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Abstract: The growth of small errors in weather prediction is exponential on average. As an error becomes larger, its growth slows
down and then stops with the magnitude of the error saturating at about the average distance between two states chosen randomly.
This paper studies the error growth in a low-dimensional atmospheric model before, during and after the initial exponential divergence
occurs. We test cubic, quartic and logarithmic hypotheses by ensemble prediction method. Furthermore, the quadratic hypothesis
suggested by Lorenz in 1969 is compared with the ensemble prediction method. The study shows that a small error growth is best
modeled by the quadratic hypothesis. After the error exceeds about a half of the average value of variables, logarithmic approximation
becomes superior. It is also shown that the time length of the exponential growth in the model data is a function of the size of small
initial error and the largest Lyapunov exponent. We conclude that the size of the error at the least upper bound (supremum) of time
length is equal to 1 and it is invariant to these variables. Predictability, as a time interval, where the model error is growing, is for
small initial error, the sum of the least upper bound of time interval of exponential growth and predictability for the size of initial error
equal to 1.

Keywords: Chaos, planetary atmospheres, prediction methods, error analysis, modeling.

1 Introduction

Due to the fact that the atmosphere is a chaotic dynami-
cal system, the growth of small errors in weather prediction
is exponential. In the case of sufficiently small initial er-
ror, the governing equations can be linearized, which leads
to exponential growth of the error. Generally, whether an
error is small enough to guarantee the exponential growth
depends on the specific meteorological conditions and/or
the model under study. The issue of small errors growth
in the context of the model studied in this paper was also
addressed in [1−5]. For a more comprehensive introduction
to the problem of weather predictability we refer readers to
the book of Palmer and Hagedorn[6].

If the system which governs the change of the error is
linear, then the exponential growth will continue unabated.
The earth′s atmosphere is a non-linear system and as the
error becomes larger, the growth rate decreases. Eventually,
all systematic growth should stop and the size of the error
should be equal to the average size of the distance of two
randomly chosen states.

Predictability and average initial error growth for numer-
ical weather prediction models (NWPM) are still in the fo-
cus of researchers, e.g. [7, 8]. Analysis of the last mentioned
growth was firstly performed by Lorenz[9] in 1969. He in-
troduced a quadratic hypothesis which is based on the as-
sumption that if the principal nonlinear terms in the atmo-
spheric equations are quadratic, then the nonlinear terms
in the equations governing the field of errors will also be
quadratic but he could not prove this theory, because the
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method that has to be adopted (for NWPM we know just
model state and we do not know the real state) gives lim-
ited number of initial error sizes and limited available data
for valid approximation. This problem is still present. In
this case, it is a logical step to use a less complex exper-
imental model that gives the possibilities to choose “real”
and model states and to choose the number of approxi-
mated data. The present study attempts to examine this
hypothesis, using the low-dimensional atmospheric model
introduced by Lorenz in 1996[10] .

Even for systems with exponential error growth, it does
not start right from the initial time, and we observe the
transient behavior instead. After the transient behavior
dies out and exponential growth follows, the time length of
this part will be governed by the size of small initial error
and by the model parameters. Predictability, as a time
interval where the model error is growing, is also expected to
be a function of the above mentioned errors and parameters.
We also investigate this phenomenon.

Some results on the topic were published by us in a more
compact form in [1].

2 Model

Lorenz[10] introduced a model of nonlinear behavior, with
N variables X1, · · · , XN connected by governing equations:

dXn

dt
= −Xn−2Xn−1 + Xn+1Xn−1 − Xn + F (1)

where Xn−2, Xn−1, Xn, Xn+1 are unspecified (i.e., unre-
lated to actual physical variables) scalar meteorological
quantities, F is a constant representing external forcing,
and t is time. The index is cyclic so that Xn−N = Xn+N =
Xn, and the variables can be viewed as existing around a
circle. The nonlinear terms of (1) simulate advection. The
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linear terms represent mechanical and thermal dissipation.
The model can quantitatively describe the weather system
to a certain extent; but instead of the well-known Lorenz′s
model of atmospheric convection[11], (1) cannot be derived
from any atmospheric dynamic equations. The motivation
was to formulate the simplest possible set of dissipative
chaotically behaving differential equations that share some
properties with the “real” atmosphere. In [2, 3], the rea-
soning for usability of such a model was discussed in more
detail.

Details of the numerical integration of (1) are given in
Appendix. For our computation we choose N = 36, so
each sector covers 10 degrees of longitude. Parameters F
were selected equal to 8, 9 and 10, successively. We first
choose arbitrary values of the variables, and use a fourth
order Runge-Kutta method with a time step Δt = 0.05 or
6 hours, we integrate forward for 14 400 steps, or 10 years.
We then use the final values, which should be more or less
free of transient effect. For individual parameters F , we
estimate the global largest Lyapunov exponents λmax by
the method of numerical calculation presented in [12]. We
gradually get

F = (8; 9; 10) → λmax = (0.33; 0.39; 0.46) .

By the definition in [9], a bounded dynamical system with
a positive Lyapunov exponent is chaotic. Because all values
of the largest Lyapunov exponents of the model are posi-
tive and the system is bounded[2−4], its chaoticity has been
established for all three values of F . Strictly speaking, we
also need to exclude the asymptotically periodic behavior,
but such a task is impossible for numerical simulation to
fulfill. The choice of parameters F and time unit = 5days
is made to obtain the same values of the largest Lyapunov
exponents as the state of the art models of complete global
atmospheric circulation.

3 Ensemble prediction method

The ensemble prediction method employed is similar to
the one in [10] and is used to calculate the average initial er-
ror growth. We make an initial “run” by choosing error en0

and letting X ′
n0 = Xn0 +en0 be the “observed” initial value

of N variables. We then integrate forward from the true
and the observed initial state, for 50 days (K = 200 steps),
obtaining N sequences Xn0, · · · , XnK and X ′

n0, · · · , X ′
nK .

After that, we let enk = X ′
nk − Xnk for all values of k and

n. To get more representative values, we make a total of
M = 250 runs in the same manner by letting new values of
Xn0 be the old values of XnK in each run. Finally, we let

e2 (τ ) =
1

N

(
e2
1k + · · · + e2

Nk

)

be the average of the N values, where τ = kΔt is the pre-
dictable range and

log E2 (τ ) =
1

M

(
log e2 (τ )1 + · · · + log e2 (τ )M

)

is the average of M values. The logarithmic average is cho-
sen because of its suitability for comparison with growth
governed by the largest Lyapunov exponent. For further
information, see [13−15].

4 Quadratic hypothesis

According to Lorenz[10], there is an eventual cessation of
the exponential growth due to the processes represented by
nonlinear terms in the weather governing equations. The
most important are the quadratic terms, which represent
the advection of the temperature and velocity fields. Under
the assumption that the principal nonlinear terms in the
atmospheric equations are quadratic, the nonlinear terms
in the equations governing the field of errors will also be
quadratic. To describe this, Lorenz[10] defined

dE(t)

dt
= aE (t) − bE (t)2 (2)

where E (t) is a distance at time t between two originally
nearby trajectories; and a, b are constants. The quadratic
hypothesis is also used to describe the behavior of initial
error growth, for example in [16, 17].

4.1 Method

Because we want to study behavior of (2), we make differ-

ences yk = (E(τ+Δt)−E(τ))
Δt

at points xk = (E(τ)+E(τ+Δt))
2

,
where E is average initial error growth calculated from the
ensemble prediction method (Section 3).

Next we interpolate the data (xk, yk). The interpolation
equations are

y (t) =
dE (t)

dt
= aE (t) − bE (t)2 (2)

y (t) =
dE (t)

dt
= aE (t) − bE (t)3 (3)

y (t) =
dE (t)

dt
= aE (t) − bE (t)4 (4)

y (t) =
dE (t)

dt
= −aE (t) ln (bE (t)) . (5)

Equation (2) represents the examined quadratic hypoth-
esis. The alternative forms (3) and (4) are added, be-
cause Lorenz[9] noticed that the cubic and quartic equations
would also fit his data. Equation (5) is chosen because if

Q (t) = ln
(
E (t)

)
, with Ē being the normalized E, then

dQ(t)
dt

= a
(
1 − eQ(t)

)
represents the quadratic hypothesis.

In [18], it was assumed that linear fit dQ(t)
dt

= −aQ (t) is
superior to the quadratic hypothesis. Parameters a and b
in (2−5) are examined and discussed in the next section.

4.2 Results

Different initial errors e0 exhibit different behaviors of
an error growth. To study that, we selected six magni-
tudes of ||e0|| for each F : ||e0,1|| = 0.0001, ||e0,2|| = 0.001,
||e0,3|| = 0.01, ||e0,4|| = 0.1, ||e0,5|| = 0.6, ||e0,6|| = 1, where
|| · || marks the Euclidean norm. The interpolation equa-
tions were tested for all three values of parameter F and
initial error e0. Table 1 shows the RMS error between val-
ues obtained from the ensemble prediction and from the
interpolation equations. The error is divided by the aver-
age value of (E(τ+Δt)−E(τ))

Δt
. Fig. 1 displays the error growth

rate dE
dt

versus E for all parameters F and for e0,2, e0,4 and
e0,5. Each interpolation equation gives specific values of a
and b for particular F and e0. Our aim is to find a general
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Table 1 RMS error between values obtained from the ensemble prediction and from the interpolation equations. The error is

divided by the average value of (E(τ+Δt)−E(τ))
Δt

and displayed in percent. Gray cells mark values with the best results

Percent error

Initial error 0.0001 0.001 0.01 0.1 0.6 1

F 8 9 10 8 9 10 8 9 10 8 9 10 8 9 10 8 9 10

ax − bx2 16 19 12 13 11 13 16 12 14 16 15 14 34 27 29 47 41 36

Interpolation ax − bx3 23 27 22 23 22 20 21 22 25 29 25 27 40 38 38 53 50 51

equation ax − bx4 30 29 32 30 29 28 28 33 32 37 32 35 48 44 43 60 52 55

axln(bx) 20 21 19 22 23 21 22 22 22 22 25 21 26 21 23 39 31 34

Fig. 1 The error growth rate dE

dt
versus E for all parameters of F and for e0,2, e0,4 and e0,5. The thick line represents ensemble

prediction, the thin line corresponds to (2), the dashed line to (3), the thinly dashed line to (4) and the largely dashed line to (5)

description of a and b by well-known parameters of the sys-
tem. The early growth rate should be close to dE

dt
= λmaxE.

That means a = λmax for all interpolation equations. Re-
sults for (2−4) are the following. The constant a measures
the growth rate of small errors, the quadratic (cubic, quar-
tic) term has to be negative if a is positive, since it is the
only factor that can stop the growth. If E is normalized
such that the value which it approaches as t → ∞ is unity,
b = a. For unnormalized E, b = λmax

E∗ for (2), b = λmax
E∗2 for

equation (3) and b = λmax
E∗3 for (4), where E∗ denotes the

saturation value for E. For (5), then b = 1
E∗ .

From Table 1 and Fig. 1, it is obvious that the most accu-
rate and therefore usable hypotheses are the quadratic (2)
and logarithmic (5) ones. The theoretical values of parame-
ters a and b would make the inaccuracy of cubic and quartic
hypotheses even greater. Therefore, we will from now on
work only with quadratic and logarithmic hypotheses. Ta-
ble 2 shows the RMS error between values obtained from
the ensemble prediction and from (2−5), where parameters

a and b are the expected theoretical values. We can see
a higher increase of the percent error for (5) than for (2).
The difference between Table 2 and Table 1 is displayed in
Table 3.

5 Exponential growth and predictabil-
ity

Usability of the exponential model of initial error growth
is depended on the size of initial error as well as the model
parameter F . In the introduction, we mentioned that the
exponential growth Eexp (t) = e0e

(λmaxt) governed by the
largest Lyapunov exponent λmax occurs in the case of a
sufficiently small initial error e0. In this section, we present
sizes of this initial error and therefore the usability of the
exponential model.

Predictability tp is the time interval where systematic
growth of initial error occurs and the size of this error is
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smaller than the average size of the distance of two ran-
domly chosen states. This section also focuses on the de-
pendence of tp on the size of initial error, parameter F and
on the possible connection between predictability and ex-
ponential growth.

5.1 Method

If we display the time variation of the average prediction
error E obtained from the Lorenz′s model and exponential
growth (Fig. 2), we can hardly decide whether the expo-

nential growth happens or not. We could get same guesses
for predictable time read from graphs of time evolution of
E (Fig. 2), but we would rather relate it to a better speci-
fied value instead of the saturated value E∗. In both cases
we want to get more precise values and accuracy, therefore
we have to introduce a more sophisticated method. This
method was developed from the assumption that if the ex-
ponential growth is present, then the ratio of the two av-
erage errors E calculated from ensemble prediction method
(Section 3) in two following time steps Δt is

Fig. 2 Time variations of the average prediction error E obtained from the Lorenz′s model (the thick line) for F = 8, for e0,2, e0,4,

e0,5 and exponential growth governed by the largest Lyapunov exponent (the thin line)

Table 2 The RMS error between values obtained from the ensemble prediction and from (2, 5), where parameters a and b are the

expected theoretical values. The error is divided by the average value of (E(τ+Δt)−E(τ))
Δt

and displayed in percent

Percent error

Initial error 0.1 0.1 0.1 0.1 0.6 1

F 8 9 10 8 9 10 8 9 10 8 9 10 8 9 10 8 9 10

Interpolation ax − bx2 32 25 29 30 20 19 22 20 16 18 13 15 34 29 28 48 45 40

equation axln(bx) 97 89 94 83 85 82 73 77 84 73 63 72 42 41 46 39 36 34

Table 3 The absolute values of the differences between Table 2 and Table 1

Percent error

Initial error 0.0001 0.001 0.01 0.1 0.6 1

F 8 9 10 8 9 10 8 9 10 8 9 10 8 9 10 8 9 10

Interpolation ax − bx2 16 6 17 17 9 6 6 8 2 2 2 1 0 2 1 1 4 4

equation axln(bx) 67 68 75 61 62 61 51 55 62 51 38 51 16 20 23 0 5 0
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E (τ )

E (τ − Δt)
=

Eexp (τ )

Eexp (τ − Δt)
= e(λmaxΔt)

and hence it follows that

G (τ ) =
ln

(
E(τ)

E(τ−Δt)

)

(λmaxΔt)
= 1.

Boundaries of predictability occur when

E (τ ) = E (τ + Δt) = E∗

which means that G (τ ) = 0. Through the use of G, we
analyze exponential growth and predictability.

5.2 Results

Function G is calculated for a variety of initial errors
e0 and parameters F . We again choose six magnitudes
of ||e0|| for each parameter F : ||e0,1|| = 0.0001, ||e0,2|| =
0.001, ||e0,3|| = 0.01, ||e0,4|| = 0.1, ||e0,5|| = 0.2, ||e0,6|| = 1,
where || · || marks the Euclidean norm. In Table 4, the time
interval te, during which results from ensemble prediction
method are close to the theoretical exponential growth, is
displayed for each initial error e0 and each parameter of F .
In the same table, predictability tp (length of time interval

where E is growing) is also displayed. Fig. 3 shows time
evolution of function G for all F and e0,2, e0,4, e0,5. The
experimental data oscillate around theoretically expected
values, and therefore intervals te and tp are measured as
the length with similar oscillation around theoretically ex-
pected values rather than an exact match. Table 4 and
Fig. 3 also illustrate that the exponential growth is present
for e0 which is smaller than e0,4 = 0.1 and never starts at
the beginning of the growth. There is always a wave that
precedes it (it can also be seen in Table 3) and its length is
similar throughout the spectrum of F and e0. To analyze
this behavior further, we focus on the dependence of the
least upper bound (supremum) te,u of time interval te and
predictability tp on natural logarithm of initial errors from
e0,1 to e0,4 for all parameters of F (Fig. 4) and on natural
logarithm of initial errors from e0,1 to e0,6 (Fig. 5) in the
second case.

The results in Figs. 4 and 5 indicate the linear depen-
dence between te,u as well as between tp and ln (e0). To get
more information, we linearly interpolated the experimen-
tal data. The interpolation equations te,u (e0) and tp (e0)
for all parameters F were

te,u = c + d ln (e0) (6)

Fig. 3 Time evolution of function G (τ) =
ln

(
E(τ)

E(τ−Δt)

)

λmaxΔt
for all parameters of F and for e0,2, e0,4 and e0,5

Table 4 Time interval te, where results from the ensemble prediction method are close to theoretical exponential growth (N means

negative result) and predictability tp (time intervals, where E is growing) for each initial error e0 and each parameter F

e0 0.0001 0.001 0.01 0.1 0.2 1

F 8 9 10 8 9 10 8 9 10 8 9 10 8 9 10 8 9 10

te (d) (6; 27) (5; 23) (4; 20) (5; 21) (5; 18) (4; 15) (5; 14) (4; 11) (4; 10) 6 5 4 N N N N N N

tp (d) 49 40 32 42 34 27 35 27 22 28 21 17 25 19 15 20 15 12
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tp = f + h ln (e0) (7)

(cF=8; cF=9; cF=10) = (0.2;−0.2;−0.2)

(dF=8; dF=9; dF=10) = (−3;−2.6;−2.2)

(fF=8; fF=9; fF=10) = (20; 15; 12)

(hF=8; hF=9; hF=10) = (−3.1;−2.7;−2.2) .

Fig. 4 Time length te versus natural logarithm of initial errors

from e0,1 to e0,4 for all parameters of F . The dashed line is for

F = 8, the thin dashed line is for F = 9 , the large dashed line

is for F = 10 and solid lines represent linear interpolations

Fig. 5 Time length tp versus natural logarithm of initial errors

from e0,1 to e0,6 for all parameters of F . The dashed line is for

F = 8, the thin dashed line is for F = 9, the large dashed line is

for F = 10 and solid lines represent linear interpolations

Equations (6) and (7) suggest that as we choose a bigger
initial error, the window of exponential growth and pre-
dictability decreases with the natural logarithm of the ini-
tial error. Coefficient c is close to 0 for all F . Coefficient f
is the same as tp of e0,6 for all F . Coefficients d and h are
similar to each other. Theoretically, possible values for the
coefficients come from the definition of exponential growth

Eexp (t) = e0e
(λmaxt)

thus

t (e0) = − 1

λmax
ln

(
e0

Eexp

)
.

Values of 1
λmax

are

(
1

λmax,F=8
;

1

λmax,F=9
;

1

λmax,F=10

)
= (3.03; 2.56; 2.17) .

If we compare it with d and h , we see similarity of the
results.

From (6) and (7), it is obvious that function tp (te,u)
(Fig. 6) is linear:

tp = o + pte,u (8)

(oF=8; oF=9; oF=10) = (20; 15; 12)

a (pF=8; pF=9; pF=10) = (1; 1; 1) .

Fig. 6 Predictability tp versus time length te,u. The dashed line

is for F = 8, the thin dashed line is for F = 9, the large dashed

line is for F = 10 and solid lines are linear interpolations

If the exponential growth is present, tp is equal to te,u

plus e0,6 for all parameters of F .

6 Discussion

The Lorenz′s results[9] fulfilled the cubic relation (3)
fairly well, though he only used limited number of data for
his study. We showed that neither (3) nor (4) fits our data
properly, compared to the other alternatives. Two usable
hypotheses approximating the error growth rate are

dE (t)

dt
= λmax · E (t) −

(
λmax

E∗

)
· E (t)2 (9)

dE (t)

dt
= −λmax · E (t) · ln

(
E (t)

E∗

)
(10)

where λmax is the largest Lyapunov exponent and E∗ is the
saturated value of E.

If we look for the best approximation of model values of
the error growth rate Ė, then the quadratic law (2) fits the
best for e0 up to about 0.1. For higher values, it is better
to use logarithmic law (5). On the other hand, if we want
to estimate parameters of the model or use (9, 10) directly,
it is, according to Fig. 2, Table 2 and Table 3, better to use
(9) for e0 = 〈0; 1〉 and (10) for e0 = 〈1; 2〉. The reason for
the difference can be found in Fig. 7. We can estimate that
the best result for (2) is the range of e0 between 0.001 and
0.1 and for (5) we obtain the range of e0 between 1 and
1.5. The difference between theoretical and experimental
data for parameter a is much higher for (5) than for (2)
and parameter b in (5) is inside the logarithmic function
and therefore any possible difference would be increased by
this function.
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Fig. 7 Comparison of theoretical and experimental parameters

a, b for (2, 5). The thin dashed lines represent F = 8, the dashed

lines are for F = 9 and the solid lines are for F = 10. The thin

lines are theoretical values and the thick lines are experimental

values

Here, we also need to mention that variables X1, · · · , XN

vary between approximately −6 and +12. Fig. 8 shows time
variations of X1 during a period of 180 days. The average

value X of Xn is 2, which means that for e0 � X
2

, it is bet-

ter to use (9) and for e0 � X
2

it is better to use logarithmic
law (10). This is in good agreement with [18], where the
same was suggested.

Fig. 8 Time variations of X1 during a period of 180 days

Solutions of (9) and (10) are

E (t) =
E∗

(
E∗
e0

− 1
)

e(−λmaxt) + 1
(11)

E (t) = E∗
( e0

E∗

)e(−λmaxt)

. (12)

The maximum sufficiently small initial error with the ex-
ponential growth of E (t) is e0 = 0.1 (according to Table 4
and Fig. 3). If we take a look at the validity of quadratic
hypothesis with experimental parameters, we can see the
same maximal value. We can speculate that it is not a co-
incidence that a sufficiently small error is directly connected
with the quadratic hypothesis, and that if we use a suffi-
ciently small initial error, then the growth will be governed
by (9).

The greatest lower bound (infimum) te,l of the time inter-
val te has a similar value across the spectrum of e0 (Table 4),
and we did not find any interpolation equation. The behav-
ior of E (t) from the ensemble prediction approach before
the exponential growth takes place has a similar form for all
F and e0 (Table 4, Figs. 2 and 3). Errors measured by en-
semble prediction approach are approximately decreasing
during the first 0.3 days and after 0.5 days it is approxi-
mately as large as e0. Exponential growth overestimates
the error for approximately the first 1.3 days, while un-
derestimates it (till te,l) later. The maximum of this wave
behavior occurs approximately at 2.3 days. Same behav-
ior was also observed for e0 � 0.1. To explain it we have
to remind the definition of Lyapunov exponent as a long-
term average characteristic. As stated in [19, 20], the error
growth differs from the one established from Lyapunov ex-
ponent for the first few days. That is true not only for
low dimensional models, but also for more complex global
atmospheric circulation models.

The least upper bound te,u of time interval te follows (6),
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Fig. 9 Time variations of the average prediction error E around E = 1 obtained from the Lorenz′s model (the thick line) for F = 9,

for e0,1, e0,3, e0,4 and exponential growth governed by the largest Lyapunov exponent (the thin line)

which can be generally written as

te,u,theoretical = −
(

1

λmax

)
ln (e0) . (13)

If we substitute (3) into the equation for the exponential
growth Eexp,u (t) = e0e

(λmaxt), we get

Ee,u,theoretical = 1. (14)

Ee,u,theoretical is invariant to all e0 and F . In Fig. 9, we can
see that Ee,u from the ensemble prediction approach is very
similar.

Here we would like to remind the reader that it is bet-
ter to use (9) for e0 = 〈0; 1〉 and (10) for e0 = 〈1; 2〉, and
again we dare to say that it is not a coincidence that the
value of 1 plays a role in both. Equation (7) approximat-
ing predictability tp (length of the time interval, where E is
growing) with theoretical parameters f and h can be writ-
ten as

tp = tp,e0=1 −
(

1

λmax

)
ln (e0) (15)

where tp,e0=1 is the predictability for e0 = 1. We did not
find any general expression for tp,e0=1. The second part of
the expression represents te,u,theoretical and for e0 ∈ (0; 0.1),
(15) can be rewritten into

tp = tp,e0=1 + te,u,theoretical (16)

which is the same equation as (8). This means that for
e0 ∈ (0; 0.1) the increase in predictability time tp is due to
the increase in time length of the exponential growth te,u.
The maximum predictability governed by (11) is 49 days
for F = 8 and e0,1. The lower predictability, governed by
(12), is 12 days for F = 10 and e0,6 (Table 4).

7 Conclusion

This article focuses on analyzing the average error growth
in a low-dimensional atmospheric model[10]. Theoretical hy-
potheses with experimental and theoretical coefficients and
exponential model are compared with the ensemble predic-
tion method for different initial errors and model param-
eters. Dependence of predictability and validity of expo-
nential growth on lastly mentioned errors and parameters
is also studied.

The important resulting values are 0.1 and 1. Value 0.1
is border for hypotheses with experimental coefficients, and
it is also the maximum sufficiently small initial error with
exponential growth. If the initial error is smaller than 0.1,
then it is better to use quadratic hypothesis. If it is bigger,
then the logarithmic hypothesis becomes superior. Value 1
is border for hypotheses with theoretical coefficients, and it
is also the size of the error at least upper bound (supremum)
of time length of exponential growth for all sufficiently small
initial errors and model parameters. If the initial error is
smaller than 1, then it is better to use quadratic hypothe-
sis. If it is bigger, then the logarithmic hypothesis becomes
superior. Predictability, as a time interval where the model
error is growing, is, for small initial error, the sum of the
least upper bound of time interval of exponential growth
and the predictability for the size of initial error equal to 1
as shown in (16). The least upper bound of time interval of
exponential growth is negatively proportional to Lyapunov
exponent and directly proportional to natural logarithm of
small initial error as shown in (15). Exponential growth
does not start from the beginning of error growth and the
greatest lower bound of time interval of exponential growth
has similar values across the spectrum of sufficiently small
initial errors.

It is in relatively good agreement, e.g., [7, 8], with the
ability and predictability of the current meteorological mod-
els (the predictability is approximately two weeks).

This number (two weeks) itself cannot be transferred to
dynamic systems of a different nature (nonlinear oscillators,
mechanical systems, etc.). When studying the predictabil-
ity of other systems it is possible to use the methodology of
our article, for example, a combination of approach using
Lyapunov exponents and ensemble prediction or estimation
error growth depending on its stage.

Appendix

Numerical integration of (1) is performed by Runge-
Kutta method of 4th order, as described by many authors,
e.g. [21−23]. The algorithm is implemented in software
Wolfram MathematicaTM. This integration scheme has
been studied in terms of stability and usability for chaotic
systems in [24]. The study shows that the use of integration
step 0.05 is quite sufficient. Moreover, we have verified us-
ing different integration parameters that the cited method
provides a sufficiently smooth trajectory in phase space of
the system under study. The same method and time step
were also used for solving equation (1) in [2, 6, 10].
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role of large-scale spatial patterns in the chaotic amplifica-
tion of perturbations in a Lorenz′96 model. Tellus Series A
– Dynamic Meteorology and Oceanography, vol. 63, no. 5,
pp. 978–990, 2011.

[5] H. M. Arnold, I. M. Moroz, T. N. Palmer. Stochastic
parametrizations and model uncertainty in the Lorenz′96
system. Philosophical Transactions of the Royal Society A
– Mathematical Physical and Engineering Sciences, vol. 371,
no. 1991, 20110179, 2013.

[6] T. Palmer, R. Hagedorm. Predictability of Weather and Cli-
mate, Cambridge, UK: Cambridge University Press, pp. 1–
702, 2006.

[7] L. S. R. Froude, L. Bengtsson, K. I. Hodges. Atmospheric
predictability revisited. Tellus Series A – Dynamic Meteo-
rology and Oceanography, vol. 65, pp. 1–13, 2013.

[8] L. Magnusson, E. Kallen. Factors influencing skill im-
provements in the ECMWF forecasting system. Monthly
Weather Review, vol. 141, no. 9, pp. 3142–3153, 2013.

[9] E. N. Lorenz. Atmospheric predictability as revealed by nat-
urally occurring analogs. Journal of the Atmospheric Sci-
ences, vol. 26, no. 4, pp. 636–646, 1969.

[10] E. N. Lorenz. Predictability: A problem partly solved. In
Proceedings of Seminar on Predictability, CMWF, Read-
ing, Berkshire, UK, vol. 1, pp. 1–18, 1996.

[11] E. N. Lorenz. Deterministic nonperiodic flow. Journal of the
Atmospheric Sciences, vol. 20, no. 2, pp. 130–141, 1963.

[12] J. C. Sprott. Chaos and Time-Series Analysis, New York,
USA: Oxford University Press, pp. 1–507, 2003.

[13] A. Trevisan. Impact of transient error growth on global av-
erage predictability measures. Journal of the Atmospheric
Sciences, vol. 50 no. 7, pp. 1016–1028, 1993.

[14] R. Q. Ding, J. P. Li. Comparisons of two ensemble mean
methods in measuring the average error growth and the
predictability. Acta Meteorologica Sinica, vol. 25, no. 4,
pp. 395–404, 2011.

[15] R. Benzi, F. C. Carnevale. A possible measure of local pre-
dictability. Journal of the Atmospheric Sciences, vol. 46,
no. 23, pp. 3595–3598, 1989.

[16] E. N. Lorenz. Atmospheric predictability experiments with
a large numerical model. Tellus, vol. 34, no. 6, pp. 505–513,
1982.

[17] L. Bengtsson, K. I. Hodges. A note on atmospheric pre-
dictability. Tellus, vol. 58, no. 1, pp. 154–157, 2006.

[18] A. Trevisan, P. Malguzzi, M. Fantini. On Lorenz′s law for
the growth of large and small errors in the atmosphere.
Journal of the Atmospheric Sciences, vol. 49 no. 8, pp. 713–
719, 1992.

[19] J. Smagorinsky. Problems and promises of deterministic ex-
tended range forecasting. Bulletin of the American Meteo-
rological Society, vol. 50, no. 5, pp. 286–311, 1969.

[20] E. N. Lorenz. Deterministic nonperiodic flow. Journal of the
Atmospheric Sciences, vol. 20, no. 2, pp. 130–148, 1963.

[21] E. W. Weisstein. Runge-Kutta method, [Online], Available:
http: //mathworld. wolfram. com/Runge-Kutta Method.ht-
ml, September 11, 2013.

[22] J. D. Lambert, D. Lambert. Numerical Methods for Ordi-
nary Differential Systems: The Initial Value Problem, New
York, USA: Wiley, pp. 149–205, 1991.

[23] J. H. E. Cartwright, O. Piro. The dynamics of Runge-
Kutta methods. Bifurcations Chaos, vol. 2, no. 3, pp. 427–
449, 1992.
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Aleš Raidl received his M. Sc. degree in
physics and Ph.D. degree in meteorology
and climatology from the Faculty of Math-
ematics and Physics, Charles University in
Prague, Czech Republic in 1992 and 1996,
respectively. Now he is a lecturer at the De-
partment of Meteorology and Environment
Protection, Charles University, Czech Re-
public. He is the co-author of three mono-
graphs on deterministic chaos and strange

kinetics with applications in physics, and nonlinear problems of
geophysical hydrodynamics.

His research interests include issues of nonlinear geophysical
hydrodynamics and problems of deterministic chaos and pre-
dictability in atmospheric models. He also focuses on the area of
nonlinear analysis and modeling of experimental data.

E-mail: ales.raidl@mff.cuni.cz

Jǐŕı Mikšovský received his M. Sc. de-
gree in physics and Ph.D. degree in mete-
orology and climatology from the Faculty
of Mathematics and Physics, Charles Uni-
versity in Prague, Czech Republic in 2000
and 2004, respectively. Now he is a senior
assistant professor at Charles University in
Prague.

His research interests include time series
and data analysis in the field of climate re-

search.
E-mail: jiri.miksorsky@mff.cuni.cz


