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Abstract: In this paper, an adaptive type-2 fuzzy sliding mode control to tolerate actuator faults of unknown nonlinear systems
with external disturbances is presented. Based on a redundant actuation structure, a novel type-2 adaptive fuzzy fault tolerant control
scheme is proposed using sliding mode control. Two adaptive type-2 fuzzy logic systems are used to approximate the unknown functions,
whose adaptation laws are deduced from the stability analysis. The proposed approach allows to ensure good tracking performance
despite the presence of actuator failures and external disturbances, as illustrated through a simulation example.
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1 Introduction

The design of fault tolerant control (FTC) is very impor-
tant for safety and reliability of modern engineering sys-
tems. Actuator faults may cause undesired system behav-
ior and sometimes lead to instability or even catastrophic
accidents. For example, in aircraft, uneven pressure in the
hydraulic system may lead to problems in controlling the
stabilization rudder[1]. It is necessary to develop approaches
that would accommodate faults during operation. Adaptive
method has been widely used for FTC design due to its abil-
ity of learning. In [2], an adaptive FTC against lock-in-place
actuator faults for linear systems has been presented. In [3],
an adaptive compensation scheme is developed for a class
of nonlinear multi-input multi-output (MIMO) systems to
ensure the closed-loop signal boundedness and asymptotic
output tracking despite unknown actuator failures. Ye and
Yang[4] proposed an adaptive fault-tolerant flight controller
design method. This approach is based on the online esti-
mation of an eventual fault and the addition of a new con-
trol law to the normal one. This allows to reduce the fault
effect on the system without the need for a fault detection
and isolation mechanism. However, all these approaches
can be only used in the case of systems with parameter
uncertainties.

Thanks to the universal approximation theorem pre-
sented in [5], several adaptive fuzzy approaches have been
presented in the literature to resolve the tracking prob-
lems of the unknown nonlinear systems[3−13]. However, few
studies using fuzzy adaptive control have been extended
to FTC. Inspired by [2], Li and Yang[14] have presented a
fault tolerant control of unknown nonlinear systems against
actuator failures. The main contribution includes using
adaptive fuzzy systems to tolerate actuator faults of un-
known nonlinear systems without the need of faults detec-
tion and diagnosis (FDD) mechanism, which allows to avoid
the unexpected system behavior caused by false or omit-
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ted alarms. The extension of this work to the case of per-
turbed systems have been presented in [15]. The robustness
is guaranteed thanks to the H∞ technique. Nevertheless,
a tradeoff between the tracking performance and the exis-
tence of the solution of Riccati equation must be found. Li
and Yang[16, 17] presented adaptive fuzzy backstepping con-
trollers for strict-feedback system. Nevertheless, the design
of these approaches requires the knowledge of the upper
bounds of external disturbances assumed to be well-known,
whereas they are unknown in industrial systems. Further-
more, classical fuzzy systems, called type-1 fuzzy logic sys-
tems (T1FLS), have difficulties in modeling and minimizing
the effect of the uncertainties, such as linguistic uncertain-
ties and noisy training data as shown in [18].

In the last few years, a remarkable attention has been
paid to another type of fuzzy system called type-2 fuzzy
logic system (T2FLS). In T2FLS, the uncertainty is rep-
resented such that the membership degree is type-1 fuzzy
number. The membership functions of T2 fuzzy sets are
three dimensional and include a footprint of uncertainty
(FOU) with a new third dimension of type-2 fuzzy sets. A
FOU provides additional degrees of freedom that make it
possible to directly model and handle uncertainties conse-
quently, and T2FLS has the potential to outperform T1FLS
in such cases[19, 20].

In this paper, we develop an adaptive type-2 fuzzy sliding
mode control to tolerate actuator faults of unknown non-
linear systems with external disturbances. Based on a re-
dundant actuation structure, a novel type-2 adaptive fuzzy
FTC scheme is proposed using sliding mode control. Two
T2FLSs are used to approximate the unknown functions.
Updating these T2FLSs, the proposed approach needs no
FDD but uses sliding mode control to deal with the distur-
bances. Both lock-in-place and loss of effectiveness of actu-
ator can be tolerated to achieve closed-loop stability and
desired tracking performance though there are unknown
nonlinearities and disturbances. Several simulation results
have been presented to show the efficiency of the proposed
approach.



336 International Journal of Automation and Computing 10(4), August 2013

This paper is organized as follows. In Section 2, problem
formulation and general description of a class of single-input
single-output (SISO) nonlinear systems are given. A brief of
the fault tolerant control is presented in Section 3. Type-2
fuzzy sliding mode control design approach is constructed in
Section 4. Simulation example to illustrate the effectiveness
and the performance of the proposed approach is provided
in Section 5. Finally, Section 6 concludes the paper.

2 Problem formulation

Consider a general class of SISO n-th order nonlin-
ear uncertain dynamic systems described by the following
equalities[21]:

x(n) = f(X) + g(X)u + d

y = x
(1)

where f(X) and g(X) are nonlinear unknown uncertain
continuous functions assumed to be bounded, u ∈ R and
y ∈ R denote the input and the output of the system, d rep-
resents the external unknown bounded disturbances, and
X = [x, ẋ, · · · , x(n−1)]T ∈ Rn denotes the state vector of
the system assumed to be available to measurement. The
nonlinear system (1) is assumed to be controllable. So, we
can consider that we always have g(X) 6= 0.

For system modeling, we can use the physical equation.
However, in some cases, the model is obtained using some
simplifying conditions whereas the parameters are gener-
ally unknown. To overcome this problem, it is necessary to
look for a method which should be adequate for these un-
certain, complex and perturbed systems. We can approx-
imate the unknown functions f(X) and g(X) using fuzzy
logic systems[22−24], neural networks[25−27] or wavelet neu-
ral networks[28, 29].

Concerning the robustness of the closed loop system
against the uncertainties, the approximation errors and the
external disturbances, a robust control law is needed. To
attain this objective, we propose to use sliding mode ap-
proach. This choice is motivated by its design simplicity
and its high robustness.

If we define yref as the reference trajectory, and e =
yref − y as the tracking error, we can define the sliding
surface[21]:

s(X, t) =

(
∂

∂t
+ λ

)(n−1)

e (2)

where λ is a positive constant[21]. It defines the slope of
the sliding surface, where the reaching condition can be ex-
pressed as

1

2
× ds2(X, t)

dt
= s(X, t)ṡ(X, t) 6 −η|s(X, t)|, η > 0. (3)

The system is controlled in such way that the system al-
ways moves towards the sliding surface and remains on it.
Therefore, the tracking error can be considered as keeping
the error state vector on sliding surface s(e) = 0. Using the
definition e = yref − y, we can write the time derivative of
the sliding surface s(X, t) as

ṡ(X, t) = y
(n)
ref − f(X)− g(X)u + φs (4)

where φs is defined as

φs =

n∑

β=1

(n− 1)!

β!(n− β − 1)!
(

∂

∂t
)(n−β−1)λβ ė. (5)

To satisfy the condition given by (3), we can choose the
control law as[21]

u = g(X)−1[−f(X) + y
(n)
ref + φs]− g(X)−1ksgn(s) (6)

The equivalent control ueq = g(X)−1[−f(X)+ y
(n)
ref +φs]

will force the dynamics of the system to stay on the slid-
ing surface and can be obtained using ṡ(X, t) = 0 [21, 30].
The hitting (switching) control law usw = −g(X)−1ksgn(s)
allows to attain the sliding surface.

This control law allows to obtain good tracking perfor-
mance despite the presence of external disturbances. How-
ever, it can be applied only in the case of safe actuator. In
the next section, we will propose to extend this approach
to the case where actuators are subject to failures.

3 Fault tolerant control design

During the system operation, faults may affect the sen-
sors, the actuators, or the system components. These faults
can occur as additive or multiplicative faults. In such sys-
tems, the consequences of minor fault in a system compo-
nent can be catastrophic. Therefore, reliability, safety and
fault tolerance are generally required to be high. It is neces-
sary to design control systems capable to tolerate potential
faults in these systems in order to improve the reliability
and availability while providing desirable performance. In
fault tolerant control, the objective is to compensate fault
effect on the system depending on nature of fault. It is
necessary to ensure the effectiveness of process control to
make the plant a safe one. The effect of actuator and sen-
sor faults can be also represented as an additional unknown
input vector acting on the dynamic systems. So, the unex-
pected system behavior caused by false or omitted alarms
can be avoided and the control structure can be applied to
the unknown nonlinear systems[31].

In this work, the problem under consideration is to de-
sign a fault tolerant controller for unknown nonlinear sys-
tems with external disturbances. We study the problem of
fault tolerant controller design for uncertain systems with
actuator faults.

Consider the control problem of the nonlinear systems (1)
equipped with m actuators subject to failures. The input
control can be written as

u(t) =

m∑
i=j

uj(t). (7)

Each input control uj(t) subjet to actuator faults can be
expressed as

uj(t) = ρjνj(t) + σj(u
c
j − ρjνj(t)) (8)

where νj(t) presents the j-th applied control signal. The
previous expression of control input allows to describe the
loss of effectiveness and actuator failures. Indeed, ρj de-
notes the percentage of the remaining effective part of the
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corresponding actuator uj : ρj = 1 corresponds to the nor-
mal behavior (no failure), whereas ρj = 0 means the com-
plete loss of the effectiveness. The case of lock-in-place is
considered using the term σj . For σj = 1, the actuator
stuck at the value uc

j . If we consider a specific proportional

actuation structure[2], each input control can be rewritten
as

uj(t) = bjν0(t) (9)

where bj is a non zero constant and ν0(t) is the control signal
that needs to be designed. Then, (9) can be reformulated
as

uj(t) = ρj(1− σj)bjν0(t) + σju
c
j . (10)

To ensure the control objective, it is reasonable that there
is at least one actuator that is still active for the control de-
sign purpose.

Using the new equation of the control input signals, sys-
tem (3) can be described by

x(n) =f(X) + g(X)

m∑
i=j

ρj(1− σj)bjν0(t)+

m∑
i=j

g(X)σju
c
j + d. (11)

Using the notation,

h1(X) = f(X)

m∑
i=j

g(X)σju
c
j

h2(X) = g(X)

m∑
i=j

ρj(1− σj)bj . (12)

System (3) can be described by

x(n) = h1(X) + h2(X)ν0(t) + d (13)

which can be controlled by the following sliding mode con-
trol law:

ν0(t) = h2(x)−1[−h1(x) + y
(n)
ref + φs −Ksgn(s)]. (14)

Based on the definition of h1(X) and h2(X), the control law
(14) cannot be applied in this form. Furthermore, the term
Ksgn(s) provokes chattering, which can deteriorate the sys-
tem. It is difficult to calculate the term K since it depends
directly on the upper bounds of both external disturbances
and uncertainties, which are generally unknown.

4 Type-2 fuzzy sliding mode control de-
sign approach

In this section, we propose a type-2 fuzzy based sliding
mode control law to force the system (13) to ensure good
tracking performance in presence of both external distur-
bances and actuator faults. For this, we will approximate
the unknown functions h1(X) and h2(X) by two adaptive
type-2 fuzzy systems. To resolve the problem of chattering
and the knowledge of K, we substitute the term Ksgn(s)
by a smooth one s

α2 .

4.1 Type-2 fuzzy logic systems

The structure of a T2FLS[32, 33], as presented in Fig. 1,
is quite similar to a T1FLS. The only difference is that the
antecedent and/or consequent sets in a T2FLS are type-
2, so that each rule output set is a type-2. There are five
principal parts in a T2FLS: Fuzzifier, rule base, inference
engine, type-reducer and defuzzifier.

Fig. 1 Type-2 fuzzy logic system diagram

The type-reducer performs a type-reduction operation
which is an extended version of T1 defuzzification. Type re-
duction yields a T1 set from the T2 rule output set. The re-
sulting T1 set is called type-reduced set. The type-reduced
set can then be defuzzified to obtain a crisp output. The
type reduced set of a T2FLS shows the possible variation
in the crisp output of the FLS due to the uncertain natures
of the antecedents and/or consequents.

4.1.1 Fuzzifier

The fuzzifier maps a crisp input vector with n input fuzzy

sets, which can be type-2 (T2) fuzzy input sets Ãx
[33, 34]

in
general.

However, we will consider the singleton fuzzification as it
is fast to compute, and thus suitable for real time applica-
tions. In the singleton fuzzification, the input fuzzy set has
only a single point of nonzero membership[33−35]. Thus, Ãx

is a T2 fuzzy singleton if µ̃ = 1 for xi = x0
i and µÃx

(xi) = 0

for all xi 6= x0
i , (i = 1, 2, · · · , n)[35].

4.1.2 Rule base

For an interval type-2 fuzzy logic system (IT2FLS), the
j-th rule can be written as

Rj : If x1 is V j
1 and · · · and xn is V j

n

Then y is Θj , j = 1, · · · , r (15)

where V j
i are antecedent type-2 sets, y ∈ Y is the output,

Θj are consequent T2 sets. The rule in (15) represents a
T2 fuzzy relation between the input and the output spaces
on the FLS.

4.1.3 Fuzzy inference engine

In the considered IT2FLS, we will use the product
operation[35]. In an IT2FLS with minimum or product t-
norm, the firing interval V j of the j-th rule is an interval
type-2 set, which is determined by its left most point and
right most point vj and vj as

V i(X0) = [vj(X0), vj(X0)] ≡ [vj , vj ] (16)

where X0 is the instantaneous value of X. Accordingly, the
firing interval bounds for the j-th rule of an IT2FLS with
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n inputs vj and vj , can be written as

vj = µj

v1
(x0

1) · · ·µj

vn
(x0

n) =

n∏
i=1

µj

vi
(x0

i ) (17)

vj = µj
v1(x

0
1) · · ·µj

vn(x0
n) =

n∏
i=1

µj
vi(x

0
i ). (18)

4.1.4 Type reduction

It is called type-reduction because this operation takes
us from the T2 output sets of the inference engine to a type
1 set. The obtained type reduced sets are defuzzified to
get crisp output. As indicated in [33], center of sets (COS)
type reduction will be considered in this paper. It requires
less computation time than centroid and allows overcom-
ing the met problems using other methods. Type reduction
proposed in [32] using the COS method is given by;

YCOS =
∫

θ1 · · ·
∫

θr

∫
v1 · · ·

∫
vr

r∑
j=1

vj

r∑
j=1

vjθj

dθ1· · ·dθrdv1· · ·dvr

(19)
where YCOS is the interval set determined by two end points
yl(X) and yr(X), θj ∈ Θj = [θj

l , θ
j
r
] is the type-2 interval

consequent set, and vj ∈ V j = [vj , vj ] is the firing interval.

4.1.5 Defuzzification

From the type reduction step, the type reduced set Ycos

is determined by its left most point yl(X) and right most
point yr(X). Using the center of gravity, the defuzzified
crisp output is given by[33]

y =
yl + yr

2
(20)

where yl can be represented by a vector of fuzzy basis func-
tions (FBFs) expansion as

yl(X) =

r∑
j=1

vj
l θ

j
l

r∑
j=1

vj
l

=

r∑
j=1

θj
l ξ

j
l = θT

l ξl(X) (21)

where vj
l denotes the firing strength membership grade con-

tributing to the left most point yl(X).

ξj
l =

vj
l

r∑
j=1

vj
l

(22)

where ξl(X) is the FBF vector of Y , such that ξT
l (X) =

[ξ1
l (X), · · · , ξr

l (X)] and ΘT
l = [θ1

l , · · · , θr
l ] is the left conclu-

sion of T2FLS y. As well, we have

yr(X) =

r∑
j=1

vj
rθ

j
r

M∑
j=1

vj
r

=

M∑
j=1

θj
rξ

j
r = θT

r ξr(X) (23)

where vj
r denotes the firing strength membership contribut-

ing to the right most point yr(X) given as

ξj
r =

vj
r

r∑
j=1

vj
r

(24)

ξr(X) is the FBF vector of y such that ξT
r (X) =

[ξ1
r(X), · · · , ξr

r(X)] and ΘT
r = [θ1

r , · · · , θr
r ] is the right con-

clusion of T2FLS y. Then, the output of the T2FLS can be
given as

y =
ΘT

l ξl + ΘT
r ξr

2
(25)

which can be rewritten in the following compact form:

y = ΘTΨ (26)

where ΘT = [ΘT
l ΘT

r ] and ΨT =
1

2
[ξT

l ξT
r ].

Using the universal approximation theorem[6], there ex-
ists an optimal fuzzy system in the form (26), ĥ∗1(X) =
Θ∗T1 Ψ1 approximates h1(x). Similarly, we can approximate
h2(x) by ĥ∗2(X) = Θ∗T2 Ψ2. Hence, we can write

h1,2(X) = ĥ1,2(X)∗ + ε1,2 (27)

where ε1 and ε2 are two very small positive constants rep-
resenting the minimal approximation error. Using (27), the
studied system can be described by

x(n) = (ĥ∗2(X) + ε2)ν0 + (ĥ∗1(X) + ε1) + φs + d. (28)

Remark 1. The chosen methods to compute the fuzzy
system output is motivated by two main aspects. The first
one allows to exploit the universal approximation theorem
efficiently. The second one reduces the computation time
required by this structure compared to the other structure
of T2FLS.

4.2 Type-2 fuzzy sliding mode control de-
sign

To attain the control objective, we will present in this
section the synthesis of the proposed type-2 fuzzy sliding
mode control law, which must ensure the robustness and
stability of the closed loop system in presence of external
disturbances and actuator faults. So, the expression of the
derivative of sliding surface can be given by

ṡ=e(n) + φs

ṡ=y
(n)
ref − (ĥ∗2(X) + ε2)ν0 + (ĥ∗1(X) + ε1)− φs − d.(29)

Thus, the derivative of the sliding surface can be resumed
as

ṡ = y
(n)
ref − ĥ∗2(X)ν0 − ĥ∗1(X)− φs − dc

dc = −ε2ν0 − ε1 − d.
(30)

Proposition 1. Use the proposed control law given by

ν0 = ĥ−1
2 (X)

[
y
(n)
ref − ĥ1(X)− φs − s

α2

]
(31)

with the following adaptation laws:

Θ̇1 = −γ1sΨ1

Θ̇2 = −γ2sΨ2ν0.
(32)
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We can ensure that the closed loop system signals are
bounded and the tracking error will converge to zero asymp-
totically, despite the presence of external disturbances, un-
certainties and actuators faults.

Proof. To prove the stability of the closed loop system,
we consider the following Lyapunov function:

V = s2 + 1
2γ1

Θ̃T
1 Θ̃1 + 1

2γ2
Θ̃T

2 Θ̃2 (33)

where Θ̃1,2 = Θ1,2 − Θ∗1,2, and γ1 and γ2 are two positive
constants. Then, the time derivative of (33) is given as

V̇ = sṡ + 1
γ1

Θ̃T
1 Θ̇1 + 1

γ2
Θ̃T

2 Θ̇2. (34)

Using (31), the derivative of s becomes

ṡ = (ĥ2(X)− h∗2(X))ν0 + (ĥ1(X)− h∗1(X))− dc − s

α2

(35)
which can be rewritten as

ṡ = Θ̃T
2 ξ2ν0 + Θ̃T

1 ξ1 − dc − s

α2
. (36)

Thus, (34) can be rewritten as

V̇ = Θ̃T
2

[
ξ2sν0 +

1

γ 2

Θ̇2

]
+

Θ̃T
1

[
ξ1s +

1

γ 1

Θ̇1

]
− s

[
dc +

1

α2

]
. (37)

Using the adaptation laws (32) leads to

V̇ = −sdc − s

α2
(38)

which can be rewritten as

V̇ 6 s2 +
d2

c

4
− s2

α2
=

d2
c

4
+ (1− 1

α2
)s2. (39)

Integrating this inequality between 0 and T , and using the
definition of V , we can have

∫ T

0

s2

α2
dt 6

∫ T

0

d2
c

4
dt (40)

Since the external disturbances are assumed to be bounded
as well as the minimal approximation errors ε1 and ε2

[6],
we can conclude that s ∈ L2 which implies that s → 0.
Therefore, the convergence of e to zero is guaranteed. Also,
we can conclude that the stability and the robustness of the
closed loop system are guaranteed[36]. ¤

In the following section, a simulation example is given to
show the effectiveness of the proposed approach.

5 Simulation example

To illustrate the performance of the proposed approach,
we consider the inverted pendulum system of Fig. 2 with

redundant actuators. The system is described by[14]:





ẋ1 = x2

ẋ2 = a(x1, x2) + b(x1, x2)(u1 + u2) + d

y = x1

a(x1, x2) =
g sin(x1)− mlx2

2 cos(x1) sin(x1)

mc + m

l

[
4

3
− m cos2(x1)

mc + m

]

b(x1, x2) =

cos(x1)

mc + m

l

[
4

3
− m cos2(x1)

mc + m

]

(41)

where x1 = θ and x2 = θ̇ denote the angular position and
velocity. System parameters are given in Table 1.

Fig. 2 The inverted pendulum system

Table 1 System parameters

Abbreviation Value Parameter

g 9.8 ms−2 Acceleration due to gravity

mc 1 Kg Mass of the cart

m 0.1 Kg Mass of the pole

l 0.5 m Half length of pole

The control objective is to control the state x1 to track
the reference trajectory yref = sin(t). So, the control law is
synthesized according to the following steps:

1) In order to develop training algorithms for the type-2
fuzzy logic systems, we specify the membership functions
of x1 and x2 as given in Fig. 3 by

µH̃i
1j

=
1

1 + exp


1.8


xi + (0.61 + c1)

π

16







µH̃i
2j

=exp


−


 xz

π

(4.5 + c2)




2


µH̃i
3j

=
1

1 + exp


−1.8


xi + (−0.61− c1)

π

16







(42)
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where c1 and c2 designate an area of uncertainty, in the case
of our application, c1 ∈ [0, 0.2] and c2 ∈ [0, 1]. Then, there
are 9 rules to approximate the unknown functions. Initial
values of consequent parameters of fuzzy rules are chosen
in the interval [−π

4
, π

4
] and the learning rates are γ1 = 200

and γ2 = 1.
2) Since the system is a second order one, the sliding sur-

face can be obtained as S(t) = ė(t) − λe(t). To design the
control, we choose the sliding gain as λ = 10.

3) To evaluate the robustness of the closed loop system,
we operate with the external disturbances and uncertainties
as follows:

i) The structural disturbance on the mass of both the
cart and the pole: dm = 0.005 sin(2t) + 0.005 sin(3t),
dmc = 0.05 sin(2t) + 0.05 sin(3t).

ii) The external disturbance d = 0.05xπ
6
sin(2t) + 0.05 ×

π
6
sin(3t).

Fig. 3 Membership function of the fuzzy systems

To evaluate the robustness of the proposed approach
against the actuator failures, we study two cases:

Case 1. Loss of effectiveness
In this case, we assume that the effectiveness of the two

actuators evolves in time, as given in Fig. 4, but we have
always one actuator is active.

Fig. 4 Evolution of the actuators effectiveness

Figs. 5–7 give the simulation results. Fig. 5 shows the
pendulum states evolution, which converge to their refer-
ence signals despite the loss of all the effectiveness of the
second actuator at t = 6 s. Figs. 6 and 7 give the evolution
of the control signals generated by each actuator and the
global one applied to the system. We remark that despite
the severity of disturbances (loss of effectiveness, external
disturbances, and parameter variation), the system arrives
to attain good tracking performance.

Case 2. Lock-in-place
In this case, we assume that the effectiveness of the two

actuators evolves in time, as given in Fig. 8, but at t = 6 s,
actuator 2 is locked on the value uc

1 = 4.5N. The simu-
lation results are given by Figs. 9–11. We remark that the

state variables follow their reference trajectories despite the
problems of lock-in-place and loss of effectiveness.

Fig. 5 State variables y and dy/dt, and their reference trajec-

tories

Fig. 6 Actuator control signals (u1 and u2)

Fig. 7 Applied control signal to the system

Fig. 8 Evolution of the actuators effectiveness
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Fig. 9 State variables variables and their reference trajectories

Fig. 10 Evolution of the control signals (actuators)

Fig. 11 Applied effort

6 Conclusions

In this paper, an adaptive type-2 fuzzy sliding mode con-
troller for SISO nonlinear systems subject to actuator faults
and external disturbances has been presented. It allows to
combine the advantages of type-2 fuzzy system theory and
modified sliding mode control. The proposed approach al-
lows to accommodate the uncertain actuator faults during
the operation. The simulation results show the efficiency
of the proposed approach. And all the signals of the closed
loop are bounded and the tracking error between the sys-
tem output and the reference signals converges to a small
neighborhood of zero. In the future, we intend to study
MIMO systems and to realize a state observer to treat the
case where we cannot measure the system states.
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