
International Journal of Automation and Computing 10(6), December 2013, 578-586

DOI: 10.1007/s11633-013-0756-3

A New Compression Scheme for Secure Transmission

M. Baritha Begum Y. Venkataramani
Saranathan College of Engineering, India

Abstract: Encryption techniques ensure security of data during transmission. However, in most cases, this increases the length
of the data, thus it increases the cost. When it is desired to transmit data over an insecure and bandwidth-constrained channel, it
is customary to compress the data first and then encrypt it. In this paper, a novel algorithm, the new compression with encryption
and compression (CEC), is proposed to secure and compress the data. This algorithm compresses the data to reduce its length. The
compressed data is encrypted and then further compressed using a new encryption algorithm without compromising the compression
efficiency and the information security. This CEC algorithm provides a higher compression ratio and enhanced data security. The CEC
provides more confidentiality and authentication between two communication systems.

Keywords: Data compression, encryption algorithm, compression with encryption and compression (CEC) algorithm, Huffman
coding, run length coding, bits per character (BPC).

1 Introduction

Compression is the process in which the information is
encoded using fewer bits than an uncoded representation.
The redundancy of the data is decreased by the compression
algorithm. This further reduces the storage space required
for data. Data compression offers an important approach to
reduce transmission costs by using pre-existing bandwidth
efficiently[1]. In the past decade, there has been an increase
in the amount of data transmitted via the internet, rep-
resenting text, images, speech, video, sound and computer
data. Hence, there is a need for efficient compression algo-
rithms that can be effectively used in the existing network
bandwidth.

Security is an important factor in our digital life. Encryp-
tion is the art of achieving security by encoding messages to
make them non-readable by an intruder. To prove the the-
oretical feasibility of operations, the algorithm implements
the compression of encrypted data[2−4].

There is a need for compression combined with encryp-
tion. In most cases, encryption followed by compres-
sion is used. WinZip and WinRAR[5] are two packages
which encrypts the data using advanced encryption stan-
dard (AES) algorithm after compression. Due to improper
injection of cryptography into compression, several attacks
are possible[6, 7].

Another drawback is that text processing has to be
performed on compressed data[8,9]. Finding keywords in
the compressed data using compressed pattern matching
methods[10, 11] is an example of text processing.

An alternate approach is unifying compression and en-
cryption to secure the data. Some of the compression al-
gorithms like interval splitting in arithmetic coding[8, 12],
using multiple code trees in Huffman coding[13], en-
crypted dictionaries in dictionary based compression[1, 14],
adaptive character word length (ACW) algorithm[15] ,
differential method[16], dynamic Markov compression
(DMC), prediction by partial matching (PPM), and bur-
rows wheeler transform (BWT) algorithms are used for
compression[17−19] . These algorithms do not achieve bet-

Manuscript received June 29, 2012; revised February 6, 2013

ter compression ratio. Hence, there is a need for developing
a better algorithm.

The preprocessing step is done on a source file prior to
applying an existing compression algorithm. This transfor-
mation is designed to make the compression of the source
data easier[20] . Dictionary based encoding is generally used
for this type of preprocessing transformation of the source
text[21]. The dictionary is created by commonly used words
expected in the input files[10, 22, 23]. The dictionary must be
prepared in advance, and must be known to the source and
destination. In this technique, each word in the dictionary
has to be replaced by ASCII character[24−26] . The dictio-
nary based encoding is very much weak and vulnerable to
attacks. But the dictionary based encryption provides the
required security.

The idea of text compression is to preprocess the input
text and transform it into an intermediate form. Then, this
data can be compressed and secured with better efficiency.
The purpose of the proposed technique is to reduce the con-
sumption of expensive resources and to reduce data length.
In this paper, a new hybrid technique for securing data is in-
troduced. To attain better compression, a new compression
and encryption cum compression algorithm is developed. In
this approach, new dictionary based compression algorithm
called multi-dictionary compression algorithm is applied to
a source text leading to a better improvement in the ex-
isting algorithm, and further encryption cum compression
(reduced array based encryption) offers a sufficient level of
security of the transmitted information. So this method
is called new compression and encryption cum compression
(CEC). The multi-dictionary based encryption provides the
required security.

The four main steps of this technique are multi-dictionary
based compression, BWT with run length encoding (RLE)
based compression, reduced array based encryption algo-
rithm and Huffman coding based compression process. The
words are extracted from the input files and formed as dic-
tionary entries. In this technique, each word in the multi-
dictionary has to be replaced by ASCII character. This
multi-dictionary method increases the speed of encoding
and decoding, because word retrieval is very easy and fast.

M. B. Begum et al. / A New Compression Scheme for Secure Transmission 579

The multi-dictionary based compressed result is further
compressed using a BWT with RLE. After this step, the
compressed data is encrypted using reduced array based
encryption algorithm. This reduced array based encryption
algorithm is used for both encryption and compression.

In general encryption algorithm, plain text is converted
into the cipher text with the same size or increased size. But
this algorithm has not only done the encryption but also
reduced the input array size by 3 times. Two keys are gen-
erated here. The primary key is generated by three values
which are designed by user. The secondary key is generated
by TA-key which represents the probability of data. Fur-
ther, encrypted output is compressed with Huffman coding.
This CEC technique combines the compression and encryp-
tion processes, and thus develops a better transformation
yielding greater compression and added security. The re-
verse operation is performed on receiver side as shown in
Fig. 1. The rest of the paper is organized as follows. Section
2 presents a multi-dictionary making algorithm. Section 3
presents encoding algorithm. Section 4 presents decoding
algorithm. Section 5 provides performance analysis. Sec-
tion 6 concludes the paper.

2 Multi-dictionary generation

The words are extracted from the input files and formed
as dictionary entries. If the preceding alphabet in a word is
in upper case, it is changed into lower case and frequency of
occurrence is calculated. Individual dictionaries are created
for each starting letter of the words. Similarly, all ASCII
characters are categorized into a separate dictionary. This
multi-dictionary method increases the speed of encoding
and decoding. This is because words retrieval is very easy
and fast. ASCII character numbers (33–255) are used as
codes. An ASCII character is assigned as code to every
word. Table 1 shows codeword formation. In Table 1, 170
single ASCII characters are assigned as codes for first 170
words. For the next 170 words, the same 170 ASCII char-
acters with a prefix of character “a” is employed. Thus,
it becomes a two-character code. The words (341–4250)
will have the combination of (b, · · ·, z) and the single 170
ASCII characters. For next 170 words (4251–4421), let-
ter “A” combines with the ASCII and become codes. The
words (4422–8840) will have the combination of (B, · · ·, Z)

and the single 170 ASCII characters. N× 170 = Number of
words assigned as codes for two characters combination. N
= Number of alphabetic characters [(a, · · ·, z) + (A, · · ·, Z)
= 52]. Further words (8841-13261) will have the combina-
tion of 170×N codes with prefix of (a–z), thus, they became
three character codes. Then, words with combinations are
given as below: The first letter “A”, second letter [A–Z] and
third letter becomes 170 character codes. Similarly, other
words in the dictionary form codes. M×N× 170 = Number
of words assigned as a code for three character combination.
The combination of (a–z) (A–Z) or (A–Z) (a–z) or (A–Z)
(A–Z) or (a–z) (a–z) and the single 170 ASCII characters
create 4 59 680 codes.

The short codes are assigned to the most frequently used
words. The longest codes are assigned to the less frequently
used words[25].

3 Encoding algorithm

3.1 Burrows wheeler transform and Run
length encoding

The input files are converted into code (ASCII character)
by using multi-dictionary based compression. This code is
given to the input of BWT. Most of the compression meth-
ods operate in the streaming mode, where the code inputs
may be a byte or several bytes which are processed until
the end of the file is sensed. The burrows wheeler method
works in a block mode, where the input stream is read block
by block and each block is encoded separately as one string.
This method is also referred to as the block sorting. The
BWT method is general purpose, it works well on images,
sound and text. It can achieve very high compression ratios.

BWT output is given to the input of RLE. After reading
the first character, the count is 1 and the character is saved.
Subsequent characters are compared with the one already
saved. If they are identical to it, the repeat-count is incre-
mented. When different characters are read, the operation
depends on the value of the repeat count. If it is small, the
saved character is written on the compressed file and the
newly read character is saved. Otherwise, a “@” is written
followed by the repeat-count and the saved character. A
run of three characters results in no compression. Only the
runs longer than 3 characters get compressed[27].

Fig. 1 Block diagram of CEC compression

580 International Journal of Automation and Computing 10(6), December 2013

Table 1 Codeword formation

No. Code type Symbol Code word Number of possible

code words

1 Single character !@#$%ˆ*() + · · · 170 !@#$%ˆ* 170

170 single ASCII characters are assigned as a code for first 170 words

2 Two Characters a–z (prefix code) 26 in No a! 8 840×
A–Z (prefix code) 26 in No a@ ((26 + 26)×170)

!@#$%ˆ&*() + 170 in No z!

1) The combination of (a–z) and the single 170 ASCII characters. z@

2) The combination of (A–Z) and the single 170 ASCII characters. A!

A@

Z!

Z@

3 Three characters a–z (prefix code) 26 in No ba! 459 680×
A–Z (prefix code) 26 in No da@ (52 × 52 × 170)

!@#$%ˆ&*() + 170 in No fD!

The combination of (a–z)(A–Z)or(A–Z)(a–z)or(A–Z)(A–Z)or bz@

(a–z)(a–z) and the single 170 ASCII characters. Ma!

PA@

Nj!

HZ@

Total 468 690

3.2 The proposed algorithm

Output from the run length coding is given as input to
the encryption with compression algorithm. In general en-
cryption algorithms, plain text is converted into the cipher
text with the same size or increased size. This algorithm not
only has done the encryption, but also has reduced input
array size by 3 times. Two keys are generated here. One is
primary key and the other is secondary key. Primary key is
designed by three values such as starting value, maximum
value and the factor. During encryption time, secondary
key is generated by the number of characters occurring in
the input string. Encryption output is reduced to 1/3 of an
input array size. By using primary key and secondary key,
we can retrieve the original input.

3.2.1 Key generation

Algorithm 1. Key generator
Input: Start value, MAX VALUE, factor
Output: Stream of keys
Key size = 3
KEY (1)← Start value
for i = 2, · · ·, Key size do

KEY (i) ← KEY (i− 1) × MAX VALUE+ factor
end for
Let the primary key be denoted by KEY (i), where

i = 1, 2 and 3. KEY(1) is the start value of the key.
MAX VALUE represents that maximum value is used to
generate key 2, 3, etc. Factor has integer value 2, 3 and 4.
KEY (i) is generated by multiplication of maximum value
(MAX VALUE) with KEY (i − 1), where i = 1, 2 and 3,

and then factor is added. Factor may be any value from 2
to 4.

3.2.2 Reduced array based encryption algorithm

Algorithm 2. Encryption coding for stream of data
depends on the minimize array algorithm

Input: Key1 (primary key), RLE output
Output: TA-key, encrypted data
%Compute TA-key of Symbols
S AC ← Number of data in X
for jAC=1, · · ·, S AC do

S 2AC ← Number of symbols in the TA-key
flag =0
for kAC = 1, · · ·, S 2AC(2) do

if TA-key(kAC)=X(jAC)
flag =1

end if
end for

end for
if Flag is zero

TA-key (S 2AC (2) +1) ← X (jAC)
end if
%Data Encrypted
S ← Number of data in X
Pad zeros after the last position in the array from
X(S (2)+1 to S (2)+3)
Initialize i and L is one
While i is less than or equal to S (2)

Sum is zero
for j=0 to 2 do

M. B. Begum et al. / A New Compression Scheme for Secure Transmission 581

Sum ← Sum+(X (i + j)× Key1 (j+1))
end for
Encrypted data (L) ← Sum
L4← L + 1
i ← i+3

end while
Run length coding output is given to the input of reduced

array based encryption algorithm (X). Let X be the input
character, S AC be the number of characters in X. TA-key
(T) be the secondary key, S 2AC be the number of char-
acters in the TA-key. This algorithm is used to find the
exact data depending on the TA-key, which represents the
probability of data. The first character of (X) is the first
character of TA-key. Instead of repeated characters in X,
it occurs for single time in TA-key.

This algorithm is used to convert every 3 data in X into
a real number. Each three input character set is multiplied
by corresponding KEY (i) where i=1, 2, 3, and then three
multiplication outcomes are added. It is considered as en-
crypted output. Encrypted output has a array size which
is three times less array size of input X. Encrypted data
length is unlimited. It depends upon the length of X.

3.3 Huffman coding

The encrypted output code undergoes Huffman coding
for further compression. Huffman code was generated by
using binary tree.

Consider the source symbols {b1, b2, · · ·, bn} with fre-
quencies {y1, y2, · · · , yn} for y1 � y2 � · · · � yn, where
the symbol bj has frequency yj . Using the Huffman′s al-
gorithm, the codeword zj for 1� j � n, which is a binary
string, for symbol bj can be obtained. Let us denote C=
{zj , · · · , zn} as the Huffman code. Let the level of the root
of the Huffman tree be zero, and the level of the other node
be equal to one more than that. Codeword length lj for bj

can be known as the level of bj .
Assume the right edge corresponds to “0” and the left

edge corresponds to “1”. The codeword of a node j, de-
noted z(j), is defined as the bit sequence corresponding to
the path from the root to node j. The codeword of a sub
tree Tj , denoted I(Tj), is defined as the codeword of T ′

js
root. The level of a subtree Tj , denoted l(Tj), is defined as
the level of T ′

js root. Given a string x = x1x2, · · · , xm, we
define the jth prefix of x, for j = 1, · · · , m, as prefix j(x)
= x1x2, · · · , xj and prefix 0(x) = is an empty string. The
Huffman procedure is based on two observations:

1) The symbols that occur more frequently will have
shorter code words than the symbols which occur less fre-
quently.

2) The two symbols that occur less frequently will have
the same length.

4 Decoding algorithm

The output code obtained through Huffman coding is
given to the Huffman decoder for decryption.

4.1 Reduced array based decryption algo-
rithm

Encrypted as well as compressed data is decrypted by
primary key, secondary key and encrypted data.

Algorithm 3. Decryption for minimized data
Input: Encrypted data, Key (primary key), TA-key

(secondary key)
Output: New arr
S Enc ← Number of Encrypted Data
Set L = 1
for i = 1, · · ·, S Enc(2) do

S TA-key ← Number of symbol in the TA-key
Set flag=1
Set EST =0
T (1), T (2), and T (3) are set to one
S1 = 1, S2 = 1, S3 = 1
while (check flag=1)

EST=0
T (1) ← TA-key(S1)
T (2) ← TA-key(S2)
T (3) ← TA-key(S3)
for K2 = 1, 2 and 3 do

EST ← EST+ (T (K2) × Key1 (K2))
EST ← mod(EST, 255)
If check EST is equal to encrypted data (i)

set flag =0
else

S1 ← S1 + 1
if (S1 >S TA-key(2))

S2 ← S2 + 1
set S1 = 1

end if
if (S2 >S TA-key(2))

S3 ← S3 + 1 set S2 = 1
end if
if (S3 >S TA-key(2))

Set S3 = 1
end if

end if
end for

end while
New arr(L:L+2) ← T of array one to three
L ← L+3

end for
Let the encrypted data be denoted by encrypted data

(S Enc). S Enc is the number of data in encrypted data.
Number of symbols in the TA-key is denoted by S TA-key.
EST is the predicted encrypted data. First, three contents
of S TA-key (i) where i = 1, 2, 3 correspondingly are mul-
tiplied by primary key (j), where j = 1, 2 and 3, and added
to form EST. Then EST is compared with first entry of en-
crypted data. If EST and encrypted data are the same, then
S TA-key (i) is the decrypted data. Otherwise, contents
of S TA-key are multiplied with primary key with different
combinations [S TA-key (i, i, i+1) or S TA-key (i, i+1, i+1)
or S TA-key (i, i, i)], and compared with EST. When the
match is found, decrypted data is estimated from the S TA-
key contents.

It has some zeros at the end of the estimated array
(New arr), because at the encryption or coding algorithm,

582 International Journal of Automation and Computing 10(6), December 2013

zeros are padded automatically.

4.2 Decoding from dictionary

Decrypted data is given to the RLE decoder and then
BWT. The RLE decoded output converts short sequence
symbol into a long sequence symbol. After this conversion,
the output is given as an input to the BWT reverse trans-
form which rearranges the data into the original order. The
output of BWT becomes a code when the upper case let-
ter (A–Z) or lower case letter (a–z) combines with ASCII
character. Based on starting of the character, the word is
searched and extracted from the respective dictionary. If
two consecutive special characters accompany along with
(a, · · ·, z) or (A, · · ·, Z), they are considered as different
codes and are extracted from the dictionary.

As an example, a section of text from Calgary corpus
version of paper 1 looks like this in the original text:

“Its performance is optimal without the need for blocking
of input data. It encourages a clear separation between the
model for representing data and the encoding of informa-
tion with respect to that model. It accommodates adaptive
models easily. It is computationally efficient.” (1)

Number of characters required = 420
Memory space = 420 bytes
Running text (1) through the multi-dictionary based en-

coder yields the following text:
ÒNM{LBN̊a|HNMS{LBN̊a|HNMS{LBN̊a|He�CP@B{Ù

O¯D{{E|ÔO◦∼AEA}KCC4E&. (2)
Number of characters required = 61
Memory space = 61 bytes
Time requirement = 0.355457 s.
Running text (2) through the BWT encoder yields the

following text:
KNNN∼EHÚÔCMMMH{SSSBEECP@C¯A{4|||}{{{Ò

BBBD̊ååaA◦LLL�eOO&|{NNN7. (3)
Number of characters = 61
Memory space = 61 bytes
Time requirement = 0.052289 s.
Running text (3) through the run length encoder yields

the following text:
KNNN∼EHHÙÔCMMMH{SSSBEECP@C¯A{4|||}{{{Ò

BBBD̊ååaA◦LLL�eOO&|{NNN7. (4)
Number of characters required = 61
Memory space = 61 bytes
Time requirement = 0.179045 s.
Running text (4) through the encryption yields the fol-

lowing result:
Primary key =[38 2436 155908]
Secondarykey=KN∼E4@HÙÔCM{SBP¯A|}Ò7D̊a◦L�e

O&
Encrypted data = Ï*8Y c©÷ ÉÛ+ *ü?3p�èB2 (5)
Number of character required = 21
Memory space = 21 bytes
Time requirement = 0.010227 s.
Running text (5) through the Huffman coding yields the

following result: #àú÷l c©9¸ R©<c
0010100110010000011000100000100000111101001011100

10001111011100101110101001100001110110
Memory space = 11 bytes
Time requirement = 0.179045 s.
In the above example, input data collected from test files

paper 1 has 420 characters. The compression based on
multi-dictionary based method reduces it to 61 characters.
Then BWT changes the order of the input data. Then,
compression is done using RLE. The obtained output data
has 86 characters. This is encrypted and compressed to 1

3

by array reduction algorithm. Then it reduces to 21 charac-
ters. Finally, 11 characters are achieved by using Huffman
coding.

Compression ratio =
11

420
= 0.0261

Bits per character =
11

420
× 8 = 0.2095.

5 Performance analysis

Experiments were performed on the CEC transformation
algorithms described in Sections 2–4 using standard Cal-
gary corpus test file collections[28] .

In order to evaluate its performance, the CEC scheme
is implemented using Matlab to compress test files from
standard corpora such as Calgary. At this stage, it has
been taken to optimize the runtime of the compression-
decompression prototype codes. Therefore, results can be
obtained for the compression ratio, bits per character and
compression time are presented.

The performance metrics, such as compression ratio
and bits per character (BPC) for this algorithm are com-
pared with standard algorithm (arithmetic coding, Huff-
man coding, Lempel-Ziv-Storer-Szymanski (LZSS)), dictio-
nary based encoding (DBE), multi-dictionary based com-
pression, multi-dictionary BWT with RLE (MBR), MBR
with Huffman coding (MBRH), MBR with new reduced ar-
ray based encryption (CE) and CE with Huffman coding
(CEC). The results are shown graphically. They prove that
CEC outperforms the other techniques in compression ra-
tio, bits per character, compression time and security.

Compression ratio =
Output file size

Input file size

Bits per character (BPC) =
Output file size

Input file size
× 8

Table 2 List of files used in experiments

File name Size (byte) Description

Bib 111 261 Bibliography

Geo 102 400 Geological seismic data

Obj1 21 504 VAX object program

Paper 1 53 161 Technical paper

Paper 2 82 199 Technical paper

Paper 3 46 526 Technical paper

Paper 4 13 286 Technical paper

Paper 5 11 954 Technical paper

Paper 6 38 105 Technical paper

Progc 39 611 Source code in “C”

Progl 71 646 Source code in “Pascal”

Progp 49 379 Text: English text

Details on test files are as shown in Table 2. This data
is collected from Calgary corpus[28]. The experiments are

M. B. Begum et al. / A New Compression Scheme for Secure Transmission 583

done by using selected existing compression algorithms as
well as with a new encryption cum compression algorithm to
compress the input files. CEC was implemented in Matlab.
The experiment is to determine the percentage of decrease
in text size using the CEC transformation algorithms. This
CEC algorithm compares the eight coding formats, namely,
arithmetic coding, Huffman coding, LZSS, (DBE), multi-
dictionary based compression, MBR, MBRH and CE.

The compression ratios, bits per character and compres-
sion time determined for 12 test files of various sizes from
the Calgary corpus are given.

First, the input text from test file is compressed by multi-
dictionary based compression. Second, the resultant code
is compressed by BWT and RLE. Further, it is encrypted
as well as compressed using the CE scheme, then it is com-
pressed by Huffman coding. So, the resultant compression
ratio is the combination of CEC compression ratios.

Results are shown in Tables 3–5. Tables 3 and 4 com-
pare the proposed algorithm with an existing standard com-
pression algorithm. The results are shown graphically in
Figs. 2–5.

Table 3 Comparison of compression ratios

File Arithmetic Huffman LZSS Dictionary Multi-dictionary Multi-dictionary+ MBRH CE CEC

name coding BWT BWT based based BWT+RLE[MBR]

compression compression

Bib 0.654 0.457 0.627 0.278 0.277 0.244 0.192 0.08 0.074

Geo 0.707 0.725 0.788 0.57 0.607 0.521 0.423 0.17 0.159

Obj1 0.746 0.596 0.661 0.232 0.221 0.187 0.148 0.06 0.056

Paper 1 0.623 0.452 0.622 0.282 0.273 0.254 0.202 0.08 0.077

Paper 2 0.578 0.46 0.642 0.282 0.27 0.26 0.204 0.09 0.078

Paper 3 0.589 0.482 0.667 0.275 0.262 0.251 0.199 0.08 0.074

Paper 4 0.603 0.508 0.672 0.2765 0.267 0.252 0.195 0.08 0.076

Paper 5 0.633 0.507 0.657 0.31 0.294 0.274 0.213 0.09 0.082

Paper 6 0.626 0.454 0.619 0.301 0.294 0.273 0.211 0.09 0.084

Progc 0.655 0.438 0.591 0.286 0.276 0.248 0.2 0.08 0.077

Progl 0.595 0.335 0.456 0.237 0.235 0.195 0.155 0.06 0.057

Progp 0.612 0.345 0.461 0.174 0.165 0.144 0.119 0.05 0.044

Table 4 Comparison of bits per character

File Arithmetic Huffman LZSS Dictionary Multi-dictionary Multi-dictionary+ MBRH CE CEC

Name coding BWT BWT based based BWT+RLE[MBR]

compression compression

Bib 5.232 3.656 5.016 2.224 2.219 1.955 1.538 0.652 0.593

Geo 5.656 5.8 6.304 4.56 4.857 4.168 3.386 1.392 1.27

Obj1 5.968 4.768 5.288 1.856 1.765 1.495 1.187 0.495 0.448

Paper 1 4.984 3.616 4.976 2.256 2.183 2.028 1.615 0.676 0.617

Paper 2 4.624 3.68 5.136 2.256 2.161 2.077 1.63 0.694 0.623

Paper 3 4.712 3.856 5.336 2.2 2.097 2.009 1.596 0.673 0.595

Paper 4 4.824 4.064 5.376 2.212 2.136 2.018 1.562 0.672 0.606

Paper 5 5.064 4.056 5.256 2.48 2.35 2.194 1.7 0.726 0.659

Paper 6 5.008 3.632 4.952 2.408 2.349 2.186 1.686 0.729 0.671

Progc 5.24 3.504 4.728 2.288 2.206 1.987 1.596 0.662 0.615

Progl 4.76 2.68 3.648 1.896 1.882 1.56 1.243 0.519 0.453

Progp 4.896 2.76 3.688 1.392 1.317 1.153 0.95 0.385 0.355

Table 5 Comparison of compression times

File Dictionary based Multi-dictionary based BWT(s) Run length Encryption Huffman

name compression (s) compression (s) coding (s) algorithm (s) coding (s)

Bib 638 85.77 9 1.4 0.17 11.1

Geo 1620 409.5 10 2 0.5 44.8

Obj1 180 26.33 4.7 0.3 0.1 0.98

Paper 1 207 41.34 3.2 0.7 0.15 44.8

Paper 2 264 48.49 6.5 0.9 0.2 7.19

Paper 3 182 30.32 1.8 0.6 0.24 2.9

Paper 4 42 3.896 2.5 0.4 0.1 0.88

Paper 5 47 4.719 2.4 0.3 0.1 0.89

Paper 6 118 29.79 0.7 0.6 0.14 2.42

Progc 142 33.06 0.2 0.7 0.14 2.38

Progl 167 53.95 3.8 0.8 0.1 3.59

Progp 125 21.16 0.3 0.6 0.12 1.59

584 International Journal of Automation and Computing 10(6), December 2013

In Table 3 and Fig. 2, the compression ratios are com-
pared with standard algorithm, such as arithmetic coding,
Huffman coding, LZSS and CEC. In Table 3 and Fig. 3, the
performance of our scheme with reference to compression

ratio is compared with various schemes.
The CE coding achieves higher efficiency than MBR and

MBRH coding formats. However, the ratio achieved using
CE coding is less than that using CEC coding.

Fig. 2 Comparison of compression ratios

Fig. 3 Comparison of compression ratios

Fig. 4 Comparison of bits per character

M. B. Begum et al. / A New Compression Scheme for Secure Transmission 585

Fig. 5 Comparison of bits per character

For example, for the bib text file, the compression ratios
achieved by the arithmetic coding, Huffman coding, LZSS,
DBE, multi-dictionary based compression, MBR, CE and
CEC coding formats are 0.654, 0.457, 0.627, 0.278, 0.277,
0.244, 0.192, 0.08 and 0.074, respectively. The biggest
gain is achieved on progp (resulting mainly from the EOL-
encoding) as well as on obj1 and progl.

The compression of geo is practically unaffected by CEC,
because those files do not contain any textual data. There
are two files in the corpus that do contain some textual data
paper 3 and bib. CEC yields the same gain on paper 3 and
bib. Paper 1 and progc files also have the same gain.

In Table 4 and Fig. 4, the performance with reference to
bits per character is compared with standard algorithm such
as arithmetic coding, Huffman coding, LZSS and CEC.

In Table 4 and Fig. 5, the performance of our scheme with
reference to bits per character is compared with various
schemes. The CE coding achieves higher efficiency in bits
per character than statistical coding, DBE, MBR, MBRH
and MBR coding formats. The results are listed in Table
4. The results reveal that the bits per character achieved
using CEC is higher than that using CE coding by a very
small margin. However, the BPC in CEC coding provides
nearly the same performance as the CE algorithms. For
example, for the paper 1 text file, the BPC achieved by
the arithmetic coding, Huffman coding, LZSS, DBE, multi-
dictionary based compression, MBR, CE and CEC coding
formats are 4.984, 3.616, 4.976, 2.256, 2.183, 2.028, 1.615,
0.676 and 0.617, respectively.

6 Conclusions

The CEC algorithm provides better results than other
algorithms. This algorithm has an admirable and viable
performance as it outperforms the other widely used data
compression algorithms. The compression ratio depends on
the number of words in the file, size of the test file, and the
frequencies and distribution of words within the file.

Nine coding formats have been investigated. It reveals
that the highest compression ratio achieved is for CEC as
it performs coding and compression at the same time. The

CEC scheme can be used as a complementary scheme to any
statistical and dictionary based lossless compression algo-
rithm, such as static or adaptive Huffman coding, arith-
metic coding, the LZSS algorithms, or any modified form
of them. Our approach is to secure the message using CEC
technique, to compress it for the reduction in length, and
to encrypt it using the new reduced array based encryp-
tion algorithm. The CEC results have achieved excellent
improvement in data compression and security without in-
creasing its size over the existing techniques. Our future
work will focus on the performance of this scheme in com-
pressing multimedia files.

References

[1] V. K. Govindan, B. S. Shajeemohan. Compression scheme
for faster and secure data transmission over networks. In
Proceedings of the International Conference on Mobile
Business, IEEE Computer Society Washington, DC, USA,
pp. 678–681, 2005.

[2] D. Klinc, C. Hazay. A. Jagmohan, H. Krawczyk, T. Rabin.
On compression of data encrypted with block ciphers. In
Proceedings of Data Compression Conference, IEEE, Snow-
bird, UT, USA, pp. 213–222, 2009.

[3] T. M. Mahmoud, B. A. Abdel-latef, A. A. Ahmed, A. M.
Mahfouz. Hybrid compression encryption technique for se-
curing SMS. International Journal of Computer Science and
Security, vol. 3, no. 6, pp. 473–482, 2010.

[4] R. E. L. Metzler, S. S. Agaian. Cipherstream covering for
secure data compression. In Proceedings of IEEE Inter-
national Conference on Systems, Man, and Cybernetics,
IEEE, Anchorage, AK, USA, pp. 3370–3377, 2011.

[5] J. Daemen, V. Rijmen. The Design of Rijndael: AES-the
Advanced Encryption Standard, New York: Springer, 2002.

[6] M. Abdalla, M. Bellare, D. Catalano, E. Kiltz, T. Kohn,
T. Lange, J. Malone-Lee, G. Neven, P. Paillier, H. X. Shi.
Searchable encryption revisited: Consistency properties, re-
lation to anonymous IBE, and extensions. Journal of Cryp-
tology, vol. 21, no. 3, pp. 350–391, 2008.

[7] G. S. W. Yeo, R. C. W. Phan. On the security of the Win-
RAR encryption feature. International Journal of Informa-
tion Security, vol. 5, no. 2, pp. 115–123, 2006.

[8] H. Kim, J. T. Wen, J. D. Villasenor. Secure arithmetic cod-
ing. IEEE Transactions on Signal Processing, vol. 55, no. 5,
pp. 2263–2272, 2007.

586 International Journal of Automation and Computing 10(6), December 2013

[9] H. Kaplan, E. Verbin. Most Burrows-Wheeler based com-
pressors are not optimal. Combinatorial Pattern Match-
ing, Lecture Notes in Computer Science, Berlin, Heidelberg:
Springer-Verlag, vol. 4580, pp. 107–118, 2007.

[10] T. Gagie, G. Manzini. Move-to-front, distance coding,
and inversion frequencies revisited. Combinatorial Pattern
Matching, Lecture Notes in Computer Science, Berlin, Hei-
delberg: Springer-Verlag, vol. 4580, pp. 71–82, 2007.

[11] W. K. Hon, R. Shah, J. S. Vitter. Compression, indexing,
and retrieval for massive string data. Combinatorial Pat-
tern Matching, Lecture Notes in Computer Science, Berlin,
Heidelberg: Springer-Verlag, vol. 6129, pp. 260–274, 2010.

[12] J. T. Zhou, O. C. Au, P. H. W. Wong. Adaptive chosen-
ciphertext attack on secure arithmetic coding. IEEE Trans-
actions on Signal Processing, vol. 57, no. 5, pp. 1825–1838,
2009.

[13] Y. K. Lin, S. C. Huang, C. H. Yang. A fast algorithm for
Huffman decoding based on a recursion Huffman tree. The
Journal of Systems and Software, vol. 85, no. 4, pp. 974–980,
2012.

[14] W. K. Hon, T. H. Ku, R. Shah, S. V. Thankachan, J. S.
Vitter. Compressed text indexing with wildcards. String
Processing and Information Retrieval, Lecture Notes in
Computer Science, Berlin, Heidelberg: Springer-Verlag,
vol. 7024, pp. 267–277, 2011.

[15] H. Al-Bahadili, S. M. Hussain. A bit-level text compression
scheme based on the ACW algorithm. International Journal
of Automation and Computing, vol. 7, no. 1, pp. 123–131,
2010.

[16] S. Kumar, S. S. Bhadauria, R. Gupta. A temporal database
compression with differential method. International Journal
of Computer Applications, vol. 48, no. 6, pp. 65–68, 2012.

[17] D. Salomon. Data Compression: The Complete Reference,
2nd ed., New York: Springer, pp. 18–22, 2000.

[18] M. O. Külekci. On scrambling the Burrows-Wheeler trans-
form to provide privacy in lossless compression. Computers
and Security, vol. 31, no. 1, pp. 26–32, 2012.

[19] Y. F. Chien, W. K. Hon, R. Shah, J. S. Vitter. Geometric
Burrows-Wheeler transform: Linking range searching and
text indexing. In Proceedings of the Data Compression Con-
ference, IEEE, Washington, DC, USA, pp. 252–261, 2008.

[20] M. A. Mart́ınez-Prieto, J. Adiego, P. de la Fuente. Natural
language compression on edge-guided text preprocessing.
Information Sciences, vol. 181, no. 24, pp. 5387–5411, 2011.

[21] J. T. Zhou, O. C. Au, X. P. Fan, P. H. W. Wong. Secure
Lempel-Ziv-Welch (LZW) algorithm with random dictio-
nary insertion and permutation. In Proceedings of IEEE
International Conference on Multimedia and Expo, IEEE,
Hannover, pp. 245–248, 2008.

[22] A. Carus, A. Mesut. Fast text compression using multiple
static dictionaries. Information Technology Journal, vol. 9,
no. 5, pp. 1013–1021, 2010.

[23] U. S. Bhadade, A. I. Trivedi. Lossless text compression us-
ing dictionaries. International Journal of Computer Appli-
cations, vol. 13, no. 8, pp. 27–34, 2011.

[24] J. Tadrat, V. Boonjing. An experiment study on text
transformation for compression using stoplists and frequent
words. In Proceedings of the 5th International Conference
on Information Technology: New Generations, ITNG, IEEE
Computer Society, Las Vegas, NV, USA, pp. 709–713, 2008.

[25] M. B. Begum, Y. Venkataramani. LSB based audio
steganography based on text compression. Procedia Engi-
neering, vol. 30, pp. 703–710, 2012.

[26] G. Navarro, V. Mäkinen. Compressed full-text indexes.
ACM Computing Surveys, vol. 39, no. 1, Article No. 2, 2007.

[27] K. Sayood. Introduction to Data Compression, 2nd ed., San
Francisco: Morgan Kaufmann Publishers, pp. 39–61, 149–
154, 2000.

[28] The canterbury corpus. [Online], Available:
http://corpus.canterbury.ac.nz/descriptions/.

M. Baritha Begum graduated from Na-
tional Institute of Technology (NIT), In-
dia in 2000. She received the M.Eng. de-
gree from Saranathan College of Engineer-
ing, India in 2008, and is pursuing Ph. D.
degree in engineering. She is currently an
assistant professor at the Saranathan col-
lege of Engineering, India.

Her research interests include text pro-
cessing, image processing and information

security.
E-mail: baritha m@yahoo.co.in (Corresponding author)

Y. Venkataramani graduated from In-
dian Institute of Technology (IIT), India in
1967. He received the M.Tech. degree from
IIT Madras, India in 1972, and the Ph. D.
degree from IIT Kanpur, India in 1982.
He has 34 years of teaching experience in
NIT. He is currently the dean (R&D) of
Saranathan College of Engineering, India.

His research interests include speech pro-
cessing, Image processing and networks.

E-mail: deanrd44@gmail.com

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

