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Abstract: The goal of this paper is to analyze the Finnish gross domestic product (GDP) and to find chaos in the Finnish GDP. We

chose Finland where data has been available since 1975, because we needed the longest time series possible. At first we estimated the

time delay and the embedding dimension, which is needed for the Lyapunov exponent estimation and for the phase space reconstruction.

Subsequently, we computed the largest Lyapunov exponent, which is one of the important indicators of chaos. Then we calculated

the 0-1 test for chaos. Finally we computed the Hurst exponent by rescaled range analysis and by dispersional analysis. The Hurst

exponent is a numerical estimate of the predictability of a time series. In the end, we executed a recurrent analysis and displayed

recurrence plots of detrended GDP time series. The results indicated that chaotic behaviors obviously exist in GDP.
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1 Introduction

Humanity has always been concerned with the question

of whether the processes in the real world are deterministic

in nature. Determinism can be understood variously. We

know a lot of kinds of determinism, for example, philosoph-

ical, biological, economic, genetic, cultural, social, psycho-

logical, theological, technological, linguistic, environmen-

tal and mathematical. In this paper, we assume a mathe-

matical sense of determinism, which is given by equations

and initial conditions. Mathematical models that are not

deterministic because they involve randomness are called

stochastic.

Are the processes in the real world deterministic or

stochastic in nature? The answer to this question is not

clear. Both deterministic and stochastic dynamical systems

have occupied an important place in the history of science.

The first ideas were formulated in antiquity. In the begin-

ning of the 18th century, there were seen many scientific

progresses and discoveries. After Newton, most scientists

worked on the assumption that the universe is controlled by

strict natural laws. We are reminded of Laplace′s demon[1].

Laplace′s demon is a universal scientist who is not limited

by technical and mental restrictions. According to deter-

minism, if someone knows the precise location and momen-

tum of every atom in the universe, their past and future val-

ues for any given time are entailed; they can be calculated

from the laws of classical mechanics. We may regard the

present state of the universe as the effect of its past and the

cause of its future. An intellect which at a certain moment

would know all the forces that set nature in motion, and all

positions of all items of which nature is composed. If this

intellect were also vast enough to submit these data for anal-

ysis, it would embrace in a single formula the movements

of the greatest bodies of the universe and those of the tini-

est atom; for such an intellect nothing would be uncertain
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and the future, just like the past would be present before

its eyes[1]. It was a victory for determinism. In fact, clas-

sical determinism faces insurmountable limits even within

the framework of classical mechanics itself. In particular,

an accurate prediction of the future requires specifying a

precise initial condition, but it is impossible. The second

limitation lies in the difficulty of mathematical solutions of

classical equations of motion.

Quantum mechanics with Heisenberg′s Uncertainty prin-

ciple appeared after that. The uncertainty principle says

the paths of objects can only be predicted in a probabilistic

way. This is the end of Laplace′s demon with respect to

classical determinism, but this is not the end of generalized

determinism. Generalized deterministic theory must satisfy

the following conditions: 1) In the framework of this theory,

it is defined as a procedure by which we can clearly define

the status of the studied system. 2) The equation that is

formulated, uniquely determines future states of the speci-

fied initial state. Accordingly this definition is the quantum

mechanics of deterministic theory.

The universe exists and develops over time. The “Big

Bang” might have caused everything or it might just have

been a coincidence. We can observe and describe the uni-

verse and things around us. In order to describe reality, we

must simplify it through a relevant model. The only purely

stochastic process is a mathematical model described by

mathematical statistics. The statistical model often works

and is the only possible description if we do not know the

system. If we study some system, especially an economic

system, we usually know a lot of information about this

system. Of course, the only purely deterministic model is

still just a model. We believe that for the description of

real processes, it is better to use some deterministic model,

when we know something more about this process. We

think that to abandon determinism and to work only with

classical methods is inefficient. Real processes in nature, ac-

cording to the expectation of Mandelbrot[2], lie somewhere

between pure deterministic process and white noise. This is

why we can describe reality either by a stochastic or deter-
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ministic model. The Hurst coefficient can give us an answer

to this.

An interesting case of determinism is deterministic chaos.

The only purely stochastic process is a mathematical model

described by mathematical statistics. The statistical model

often works and is one of many possible descriptions if we do

not know the system. This also applies to economic quanti-

ties, including forecasts for gross domestic product (GDP).

The basic question is therefore the existence of chaotic be-

havior. If the system behaves chaotically, we are forced to

accept only limited predictions. In this paper, we will try

to show the chaotic behavior of GDP.

The methods used to analyze time series for detecting

chaos can be classified according to Gilmore[3] into met-

ric, dynamical, and topological tools. Metric methods de-

pend on the computation of distances in the system′s at-

tractor, and include the Grassberger-Procaccia correlation

dimension[4]. Dynamical methods deal with computing di-

verging orbits by estimating Lyapunov exponents. Topo-

logical methods are characterized by the study of the or-

ganization of the strange attractor, and they include close

return plots and recurrence plots[5].

Classical metric and dynamical methods are sometimes

hardly applicable to economic time series. The main prob-

lem in analyzing the GDP time series is the lack of data

and noisy data set. We do not have universal algorithms

that work with small data sets and are robust against noise.

Faggini[6] claims that topological tools, like recurrence anal-

ysis, can solve this problem. Recurrence is a fundamental

characteristic of many dynamical systems and was intro-

duced by Poincaré in 1890[7] . In this paper, we use metric,

dynamical and topological methods. Recurrence analysis

is a relatively new technique for the qualitative analysis of

time series. Thanks to this technique, we can graphically

detect hidden patterns and structural changes in time se-

ries.

2 Methods of analyzing

2.1 Phase space reconstruction

According to Henry et al.[8], the main goal in nonlinear

time series analysis is to determine whether or not a given

time series is of a deterministic nature. If it is, then further

questions of interest are: What is the dimension of the phase

space supporting the data set? Is the data set chaotic?

The key to answering these questions is embodied in the

method of phase space reconstruction, which has been rigor-

ously proven by the embedding theorems of Takens[9]. The

Takens theorem was independently invented by Packard et

al.[10] among others. The Takens′ theorem transforms the

prediction problem from time extrapolation to phase space

interpolation. The Takens′ embedding theorem asserts that

measured time series need not be components of the attrac-

tor, but only a sufficiently smooth transformation or maps

of the component or components (so called measurement

function) of the dynamical system under study[11].

Let there be given a time series x1, x2, · · · , xN which is

embedded into the m-dimensional phase space by the time

delay vectors. A point in the phase space is given as

Yn = xn, xn−τ , · · · , xn−(m−1)τ , n = 1, 2, · · · , N − (m − 1)τ

(1)

where τ is the time delay, and m is the embedding dimen-

sion. Different choices of τ and m yield different recon-

structed trajectories. How can we determine optimal τ and

m?

A one-to-one embedding can be obtained for any value

of the time delay τ > 0. However, very small time delays

will result in near-linear reconstructions with high corre-

lations between consecutive phase space points and very

large delays might obscure the deterministic structure link-

ing points along a single degree of freedom. If the time

delay is commensurate with a characteristic time in the un-

derlying dynamics, then this too may result in a distorted

reconstruction.

In order to estimate τ , two criteria are important accord-

ing to Kodba et al.[12]. First, τ has to be large enough so

that the information we get from measuring the value of x

at time n + τ is significantly different from the information

we already have by knowing the value of x at time n. Only

then will it be possible to gather enough information about

all other system variables that influence the value of x to

reconstruct the whole attractor. Second, τ should not be

larger than the typical time in which the system loses mem-

ory of its initial state. This is particularly important for

chaotic systems, which are intrinsically unpredictable and

hence lose memory of the initial state as time progresses.

Following this reasoning, Fraser and Swinney[13] intro-

duced the mutual information between xn and xn+τ as a

suitable quantity for determining τ . The mutual informa-

tion between xn and xn+τ quantifies the amount of informa-

tion we have about the state xn+τ presuming we know the

state xn. Now we can define mutual information function:

I(τ ) = −
j∑

h=1

j∑

k=1

Ph,k(τ ) ln
Ph,k(τ )

PhPk
(2)

where Ph and Pk denote the probabilities that the variable

assumes a value inside the h-th and k-th bins, respectively,

and Ph,k(τ ) is the joint probability that xn is in bin h and

xn+τ is in bin k. Hence, the first minimum of I(τ ) marks

the optimal choice for the time delay.

The embedding dimension m is conventionally chosen us-

ing the “false nearest neighbors” method. This method

measures the percentage of close neighboring points in a

given dimension that remain so in the next highest dimen-

sion. The minimum embedding dimension capable of con-

taining the reconstructed attractor is that for which the

percentage of false nearest neighbors drops to zero for a

given tolerance level μ.

In order to calculate the fraction of false nearest neigh-

bors the following algorithm is used according to Kennel[14].

Given a point p(i) in the m-dimensional embedding space,

one first has to find a neighbor p(j), so that

‖p(i) − p(j)‖ � μ. (3)

We then calculate the normalized distance Ri between the
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(m + 1)-th embedding coordinate of points p(i) and p(j)

according to the equation:

Ri =
|xi+mτ − xj+mτ |
‖p(i) − p(j)‖ . (4)

If Ri is larger than a given threshold Rtr , then p(i) is

marked as having a false nearest neighbor. Equation (4)

has to be applied for the whole time series and for various

m = 1, 2, · · · until the fraction of points for which Ri > Rtr

is negligible[12] .

2.2 The largest Lyapunov exponent

Lyapunov exponent λ of a dynamical system is a quantity

that characterizes the rate of separation of infinitesimally

close trajectories. Quantitatively, two trajectories in phase

space with initial separation δZ0 diverge.

δZ(t) ≈ eλt |δZ0| . (5)

The largest Lyapunov exponent can be defined as

λ = lim
δZ0→0,t→∞

1

t
ln

|δZ(t)|
|δZ0| . (6)

The limit δZ0 → 0 ensures the validity of the linear

approximation at any time. Largest Lyapunov exponent

determines a notion of predictability for a dynamical sys-

tem. We can say that Lyapunov exponent measures local

instability[6]. A positive Lyapunov exponent is generally re-

garded as necessary but not sufficient to presence of chaos.

A positive largest Lyapunov exponent is usually taken as an

indication that the system is chaotic (provided some other

conditions are met, e.g., phase space compactness)[15].

We have used the Rosenstein algorithm[16], which counts

the largest Lyapunov exponent as

λ1(i) =
1

iΔt
.

1

(M − i)

M−i∑

j=1

ln
dj(i)

dj(0)
(7)

where dj(i) is distance from the j point to its nearest neigh-

bor after i time steps, and M is the number of reconstructed

points. For more information see [16, 17]. Rosenstein algo-

rithm is based on the following steps:

1) Estimate lag and mean period using the fast Fourier

transform (FFT).

2) Reconstruct attractor dynamics using method of de-

lays.

3) Find nearest neighbors. Constrain temporal separa-

tion.

4) Measure average separation of neighbors. Do not nor-

malize.

5) Use least squares to fit a line to the data.

Generally, Lyapunov exponent estimates of economic

data may not be so reliable, because the estimate requires

a large number of observations. We chose Rosenstein algo-

rithm, because it is easy to implement and fast because it

uses a simple measure of exponential divergence that cir-

cumvents the need to approximate the tangent map. The

algorithm is also attractive from a practical standpoint be-

cause it does not require large data sets. Furthermore, the

method is accurate for small data sets because it takes ad-

vantage of all the available data[16].

2.3 The 0-1 test for chaos

New test for the presence of deterministic chaos was de-

veloped by Gottwald and Melbourne[18]. Their 0-1 test for

chaos takes as input a time series of measurements, and

returns a single scalar value usually in the range 0-1. In

contrast the 0-1 test does not depend on phase space re-

construction but rather works directly with the time series

given. The input is the time-series data and the output is

0 or 1, depending on whether the dynamics is non-chaotic

or chaotic.

Briefly, the 0-1 test takes as input a scalar time series of

observations φ1, · · · , φN . We have used the algorithm ac-

cording to Dawes and Freeland[19]. First, we must fix a real

parameter c and construct the Fourier transformed series:

zn =
n∑

j=1

φje
ijc, n = 1, · · · , N. (8)

Then we have computed the smoothed mean square dis-

placement:

Mc(n) =
1

N − p

N−p∑

j=1

|zj+n − zj |2 −
(

N∑

k=1

φk

N

)2

1 − cos nc

1 − cos c
.

(9)

Finally we have estimated correlation coefficient to eval-

uate the strength of the linear growth

rc =
cov(n, Mc(n))√

cov(n, n)cov(Mc(n), Mc(n))
. (10)

2.4 Correlation dimension

Euclidian dimension is given by the number of phase vari-

ables. However, for a deeper understanding of behavior of

dynamical systems, we must define fractal dimension. The

term “fractal” was first introduced by Mandelbrot[2]. It

comes from the Latin fractus, meaning an irregular surface

like that of a broken stone. Fractals are non-regular geo-

metric shapes that have the same degree of non-regularity

on all scales. A fractal is a mathematical set that has a

fractal dimension. There are many specific definitions of

fractal dimension. Generally, the fractal dimension D, is

a statistical quantity that gives an indication of how com-

pletely a fractal appears to fill space, as one zooms down

to finer and finer scales. Let S be a set of points in a space

of Euclidean dimension d. We now consider certain hyper-

cubes of side ε, and calculate the minimum number of such

cells, N(ε), necessary to “cover” S. Let definite capacity

dimension (Kolmogorov dimension), which is typical and

common, be an example of fractal dimension:

D = lim
ε→0

ln(N(ε))

ln ε−1
. (11)

Notice that fractal dimension is a real number. A

non-integer dimension does not imply chaotic dynamic,

but all strange attractors must have non-integer fractal

dimensions[20].

In practice, capacity dimension cannot be computed eas-

ily. A different approach has been designed by Grass-

berger and Procaccia[4] . The method is based on the
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concept of correlation dimension suggested by Grassberger

and Procaccia[4] .

Correlation dimension describes the geometric or topo-

logical properties, but not the dynamics itself. Correlation

dimension describes the dimensionality of the underlying

process in relation to its geometrical reconstruction in phase

space. The correlation dimension itself can be an indicator

of the presence of chaos. Correlation dimension is calcu-

lated using the fundamental definition. The idea behind

it is to construct a function C(r) called correlation integral

that is the probability that two arbitrary points on the orbit

are closer together than r. Define the correlation integral

C(r) for data set of length M :

C(r) =
1

M(M − 1)

M∑

i, j = 1,

i �= j

Θ(r − ‖yi − yj‖ ) (12)

where Θ is the Heaviside step function.

Θ(y) =

⎧
⎪⎪⎨

⎪⎪⎩

0, if y < 0
1

2
, if y = 0

1, if y > 0.

(13)

Euclidean metric is used for all calculations in this paper.

When a lower limit exists, the correlation dimension is then

defined as

DC = lim
r→0, M→∞

ln(C(r))

ln(r)
. (14)

The Hurst exponent H is directly related to fractal di-

mension D, because maximum fractal dimension for a pla-

nar tracing is 2:

D + H = 2. (15)

2.5 Long memory in time series

The Hurst exponent (H) is widely used to characterize

some processes. The Hurst exponent is used to evaluate the

presence or absence of long-range dependence and its degree

in a time-series. For more information see [5, 21]. The Hurst

exponent is a measure that has been widely used to evaluate

the self-similarity and correlation properties of fractional

Brownian noise, the time-series produced by a fractional

Gaussian process[22]. We can describe self-similarity process

with the following equation:

X(at) = aHX(t) (16)

where a is a positive constant, and H is the self-similarity

parameter, for 0 < H < 1.

We have used two methods for computing long memory

in GDP time series. First, we have used a methodology

known as rescaled range analysis or R/S analysis. This

method was originally developed by Hurst[23]. To calculate

the Hurst exponent, one must estimate the dependence of

the rescaled range on the time span n of observation. The

Hurst exponent is defined in terms of the asymptotic be-

havior of the rescaled range as a function of the time span

of a time series as

E

[
R(n)

S(n)

]
= CnH as n → ∞ (17)

where
[

R(n)
S(n)

]
is the rescaled range; E[y] is expected value; n

is number of data points in a time series, C is a constant[20].

An algorithm for calculation is used from Qian and

Khaled[24]. To calculate the Hurst exponent, one must es-

timate the dependence of the rescaled range on the time

span n of observation. The average rescaled range is then

calculated for each value of n. For a (partial) time series

of length n, Y = Y1, Y2, · · · , Yn, the rescaled range is calcu-

lated as follows:

1) Create a mean-adjusted series:

Ut = Yt − 1

n

n∑

i=1

Yi, t = 1, 2, · · · , n. (18)

2) Calculate the cumulative deviate series V:

Vt =
n∑

i=1

Ui, t = 1, 2, · · · , n. (19)

3) Compute the range R:

R(n) = max(V1, V2, · · · , Vn) − min(V1, V2, · · · , Vn). (20)

4) Compute the standard deviation S

S(n) =

√√√√ 1

n

n∑

i=1

(Yi − Ȳ )2. (21)

5) Calculate the rescaled range and average over all

the partial time series of length n. The Hurst exponent

is estimated by fitting the power law, according to the

definition[20].

Second method is dispersional analysis. This method was

introduced by Bassingthwaighte[25] . In the original algo-

rithm, the x(t) series is divided into non-overlapping inter-

vals of length n. The mean of each interval is computed,

and then the standard deviation (SD) of these local means,

for a given length n. These computations are repeated over

all possible interval lengths. SD is related to n by a power

law:

SD ∝ nH−1. (22)

The quantity (H − 1) is expressed as the slope of the

double logarithmic plot of SD as a function of n. Obviously,

as the number of means involved in the calculation depends

on the number of available intervals, the SD′s calculated

from the highest values of n tend to fall below the regression

line and bias the estimate according to Delignieres[26] .

Dispersional analysis can be regarded as a strong method

for characterizing biological or natural time series, which

generally show long-range positive correlation[27] .

2.6 Recurrence analysis

Recurrence is a fundamental property of dynamical sys-

tems, which can be exploited to characterize the system′s
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behavior in phase space[28]. Recurrence analysis, based on

topological approach, was used to show recurring patterns

and non-stationarity in time series[29]. It was applied to

study chaotic systems because recurrence is one of the most

important features of chaotic systems. Thanks to recur-

rence analysis, it was possible to reveal a correlation in the

data that was impossible to detect in the original time se-

ries. Recurrence analysis is also particularly suitable for

economic time series that are characterized by noise and

short data sets[30].

A powerful tool for visualization and analysis is called re-

currence plot (RP). Generally RP is an advanced technique

of nonlinear data analysis. RP is a graphical method de-

signed to locate hidden recurring patterns, nonstationarity

and structural changes, introduced by Eckmann et al.[31].

It is a visualization of a square matrix, in which the ma-

trix elements correspond to those times at which a state of

a dynamical system recurs (columns and rows correspond

then to a certain pair of times).

We have a trajectory of a system in its phase space[31].

The trajectory is vector and its components are points in

phase space (1). The development of the systems is then de-

scribed by a series of these vectors, representing a trajectory

in an abstract mathematical space. Then, the correspond-

ing RP is based on the following recurrence matrix:

RRRi,j =

{
1 : yyyi ≈ yyyj

0 : yyyi �= yyyj

, i, j = 1, · · · , N (23)

where N is the number of considered states, and yyyi ≈ yyyj

means equality up to an error (or distance) r. Note that

this r is essential as systems often do not recur exactly to

a formerly visited state but just approximately. Roughly

speaking, the matrix compares the states of a system at

times i and j. If the states are similar, this is indicated by

a one in the matrix, i.e. RRRi,j = 1. If on the other hand the

states are rather different, the corresponding entry in the

matrix is RRRi,j = 0.

As our focus is on recurrences of states of a dynamical

system, we define now the tool which measures recurrences

of a trajectory in phase space: the recurrence plot, (23)[31].

The RP efficiently visualizes recurrences and can be for-

mally expressed by the matrix

RRRi,j(rrr) = Θ(r − ∥∥yyyi − yyyj

∥∥ )), i, j = 1, · · · , N (24)

where N is the number of measured points yyyi, r is a

threshold distance, Θ is the Heaviside step function (13).

For r-recurrent states, i.e., for states which are in an

r-neighborhood, we introduce the following notion:

yyyi ≈ yyyi ⇔ RRRi,j ≡ 1. (25)

The RP is obtained by plotting the recurrence matrix (24),

and using different colours for its binary entries, e.g., plot-

ting a black dot at the coordinates (i, j), if RRRi,j ≡ 1, and

a white dot, if RRRi,j ≡ 0. Both axes of the RP are time

axes and show rightwards and upwards (convention). Since

RRRi,i ≡ 1 for all i = 1, · · · , N by definition, the RP has al-

ways a black main diagonal line, the line of identity (LOI).

Furthermore, the RP is symmetric by definition with re-

spect to the main diagonal, i.e. RRRi,j ≡ RRR
[28]
j,I . For more

information see Marwan[28] .

As already mentioned, RP visualizes trajectories in phase

space. RP shows important information in the time evolu-

tion of these trajectories, because typical patterns in RPs

are linked to a specific behavior of the system. RP is always

symmetrical diagonally and contains at least one of the fol-

lowing structures called textures: single dots, diagonal lines

as well as vertical and horizontal lines (the combination

of vertical and horizontal lines obviously forms rectangular

clusters of recurrence points); in addition, even bowed lines

may occur[28].

1) Single, isolated recurrence points can occur if states

are rare, if they persist only for a very short time, or fluc-

tuate strongly.

2) A diagonal line occurs when a segment of the trajec-

tory runs almost in parallel to another segment.

3) A vertical (horizontal) line marks a time interval in

which a state does not change or changes very slowly.

4) Bowed lines are lines with a non-constant slope. The

shape of a bowed line depends on the local time relationship

between the corresponding close trajectory segments.

Diagonal lines are the most interesting structures in this

analysis. These lines indicate the existence of unstable peri-

odic orbits and thus are characteristic of the presence of de-

terminism. If there are only diagonal lines in the recurrent

plot, then it is a periodic signal. Periodic and quasi-periodic

systems have RPs with diagonal oriented, periodic or quasi-

periodic recurrent structures (diagonal lines, checkerboard

structures). Irrational frequency ratios cause more complex

quasi-periodic recurrent structures (the distances between

the diagonal lines are different).

3 Analysis of GDP time series

3.1 Input data

The Finnish GDP in current prices in millions of national

currency is used in this paper. We have used data from the

Eurostat between the years 1975–2012 (see Fig. 1). We have

used data quarterly, seasonally adjusted and adjusted data

by working days and data without seasonal adjustment. Ac-

cording to Eurostat[32], seasonal adjustment is a treatment

of infra-annual time series to remove the spurious effect of

seasonal patterns from the series′ trend and cycle. These

patterns can be caused by weather, public holidays such

as Christmas, the timing of school vacations or of dividend

payments and a number of other reasons. Sometimes there

can be a problem with the seasonal adjustment data. We

have solved it by an independent analysis of time series with

and witout seasonal adjustment.

Generally, the main problem in analyzing the GDP time

series is the lack of data. That is why we chose Finland

where data is available since 1975. The analysis of such

short time series in the context of nonlinear dynamics or in

the presence of chaos can be questionable. We know, ac-

cording to Horák or Galka[21], that for this kind of method

results are provable for at least 103 data-points. Analysis
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of short time series (order of 101) may lead to a spurious

estimation of the invariants, e.g., largest Lyapunov expo-

nent. Despite the above, we have no choice but to analyze

GDP time series in the context of nonlinear dynamics and

try to find chaotic behavior of GDP growth rate time series.

Therefore, all results are only estimates. The second prob-

lem can be the presence of trends in time series. Trended

data are not suitable for future analysis to study chaos dy-

namics. There is no universal way to remove the trend from

the data set. The results often depend on how the data are

detrended. The trend is removed by subtracting the linear

interpolation in this paper. Denote GDP without trend as

Y (t) (see Fig. 2).

Fig. 1 The GDP of Finland. (a) Finland GDP without seasonal

adjustment; (b) Finland GDP (seasonal adjustment)

3.2 Calculation of the time delay

In this chapter, we will use the mutual information ap-

proach to determine the time delay. This approach is de-

scribed above. This variable is estimated from the graph

(Fig. 3). The first minimum of the mutual information func-

tion I(τ ) (2) marks the optimal choice for the time delay.

Thus, the time delay τ is 2 for detrended GDP and 7 for

seasonally adjusted detrended GDP. Values are different,

because these are different time series.

Fig. 2 Detrended GDP of Finland. (a) Detrened GDP of Fin-

land GDP without seasonal adjustment; (b) Detrended GDP of

Finland with seasonal adjustment

3.3 Calculation of the embedding dimen-
sion

In this chapter, we will use the false nearest neighbor

method to determine the minimal sufficient embedding di-

mension. The embedding dimension m is chosen using

the “false nearest neighbors” method. This variable is es-

timated from the graph (see Fig. 4). The minimum em-

bedding dimension capable of containing the reconstructed

attractor is that for which the percentage of false nearest

neighbors drops to zero for a given tolerance level ε. Thus,

the embedding dimension m is 3 for detrended GDP and 4

for seasonally adjusted detrended GDP.

3.4 Calculation of the largest Lyapunov
exponents

In this chapter, we calculate the largest Lyapunov expo-

nent as was shown above. We used the Rosenstein algo-

rithm. The calculation of the largest Lyapunov exponent

depends on the estimation of the embedding dimension. Im-

portantly, for every relevant embedding dimension value

2-10, there is a positive largest Lyapunov exponent. A

positive largest Lyapunov exponent is one of the necessary

conditions for chaotic behavior. This shows that the GDP

evolution is sensitive to the initial conditions. The value

of the largest Lyapunov exponent was estimated at 0.013

for detrended GDP, and 0.014 for seasonally adjusted de-

trended GDP. Notice that both values from different time



R. Kř́ıž / Finding Chaos in Finnish GDP 237

series are very similar. It seems that seasonal adjustment

of some time series is not important for the calculation of

the largest Lyapunov exponent.

Fig. 3 Estimation of the time delay. (a) Estimation of the time

delay GDP without seasonal adjustment; (b) Estimation of the

time delay GDP with seasonal adjustment

3.5 Results of the 0-1 test for chaos

In this chapter, we calculate the correlation coefficient

(10) as was shown above. The value of the correlation co-

efficient was computed at 0.95 for both time series. Again

it seems that the seasonal adjustment of some time series

does not affect the results of this test. The main advantage

of this test is the easy interpretation of its result. The input

is the time-series data, and the output is 0 or 1, depending

on whether the dynamics is non-chaotic or chaotic. The

correlation coefficient is near to 0 for non-chaotic data and

near 1 for chaotic data. The value 0.95 is closer to 1. Hence

we can assume that there is chaotic behavior in the Finnish

GDP time series.

3.6 Calculation of correlation dimension

The correlation dimension is calculated using the Grass-

berger and Procaccia algorithm as was shown above. We

have put the calculated data into a graph in logarithmic co-

ordinates, and we have made a linear interpolation. On this

basis, the correlation dimension for the small value of ε can

be estimated. The estimate of the correlation dimension is

0.98 for detrended GDP and 0.91 for seasonally adjusted

detrended GDP. As expected, the value of the correlation

dimension is not an integer.

Fig. 4 Estimation of the embedding dimension. (a) Estimation

of the embedding dimension GDP without seasonal adjustment;

(b) Estimation of the embedding dimension GDP with seasonal

adjustment

3.7 Calculation of the Hurst exponent

The rescaled range analysis gave us the value of the Hurst

exponent 0.96 for detrended GDP and 0.92 for seasonally

adjusted detrended GDP. The dispersional analysis gave us

the value 0.87 for detrended GDP and 0.91 for seasonally

adjusted detrended GDP.

All values indicate the presence of long memory in de-

trended GDP time series. Those values are between 0.5

and 1 which correspond with our expectations. We even

predicted values somewhere between 0.75 and 1. Notice

the following interesting points. First of all, the results of

the seasonally adjusted detrended GDP show a higher de-

gree of long-range dependence. Secondly, the rescaled range

analysis and the dispersional analysis gave us very similar

results for the seasonally adjusted detrended GDP.

We know that the value of H is between 0 and 1, whilst

real time series are usually higher than 0.5. If the exponent

value is close to 0 or 1, it means that the time-series has

long-range dependence. We can assume that the true value

lies somewhere between those values. We think that those

values are sufficient for a credible prediction. Now we also

know the fractal dimension DF = 2−H . We have estimated

the value of the fractal dimension to lie between 1.04 and

1.13 for detrended GDP and 1.1 for seasonally adjusted
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detrended GDP.

3.8 Recurrence plot

We have used in this research software called Visual Re-

currence Analysis (VRA) developed by Eugene Kononov.

VRA is a software package written in C++ using Borland

C++ Builder 3.0 for topological analysis, qualitative and

quantitative assessment, and non-parametric prediction of

nonlinear and chaotic time series. Among all free soft-

ware for recurrence analysis, VRA stands out as the eas-

iest, fastest, and more user friendly program. It works un-

der Windows in a menu-driven style, and it includes a wide

range of recurrence analysis techniques[8].

Recurrence plots of detrended GDP with and without

seasonal adjustment are displayed in Fig. 5. In these recur-

rence plots, we can sense a certain structure and signs of

diagonal lines. These recurrence plots are nothing like re-

current plots of white noise. We can thus exclude a purely

random process. In both recurrence plots we can see a

similar structure, but the seasonally adjusted data plot is

fuzzier. In contrast, Fig. 5 (a) shows signs of areas with

irregular diagonal structures. As already mentioned, diag-

onal lines are the most interesting structures in this analy-

sis. We can thus exclude a purely periodic process, because

purely periodic processes have only diagonal lines. These

considerations confirm that it might be chaotic behavior.

3.9 Phase portrait of GDP time series

2D phase portrait of GDP is constructed so that each

ordered pair of {Yt; Yt−τ , t = τ + 1, · · · , N} is displayed

in the plane where the x-axis represents the values of Yt

and y-axis value Yt−τ (see Fig. 6). The individual points

{Yt; Yt−τ} of phase space are connected by a line. The phase

portrait of the detrended GDP without seasonal adjustment

time series looks more chaotic.

4 Conclusions

Chaos theory has changed the thinking of scientists and

the methodology of science. Making a theoretical prediction

and then matching it to the experiment is not possible in

chaotic processes. Long term forecasts are, in principle, also

impossible according to chaos theory. The main problem is

in the quantity and quality of data. Some improvement

of measurement cannot help us adequately, because it is a

fight against power of exponential rate. Nonlinear dynamics

and chaos theory have also corrected the old reductionist

tendency in science. Now it is known that real processes

are nonlinear and a linear view can be wrong. The basic

question is therefore — the existence of chaotic behavior.

If the system behaves chaotically, we are forced to accept

only limited predictions. But it is much better than random

processes.

We have shown in this paper that the GDP time series

is chaotic and contains long memory. First, we computed

the values of the time delay τ and the embedding dimen-

sion m for time series with and without seasonal adjust-

ment. These results were different, but the following re-

sults show compliance. The estimated largest Lyapunov

exponent is 0.013 for detrended GDP and 0.014 for season-

ally adjusted detrended GDP. The value of the correlation

coefficient in the “0-1 chaos test” was computed at 0.95

for both time series. Thus, according to the “0-1 test for

chaos”, chaos is present in both time series. The estimate of

the Grassberger-Procaccia correlation dimension is 0.98 for

detrended GDP and 0.91 for seasonally adjusted detrended

GDP. We have estimated the value of the fractal dimen-

sion to lie between 1.04 and 1.13 for detrended GDP and

1.1 for seasonally adjusted detrended GDP. Thus, the esti-

mation of fractal dimension is close to the value 1. If the

fractal dimension is low, the largest Lyapunov exponent is

positive and the Kolmogorov entropy has a finite positive

value, chaos is probably present. From these estimations,

it can be concluded that the GDP time series is chaotic.

Fig. 5 Recurrence plot of detrended GDP. (a) Recurrence plot

of detrended GDP with seasonal adjustment, where τ = 2 and

m = 3; (b) Recurrence plot of detrended GDP with seasonal

adjustment, where τ =7 and m=4

Long memory was deduced conclusively from the calcu-

lation of the values of the Hurst exponent. The values of

the Hurst exponent lie between 0.75 and 1. We discovered

two interesting points while analyzing long-range depen-
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dence. Results for seasonally adjusted detrended GDP show

a higher degree of long-range dependence. The rescaled

range analysis and the dispersional analysis gave us similar

results for seasonally adjusted detrended GDP.

Fig. 6 Phase portrait of detrended GDP. (a) Phase portrait

of detrended GDP without seasonal adjustment, where τ = 2;

(b) Phase portrait of detrended GDP with seasonal adjustment,

where τ = 7

In the end we have executed a recurrent analysis, more

specifically we executed its visualization as represented by

recurrence plots of detrended GDP time series with and

without seasonal adjustment. In both recurrence plots we

can see a similar structure, but the seasonally adjusted data

plot is fuzzier. In contrast, Fig. 5 (a) shows signs of areas

with irregular diagonal structures. Visually, we can exclude

a purely random process as well as a purely periodic process.

We can assume that this might be chaotic behavior.

We know that the main problem when analyzing GDP

time series is the lack of data. In the future, we would like to

focus on the proper statistical significance for nonlinearity

and on predicting the GDP. In particular, the surrogate

data approach (e.g., Theiler et al.[33]) is a powerful tool for

detecting actual nonlinear behavior, and distinguishing it

from other phenomena.
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