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Abstract: This paper investigates the finite-time consensus problem of multi-agent systems with single and double integrator dynam-
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1 Introduction

In recent years, the study of consensus problems for

multi-agent systems has received a great deal of attentions

and considerable research efforts in various fields, partially

due to the broad applications in motion control of multi-

ple mobile robots[1], formation control[2], and target track-

ing and obstacle avoidance[3], etc. Consensus means that a

group of agents reaches an agreement on a common value

by communicating with their neighbors.

Consensus problems have been studied from many dif-

ferent aspects. Ren et al.[4,5] studied the consensus prob-

lems of continuous systems and discrete-time systems,

respectively. Average consensus, power-mean consensus

and max/min consensus were investigated respectively[6,7].

Bouso et al.[6] considered stationary consensus protocols for

networks of dynamic agents with fixed topologies. Cortes[7]

systematically derived necessary and sufficient conditions

on a distributed algorithm that asymptotically achieves

consensus states which are general continuous functions of

the initial states of all agents. It means that if we change

the initial states of the agents, the consensus state changes.

Systems with switching network topologies and communi-

cation delays were studied in [8]. However, the common

value, which is called consensus state, usually depends on

the initial state. And in most of the existing works, the con-

sensus state is usually assumed to be a constant, a weighted

average of the initial conditions or a function of initial con-

ditions. In leader-follower multi-agent system, the followers

are all required to reach an agreement on the leader′s states,

and the leader is usually independent of their followers, but

influences the followers. Hence, the control objective can
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be realized by controlling the leader only. And the control

objective can reach the desired value besides a weighted

average or a function of initial conditions.

Another important study of the consensus problem is

the convergence rate. Hu[9] investigated the problem of

robust consensus tracking for a class of second-order multi-

agent dynamic systems with disturbances and unmodeled

agent dynamics. By designing continuous distributed con-

sensus protocols, he has proved that all the agents can

globally asymptotically reach consensus with the desired

states. However, most of the existing consensus control

algorithms for multi-agent systems are asymptotic consen-

sus algorithms, which means that the convergence rate is

at best exponential with infinite settling time[10]. Then,

finite-time consensus algorithms are desirable. Besides a

faster convergence rate, the systems under finite-time con-

trol usually demonstrate better disturbance rejection prop-

erties. Due to these superiorities, several kinds of finite-time

consensus protocols have been developed[11−13].

Inspired by these facts, it is significant and necessary

to study the finite-time consensus problem of the leader-

follower multi-agent systems via nonlinear control proto-

cols. In this paper, we study the finite-time consensus prob-

lems of first-order and second-order leader-follower multi-

agent systems respectively. Compared with these men-

tioned literatures, the contributions of this paper mainly lie

in three aspects. Firstly, novel nonlinear control protocols

are designed for first-order and second-order multi-agent

systems, respectively. Secondly, the agents can converge to

its leader agent′s state no matter the initial states change or

not. Thirdly, the consensus can be achieved in finite time.

The rest of this paper is organized as follows. Section 2

introduces preliminaries and some lemmas. Section 3 dis-

cusses the nonlinear control protocols for the multi-agent

systems with single and double integrator dynamics, respec-

tively. Sufficient finite-time consensus criteria are obtained
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for multi-agent systems with single and double integrator

dynamics. Some numerical examples are given in Section

4. Finally, we present the conclusions in Section 5.

Notations. Throughout this paper, R and R+ stand

for the set of real numbers and positive real numbers, re-

spectively. Rn denotes the n-dimensional real vector space.

Rn×n is the set of n × n matrices. 1n (or 0n) is a vector

with all the elements being one (or zero). The superscript

T stands for the transpose of a matrix.

2 Preliminaries and some lemmas

2.1 Graph theory

For multi-agent systems, we assume that each agent is

a node and the information exchange between agents can

be naturally modeled by the undirected weighted graph

G = {V, E, A}, where the node indexes belong to a finite

index set Γ = {1, 2, · · · , n}, V = {vi} is the set of agents,

E ⊆ V × V is the set of links between the agents, and A

is the corresponding weighted adjacency matrix. The adja-

cency matrix A = [aij ] ∈ Rn×n is defined such that aij > 0

if (vj , vi) ∈ E, while aij = 0 if (vj , vi) /∈ E, and aii = 0

for all i ∈ Γ. The set of neighbors of agent vi is denoted

by Ni = {vj : (vj , vi) ∈ E}. The degree of agent vi is de-

fined as deg (vi) = di =
∑n

j=1 aij =
∑

j∈Ni
aij . Then, the

degree matrix of graph G is D = diag {d1, · · · , dn} and the

Laplacian matrix is L = D −A.

2.2 Some lemmas and Lyapunov theory
for finite-time stability

Lemma 1[14]. Suppose function φ : R2 → R satisfies

φ (xi, xj) = −φ (xj , xi), i, j ∈ Γ, i 6= j. Then, for any

undirected graph G and a set of numbers y1, y2, · · · , yN ,

N∑
i=1

∑
j∈Ni

aijyiφ (xj , xi) = −1

2

∑

(vi,vj)∈E

aij (yj − yi) φ (xj , xi) .

Lemma 2[15]. For xi ∈ R, i = 1, · · · , n, 0 < p 6 1, then

(
n∑

i=1

|xi|
)p

6
n∑

i=1

|xi|p 6 n1−p

(
n∑

i=1

|xi|
)p

.

Lemma 3[16]. For a connected undirected graph

G, the Laplacian matrix L of G has the follow-

ing properties. xTLx = 1
2

∑n
i,j=1 aij (xj − xi)

2 =
1
2

∑N
i=1

∑
j∈Ni

aij (xj − xi)
2 for any x = [x1, · · · , xn]T ∈

Rn, which implies that L is positive semi-definite. 0 is

a simple eigenvalue of L and 1n is the associated eigen-

vector. Assume that the eigenvalues of L are denoted by

0, λ2, · · · , λn satisfying 0 6 λ2 6 · · · 6 λn. Then, the sec-

ond smallest eigenvalue λ2 > 0. Furthermore, if 1T
nx = 0,

then xTLx > λ2x
Tx.

Lemma 4. Suppose function φ : R2 → R+ satisfies

φ (xi, xj) = φ (xj , xi), i, j ∈ Γ, i 6= j. Then for any undi-

rected graph G and a set of numbers y1, y2, · · · , yN ,

N∑
i=1

∑
j∈Ni

aij |yi|φ (xj , xi) > 1

2

N∑
i=1

∑
j∈Ni

aij |yj − yi|φ (xj , xi) .

Proof. From the definition of an undirected graph and

the assumption of function φ, we can obtain that

N∑
i=1

∑
j∈Ni

aij |yi|φ (xj , xi) =

1

2
[

∑

(vi,vj)∈E

aij |yi|φ (xj , xi)+
∑

(vi,vj)∈E

aij |yi|φ (xj , xi)] =

1

2
[

∑

(vi,vj)∈E

aij |yi|φ (xj , xi)+
∑

(vi,vj)∈E

aji |yj |φ (xi, xj)] =

1

2
[

∑

(vi,vj)∈E

aij |yi|φ (xj , xi)+
∑

(vi,vj)∈E

aij |yj |φ (xj , xi)] =

1

2

∑

(vi,vj)∈E

aij (|yi|+ |yj |) φ (xj , xi) >

1

2

N∑
i=1

∑
j∈Ni

aij |yj − yi|φ (xj , xi). ¤

It is well known that a sufficient condition for the exis-

tence of a unique solution of a nonlinear differential equa-

tion is that the function is locally Lipschitz continuous. The

solution of such nonlinear differential equation can have at

most asymptotic convergence rate. Since finite-time sta-

bility guarantees that every system state reaches the sys-

tem origin in a finite time, the finite-time stability has a

much stronger requirement than the asymptotic stability.

The following lemma presents sufficient conditions for the

finite-time stability.

Lemma 5[17]. Considering the non-Lipschitz continuous

nonlinear system ẋ = f (x), f (0) = 0, x ∈ Rn, there exist

a positive definite continuous function V (x) : U → R, real

numbers c > 0 and α ∈ (0, 1), and an open neighborhood

U0 ⊂ U of the origin such that V̇ (x) + c (V (x))α 6 0,

x ∈ U0\ {0}. Then, V (x) approaches 0 in finite time.

In addition, the finite settling time T satisfies that T 6
(V (x(0)))1−α

c(1−α)
.

3 Main results

For simplicity of presentation, we assume that the states

of all agents are in a one dimensional space. However, the

results of this paper are still valid for multiple high dimen-

sional agents by the introduction of the Kronecker product

and appropriately rewriting the protocol.

3.1 Finite-time consensus for single inte-
grator dynamics

Consider a distributed system consisting of n agents.

Each agent has the single integrator dynamics given by

ẋi (t) = ui (t) , i ∈ Γ, Γ = {1, 2, · · · , n} (1)
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where xi (t) ∈ R is the state of the i-th agent, and ui (t) ∈ R

is the feedback control law to be designed, which depends

only on the states of agent i and its neighbors.

The dynamics of the leader indexed by 0 is described as

ẋ0 (t) = u0 (t) , x0 (t) ∈ R.

We design a class of nonlinear consensus protocol which is

described by

ui (t) =
∑

j∈Ni

aijψ (xj − xi) |xj (t)− xi (t)|α−1+ (2)

ẋ0 (t)− bi (xi (t)− x0 (t))

where bi > 0 and the function ψ (·) satisfies Assumption 1,

which holds throughout this paper.

Assumption 1. Function ψ (y) satisfies that yψ (y) > 0,

∀y ∈ R\ {0}, ψ (0) = 0. And ψ (y) > ryq, ∀y ∈ R, where

r > 0, q = q1
q2

< 1, q1 and q2 are positive odd integers.

Theorem 1. Suppose the graph G is undirected and

connected, and max {1,−q} < α < 2− q. Then, the multi-

agent system (1) can solve the consensus problem in finite

time with the nonlinear consensus protocol (2).

Proof. Substituting the nonlinear consensus protocol

(2) into the multi-agent system (1) yields

ẋi (t) =
∑

j∈Ni

aijψ (xj − xi) |xj (t)− xi (t)|α−1 +

ẋ0 (t)− bi (xi (t)− x0 (t)) . (3)

Let ei (t) = xi (t) − x0 (t), then the error systems can be

obtained from system (3), which is described as

ėi (t) =
∑

j∈Ni

aijψ (ej − ei) |ej (t)− ei (t)|α−1−biei (t) . (4)

Consider the Lyapunov function

V (e (t)) =
1

2

∑
i∈Γ

e2
i (t). (5)

Obviously, V (e (t)) is a positive definite function with

respect to e (t). Differentiating the Lyapunov function with

respect to t and according to Lemma 1, we have

V̇ (e (t)) =
∑
i∈Γ

ei (t) ėi (t) =

∑
i∈Γ

ei (t)
( ∑

j∈Ni

aijψ (ej−ei) |ej (t)− ei (t)|α−1−biei (t)
)

=

− 1

2

∑
i∈Γ

∑
j∈Ni

(ej (t)− ei (t)) aijψ (ej(t)− ei(t))×

|ej(t)− ei(t)|α−1 −
∑
i∈Γ

bie
2
i (t).

We can see that V̇ (e (t)) 6 0 due to Assumption 1. More-

over, we can also obtain that

V̇ (e (t)) 6

− r

2

∑
i∈Γ

∑
j∈Ni

aij (ej (t)− ei (t)) (ej (t)− ei (t))q×

|ej (t)− ei (t)|α−1 =

− r

2

∑
i∈Γ

∑
j∈Ni

aij |ej (t)− ei (t)|α+q =

− r

2

∑
i∈Γ

∑
j∈Ni

aij

(
(ej (t)− ei (t))2

) α+q
2 =

− r

2

∑
i∈Γ

∑
j∈Ni

(
a

2
α+q

ij (ej (t)− ei (t))2
) α+q

2

.

From Lemmas 2 and 3, we have

V̇ (e (t)) 6

− r

2


∑

i∈Γ

∑
j∈Ni

a
2

α+q

ij (ej (t)− ei (t))2




α+q
2

=

− r

2

(
2eT (t) LBe (t)

) α+q
2 6

− r

2
(4λBV (t))

α+q
2 =

− 2α−1+qrλ
α+q

2
B V

α+q
2 (t)

where λB = λ2 (LB), LB is the Laplacian matrix of graph

G (B), and B =

[
a

2
α+q

ij

]
∈ Rn×n.

So, we have

V̇ (e (t)) + 2α−1+qrλ
α+q

2
B · V α+q

2 (e (t)) 6 0. (6)

Consequently, consensus can be achieved in finite time

according to Lemma 5. Moreover, we can obtain that

T 6 V (e(0))
1−α+q

2

2α−1+qrλ
α+q

2
B (1−α+q

2 )
. ¤

3.2 Finite-time consensus for double inte-
grator dynamics

Consider the linear double integrator dynamical multi-

agent systems
{

ẋi = vi

v̇i = ui

, i ∈ Γ (7)

where xi ∈ R and vi ∈ R are the position and velocity

of the i-th agent, ui is the feedback control protocol to be

designed.

The dynamics of the leader indexed by 0 is described as

{
ẋ0 = v0, x0 ∈ R

v̇0 = u0, v0 ∈ R.

Now, we present a class of nonlinear consensus protocol
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which is described as

ui =−
(
β1

∑
j∈Ni

aijψ (|xj − xi|) |xj − xi|α−1+

β2

∑
j∈Ni

aijψ (|vj − vi|) |vj − vi|α−1+

ci |vi − v0|
)
sgn (xi − x0 + vi − v0)+

v̇0 − (vi − v0) (8)

where A = [aij ]n×n is the weighted adjacency matrix,

ci > 0, β1 and β2 are positive constants denoting the feed-

back gains, β = min {β1, β2}, sgn (·) is the sign function,

the interaction function ψ (·) satisfies the Assumption 1 in

Section 3.1.

Theorem 2. Suppose the communication network G is

undirected and connected, and max {1,−q} < α < 2 − q.

Then, the second-order dynamical multi-agent system (7)

can solve the consensus problem with the nonlinear consen-

sus protocol (8) in finite time.

Proof. Let x̄i (t) = xi (t)− x0 (t), v̄i (t) = vi (t)− v0 (t).

Substituting the nonlinear consensus protocol (7) into the

dynamic equations (8) yields

˙̄xi =v̄i

˙̄vi =−
(
β1

∑
j∈Ni

aijψ (|x̄j − x̄i|) |x̄j − x̄i|α−1+

β2

∑
j∈Ni

aijψ (|v̄j − v̄i|) |v̄j − v̄i|α−1 +

ci |v̄i|
)
sgn (x̄i + v̄i)− v̄i. (9)

Denote si = x̄i + v̄i, S = (s1 s2 · · · sn)T. Then we consider

the following Lyapunov function

V =
1

2
STS =

1

2

∑
i∈Γ

s2
i =

1

2

∑
i∈Γ

(x̄i + v̄i)
2.

Differentiating the Lyapunov function with respect to t, we

have

V̇ =
∑
i∈Γ

si

(
˙̄xi + ˙̄vi

)
=

∑
i∈Γ

si

(
v̄i −

(
β1

∑
j∈Ni

aijψ (|x̄j − x̄i|) |x̄j − x̄i|α−1+

β2

∑
j∈Ni

aijψ (|v̄j − v̄i|) |v̄j − v̄i|α−1+

ci |v̄i|
)
sgn (si)− v̄i

)
6

−
∑
i∈Γ

|si|

β1r

∑
j∈Ni

aij |x̄j − x̄i|α−1+q +

β2r
∑

j∈Ni

aij |v̄j − v̄i|α−1+q + ci |v̄i|

 6

− βr
∑
i∈Γ

|si|×


 ∑

j∈Ni

aij(|x̄j − x̄i|α−1+q + |v̄j − v̄i|α−1+q)


 6 0.

Note that max {1,−q} < α < 2−q yields 0 < α−1+q < 1.

Using Lemmas 2 and 4, we obtain that

V̇ 6− βr
∑
i∈Γ

|si|

 ∑

j∈Ni

aij (|x̄j − x̄i|+ |v̄j − v̄i|)α−1+q


 6

− βr
∑
i∈Γ

|si|

 ∑

j∈Ni

aij |x̄j − x̄i + v̄j − v̄i|α−1+q


 =

− βr
∑
i∈Γ

|si|

 ∑

j∈Ni

aij |sj − si|α−1+q


 6

− 1

2
βr

∑
i∈Γ

∑
j∈Ni

aij |sj − si|α+q =

− 1

2
βr

∑
i∈Γ

∑
j∈Ni

(
a

2
α+q

ij (sj − si)
2

) α+q
2

6

− 1

2
βr


∑

i∈Γ

∑
j∈Ni

a
2

α+q

ij (sj − si)
2




α+q
2

.

Let C = [a
2

α+q

ij ]n×n ∈ Rn×n, LC be the Laplacian matrix

of graph G (C), λ2 (LC) be the second smallest eigenvalue

of LC , and λC = λ2 (LC). From Lemma 3, we have

V̇ 6− 1

2
βr

(
2STLCS

) α+q
2 6

− 1

2
βr (4λ2 (LC) · V )

α+q
2 6

− 2α−1+qβrλ
α+q

2
C V

α+q
2 .

Let c = 2α−1+qβrλ
α+q

2 > 0. Then, we can see that

V̇ + cV
α+q

2 6 0. By Lemma 5, one can obtain that finite-

time consensus can be achieved with the settling time T

satisfying that T 6 V (0)
1−α+q

2

c(1−α+q
2 )

. ¤
Remark 1. The nonlinear consensus protocol proposed

here is different from the existing results (such as [6, 11 −
14]), and more general than the linear protocols (such as

[16]). In particular, the consensus of all the agents can be

achieved in finite time, which has more superiority than the

asymptotic protocols (such as [6, 7]).

4 Simulation examples

In this section, some simulation examples of nonlinear

finite-time consensus are given to illustrate the effectiveness

of the theoretical results in this paper.

4.1 Simulation results for single integrator
dynamics

We consider a group of one leader agent and five follower

agents with graph G in Fig. 1.
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Fig. 1 The communication topology

We assume that ψ (y) = ey × sgn (y), α = 1.5. It is clear

that this situation cannot be modeled by any previously

proposed linear consensus protocols. Three simulations are

performed with three different consensus states.

Firstly, suppose that the first-order leader agent′s state is

x0 (t) = 2. Fig. 2 shows that the follower agents′ states can

still converge to the leader agent′s state in finite time under

two different initial states x (0) = [1, 3.2, 1.8, 0.5,−1.2]T and

x (0) = [−1, 0.2, 1, 2.5, 0]T.

(a) State trajectories with x (0) = [1, 3.2, 1.8, 0.5,−1.2]T

(b) State trajectories with x (0) = [−1, 0.2, 1, 2.5, 0]T

Fig. 2 The state trajectories of five agents with x0 = 2

Then, we assume that firstly x0 (t) = sin (t) and then

x0 (t) = cos (t) respectively. Figs. 3 and 4 show that the

nonlinear consensus can be achieved in finite time. And

the consensus state remains the same if we change the ini-

tial states, which means a better robustness compared with

other literature whose consensus states closely relate to the

agents′ initial states. Figs. 2 – 4 also indicate that our the-

oretical results are effective and have much faster conver-

gence speed than the asymptotic results in [6, 7], etc.

4.2 Simulation results for double integra-
tor dynamics

We consider a group of one leader agent and four follower

agents with the undirected communication topology given

in Fig. 5. ψ (·) and α are assumed to be the same as in

Section 4.1.

(a) State trajectories with x (0) = [1, 3.2, 1.8, 0.5,−1.2]T

(b) State trajectories with x (0) = [−1, 0.2, 1, 2.5, 0]T

Fig. 3 The state trajectories of five agents with x0 = sin(t)

(a) State trajectories with x (0) = [1, 3.2, 1.8, 0.5,−1.2]T
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(b) State trajectories with x (0) = [−1, 0.2, 1, 2.5, 0]T

Fig. 4 The state trajectories of five agents with x0 = cos (t)

Fig. 5 The communication topology

If the second-order leader agent′s states are x0 = 1

and v0 = 0, and the initial conditions are selected as

x (0) = [0, 1, 3, 1.5]T, v (0) = [−1, 0, 1, 2]T, then the simula-

tion results of the double integrator dynamical multi-agent

systems (7) with nonlinear protocol (8) can be shown as in

Fig. 6. And Fig. 7 shows that the finite-time consensus can

also be achieved if the initial conditions are changed to be

x (0) = [−1, 0.2, 2.5, 1]T and v (0) = [1.2,−0.5,−1.5, 0.2]T.

Figs. 8 and 9 show the simulation results of double in-

tegrator dynamical multi-agent systems (7) with nonlinear

consensus protocol (8) in different initial states, if we set the

second-order leader agent′s states to be v0 = 0.1 cos (0.1t)

and x0 = sin (0.1t).

(a) Agent positions with x (0) = [0, 1, 3, 1.5]T

(b) Agent velocities with v (0) = [−1, 0, 1, 2]T

Fig. 6 The trajectories of four agents with x0 = 1, v0 = 0

(a) Agent positions with x (0) = [−1, 0.2, 2.5, 1]T

(b) Agent velocities with v (0) = [1.2,−0.5,−1.5, 0.2]T

Fig. 7 The trajectories of four agents with x0 = 1, v0 = 0

Figs. 6−9 show that the consensus can be achieved in fi-

nite time under different initial states, which means a better

robustness compared with other literature whose consensus

states closely relate to the agents′ initial states. These fig-

ures also indicate that our results are effective and have

much faster convergence speed than the asymptotic results

in [6, 7], etc.
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(a) Agent positions with x (0) = [0, 1, 3, 1.5]T

(b) Agent velocities with v (0) = [−1, 0, 1, 2]T

Fig. 8 The trajectories of four agents with x0 = sin (0.1t), v0 =

0.1 cos (0.1t)

Figs. 2, 6, 7 indicate that the stationary consensus of

multi-agent systems can be achieved in finite time via non-

linear consensus protocols. And Figs. 3, 4, 8, 9 show that

the consensus can still be achieved in finite time with an

active leader via nonlinear consensus protocols.

The simulation results in Sections 4.1 and 4.2 indicate the

validity of the proposed nonlinear protocols, which have a

faster convergence speed than the linear protocol results[16]

and asymptotic results[6,7].

5 Conclusions

In this paper, we investigate the finite-time consensus

problems of single and double integrator dynamical multi-

agent systems via nonlinear control protocols, respectively.

Novel nonlinear protocols and corresponding theoretical re-

sults are proposed. Compared with the existing results, the

consensus state of all agents can be achieved in finite time

and remains the same if we change the initial states, which

means a better robustness. Some simulation results are

presented to illustrate the effectiveness of our theoretical

results.

(a) Agent positions with x (0) = [−1, 0.2, 2.5, 1]T

(b) Agent velocities with v (0) = [1.2,−0.5,−1.5, 0.2]T

Fig. 9 The trajectories of four agents with x0 = sin (0.1t), v0 =

0.1 cos (0.1t)
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