholog-
ical mechanism, increasing the objectivity of diagnosis and
decision-making.

6 Discussion and conclusion

This paper analyzes some difficulties of fault diagnosis in
large-scale applications, such as high computational over-
head, poor scalability, the reliance on sufficient historical
fault dada and precise online observations, and absence of
interpretability to the conclusions formulated. In coping
with these problems, we introduce the method of DUCG as
an attempt to model the casual behaviors of complex sys-

tem so as to provide reliable fault diagnosis. Some diagnos-
tic reasoning solutions are investigated in order to reduce
the calculation complexity and improve robustness to losses
or imprecisions in observations.

(a) The simplified DUCG of Experiment 2

(b) The 2-step prediction result

Fig. 9 The diagnostic Experiment 2 for generator faults

By means of elucidating explicitly causal relationships
derived from domain knowledge and data, together with
the modularized construction scheme, the modeling task
of knowledge base of complex system is greatly reduced in
difficulty. In contrast to other fault diagnosis approaches,
DUCG′s visual analysis of causality pathways can intu-
itively explain to users how the fault influence propagates
through causality chains and results in the status of mal-
functioning system. Moreover, the probabilistic reasoning
algorithm exhibits high precision, good generalization ca-
pability and resilience to incomplete information. All these
properties manifest the feasibility of DUCG in practical en-
gineering.

Further refinements on DUCG to improve its theoretical
completeness are our goals in the future, for instance, the
rigorous formulation for weighted logic inference and the
verification to its soundness and self-containment, as well
as the investigation on decision support strategies.

Appendix

The parameter matrices for Fig. 1 that are used in
the calculation of Section 4 are as follows, in which,
ank;ij = Pr {Ank;ij} and bnk = Pr {Bnk}.

a1;2=

⎛

⎜
⎝

− − −
− 0 0

− 0.7 0.3

⎞

⎟
⎠, a2;1=

⎛

⎜
⎝

− − −
− 0.6 0.7

− 0.4 0.1

⎞

⎟
⎠,

a2;3=

⎛

⎜
⎝

− −
− 0.4

− 0.5

⎞

⎟
⎠ , a3;2=

⎛

⎜
⎝

− − −
− 0 0

− 0.6 0.3

⎞

⎟
⎠ ,

a3;4=

⎛

⎜
⎝

− − −
− 0.2 0.3

− 0.5 0.6

⎞

⎟
⎠, a3;8=

⎛

⎜
⎝

− − −
− 0.4 0

− 0.5 0

⎞

⎟
⎠,
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a3;11=

⎛

⎜
⎝

− − − − −
− 0 0 0 0.5

− 0 0.4 0 0

⎞

⎟
⎠, a4;3=

⎛

⎜
⎝

− − −
− 0.3 0.4

− 0 0.5

⎞

⎟
⎠,

a4;4=

⎛

⎜
⎝

− − −
− 0.4 0.2

− 0 0.6

⎞

⎟
⎠, a5;1=

⎛

⎜
⎝

− − −
− 0.5 0.7

− 0.4 0.3

⎞

⎟
⎠,

a5;3=

⎛

⎜
⎝

− − −
− 0 0

− 0.8 0.6

⎞

⎟
⎠, a6;4=

⎛

⎜
⎝

− − −
− 0.3 0

− 0.6 0.5

⎞

⎟
⎠,

a7;3=

⎛

⎜
⎜
⎜
⎜
⎜
⎝

− − −
− 0.5 0.1

− 0 0.4

− 0 0.2

− 0 0.3

⎞

⎟
⎟
⎟
⎟
⎟
⎠

, a8;5=

⎛

⎜
⎝

− − −
− 0 0

− 0.4 0.3

⎞

⎟
⎠,

a8;6=

⎛

⎜
⎝

− − −
− 0.1 0.2

− 0.5 0

⎞

⎟
⎠, a9;6=

⎛

⎜
⎝

− − −
− 0.3 0.7

− 0.7 0.3

⎞

⎟
⎠,

a10;3=

⎛

⎜
⎝

− − −
− 0 0.6

− 0.5 0

⎞

⎟
⎠, a11;8=

⎛

⎜
⎜
⎜
⎜
⎜
⎝

− − −
− 0 0.7

− 0.2 0.1

− 0 0.1

− 0 0.1

⎞

⎟
⎟
⎟
⎟
⎟
⎠

,

a12;1=

⎛

⎜
⎝

− − −
− 0.1 0.3

− 0.9 0

⎞

⎟
⎠,

a13;11=

⎛

⎜
⎜
⎜
⎜
⎜
⎝

− − − − −
− 0.3 0 0 0

− 0 0.6 0 0

− 0 0.2 0 0.3

− 0 0.2 0 0.2

⎞

⎟
⎟
⎟
⎟
⎟
⎠

,

a13;12=

⎛

⎜
⎜
⎜
⎜
⎜
⎝

− − −
− 0 0.3

− 0.8 0

− 0.1 0.2

− 0.1 0.5

⎞

⎟
⎟
⎟
⎟
⎟
⎠

, a14;2=

⎛

⎜
⎝

− − −
− 0 0

− 0 0.5

⎞

⎟
⎠,

a14;11=

⎛

⎜
⎝

− − − − −
− 0 0.1 0 0.1

− 0.1 0.4 0 0.5

⎞

⎟
⎠,

a15;10=

⎛

⎜
⎝

− − −
− 0.9 0.3

− 0.1 0.6

⎞

⎟
⎠,

a16;16=

⎛

⎜
⎝

−
0.4

0.5

⎞

⎟
⎠, a17;21=

⎛

⎜
⎝

− − −
− 0.9 0.3

− 0.1 0.6

⎞

⎟
⎠,

a18;15=

⎛

⎜
⎝

− − −
− 0.4 0.3

− 0.6 0.7

⎞

⎟
⎠, a19;18=

⎛

⎜
⎝

− − −
− 0.9 0.3

− 0.1 0.6

⎞

⎟
⎠,

a20;18=

⎛

⎜
⎝

− − −
− 0.4 0.3

− 0.6 0.7

⎞

⎟
⎠, a21;15=

⎛

⎜
⎝

− − −
− 0 0.3

− 0.6 0

⎞

⎟
⎠,

a22;8=

⎛

⎜
⎝

− − −
− 0 0.3

− 0.6 0

⎞

⎟
⎠, b3=b5=b7=

(
−

0.01

)

,

b1=

⎛

⎜
⎝

−
0.01

0.05

⎞

⎟
⎠, b2=b4=

⎛

⎜
⎝

−
0.012

0.09

⎞

⎟
⎠, b6=

⎛

⎜
⎝

−
0.004

0.03

⎞

⎟
⎠.
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