
International Journal of Automation and Computing 10(4), August 2013, 275-280

DOI: 10.1007/s11633-013-0721-1

Observer-based Adaptive Fuzzy Control for a Class of

Nonlinear Time-delay Systems

Hassan A. Yousef1 Mohamed Hamdy2

1Department of Electrical and Computer Engineering, College of Engineering, Sultan Qaboos University, Muscat, Sultanate of Oman
2Department of Industrial Electronics and Control Engineering, Faculty of Electronic Engineering, Menofia University, Menof 32952, Egypt

Abstract: An observer-based adaptive fuzzy control is presented for a class of nonlinear systems with unknown time delays. The
state observer is first designed, and then the controller is designed via the adaptive fuzzy control method based on the observed states.
Both the designed observer and controller are independent of time delays. Using an appropriate Lyapunov-Krasovskii functional, the
uncertainty of the unknown time delay is compensated, and then the fuzzy logic system in Mamdani type is utilized to approximate the
unknown nonlinear functions. Based on the Lyapunov stability theory, the constructed observer-based controller and the closed-loop
system are proved to be asymptotically stable. The designed control law is independent of the time delays and has a simple form with
only one adaptive parameter vector, which is to be updated on-line. Simulation results are presented to demonstrate the effectiveness
of the proposed approach.
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1 Introduction

The phenomenon of time delay is frequently a source of
instability and exists in various engineering systems. Time
delay usually leads to unsatisfactory performance. There-
fore, the problem of stabilization of time delay systems
has received considerable attention over the past years[1−5].
To overcome this difficulty, the Lyapunov-Krasovskii func-
tional is used for stability analysis and synthesis[6,7].

A typical approach for the analysis and synthesis of non-
linear system with time delay is the local linearization ap-
proach. First, a linearization model at the nominal oper-
ating point is obtained, and then a linear feedback con-
trol is designed for this linear model. In particular, some
delay-independent stability conditions and stabilization ap-
proaches have been proposed for these linear delay differen-
tial equations[8,9]. It is known that each local model is valid
only for a certain range of operating conditions and these
results can only guarantee the local stability of nonlinear
systems with time delays.

The adaptive neural controller was designed for a class of
nonlinear time-delay systems[10−13]. However, these adap-
tive neural control methods require a large number of neural
weights to be adapted online simultaneously. This makes
the learning time unacceptably lengthy. Fuzzy logic sys-
tems are employed to approximate the unknown nonlinear
functions, then the adaptive law of adjustable parameters
is obtained. Adaptive fuzzy control approaches were devel-
oped in [14−16] for a class of nonlinear time delay systems
to deal with the drawbacks of adaptive neural controllers.
In [14], a novel systematic design procedure was developed
for the synthesis of a stable adaptive fuzzy controller for
a class of nonlinear time-delay systems. The Lyapunov-
Krasovskii functional was constructed to compensate for
the unknown delayed state uncertainties. However, almost
all the existing approximator-based adaptive backstepping
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control schemes use function approximators as feedback
compensators to model some suitable unknown functions
in the controllers. In other word, approximators are used
to model unknown functions depending on system states
or outputs. It is well known that the universal approxi-
mation property of fuzzy system or neural network holds
only over a compact set. The problem of globally stable
adaptive backstepping output-feedback tracking control for
a class of nonlinear systems was addressed in [17]. Adap-
tive fuzzy backstepping control work was extended to the
design of a Mamdani fuzzy adaptive control for a class of
strict-feedback single-input-single-output (SISO) nonlinear
systems without backstepping[18].

On the other hand, the problem of observer design for
reconstructing state variables is a more involved issue in
systems with any kind of delay. In general, some sufficient
conditions for the existence of an observer have been es-
tablished, and computational algorithms for construction
of the observers have been presented in [19, 20].

However, the previous work on adaptive fuzzy controller
was limited to systems only with available measurement
states for SISO[14−17]. Based on the initial results of
SISO nonlinear systems, we intend to develop an observer-
based adaptive fuzzy control for a class of SISO nonlin-
ear systems[14]. Furthermore, the proposed scheme is con-
structed by integrating the feature of H∞ tracking perfor-
mance which can greatly attenuate disturbances, model un-
certainties, and fuzzy approximation errors.

The main features of this paper are: 1) State observer
is first designed, and the controller is designed via adaptive
fuzzy control method based on the observed states. 2) Both
the designed observer and controller are independent of the
time delay.

The paper is organized as follows. The problem under
investigation and the fuzzy system are introduced in Sec-
tion 2. The observer-based adaptive fuzzy control design
is introduced in Section 3. The main result is presented
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in Section 4. Simulation results are provided in Section 5.
Conclusions are given in Section 6.

2 Problem formulation and fuzzy sys-
tems

Consider the SISO nonlinear time-delay dynamic system
in the following form[14]:





ẋi = xi+1, i = 1, 2, · · · , n− 1

ẋn = f(x) + g(x)u(t) + h(x(t− τ))

y = x1

(1)

where x = [x1, x2, · · · , xn]T ∈ Rn is the system state vec-
tor, u ∈ R and y ∈ R denote system control input and out-
put, respectively. Functions f(·), g(·) and h(·) are unknown
smooth functions, τ i is an unknown time delay of the state
variables, i = 1, 2, · · ·, n. It is assumed that the desired out-
put trajectory and its derivatives Yd = [yd, ẏd, · · · , y

(n−1)
d ]T

are measurable and bounded and y
(n−1)
d denotes the (n−1)-

th derivative of yd with respect to time.
Let x̂ = [x̂1, x̂2, · · · , x̂n]T ∈ Rn be the estimation of the

system state vector. Define error vector e, estimation error
vector ê, and observation error ẽ, respectively as

e = x− Yd = [e1, e2, · · · , en]T

ê = x̂− Yd = [ê1, ê2, · · · , ên]T

ẽ = e− ê = [ẽ1, ẽ2, · · · , ẽn]T. (2)

The filtered tracking error es, estimation error ês, and
observation error ẽs are defined respectively as

es =

(
d

dt
+ λ

)n−1

e1 = [ΛT
1 1]e (3)

ês =

(
d

dt
+ λ

)n−1

ê1 = [ΛT
2 1]ê (4)

ẽs =

(
d

dt
+ λ

)n−1

ẽ1 = [ΛT
3 1]ẽ (5)

where Λi = [λn−1
i , λn−2

i , · · · , λi]
T, i = 1, 2, 3, and λi > 0

are positive constants which can be specified by the de-
signer.

The control objective is to design an observer-based
adaptive fuzzy tracking controller for system (1) such that
the system output y tracks a desired reference signal yd

while all the signals in the closed-loop system remain
bounded.

Remark 1. As stated in [21], equality (4) has the follow-
ing properties: 1) When ês = 0, it defines a time-varying
hyperplane in Rn on which the estimated tracking error ê1

converges to zero eventually. 2) When ês is bounded, the
estimated tracking error vector ês is also bounded. These
properties are helpful for stability analysis.

We have the following assumptions for the system′s sig-
nals, unknown functions and reference signals.

Assumption 1. The desired trajectory vector ȳd given
by ȳd = [Y T

d , y
(n)
d ]T ∈ Ωd ⊂ Rn+1 with Ωd being a known

compact set is continuous and available.
Assumption 2. The unknown time delay is bounded by

a known constant, i.e., τ i 6 τmax, i = 1, 2, · · ·, n.

The fuzzy system considered in this paper has
center-average defuzzifier, product inference and singleton
fuzzifier[21]. This type of fuzzy logic system is given by

q(x) =

M∑
`=1

q̄`
n∏

i=1

µF `
i
xi

M∑
`=1

n∏
i=1

µF `
i
xi

(6)

where M is the number of IF-THEN rules in the fuzzy rule
base. The IF-THEN rules take the following form for ` =
1, 2, · · · , M :

R`: If x1 is F `
i and x2 is F `

2 and · · · xn is F `
n, then q is

G`, where F `
i and G` are the fuzzy sets with membership

functions µF `
i

and µG` , respectively, and q is the linguistic

variable which can be considered as output of the fuzzy
logic system.

Parameter q̄` is the point at which µG`(q̄` ) achieves its
maximum value and we assume that

µG`(q̄
` ) = 1. (7)

Equality (6) can be rewritten as

q(x) = ψTζ(x) (8)

where ψ = [ψ1, ψ2, · · · , ψM ]T is a parameter vector, and
ζ(x) = [ζ1(x), ζ2(x), · · · , ζM (x)]T is a regressive vector with
regressor ζ`(x), which is defined as a fuzzy basis function
(FBF) of the form

ζ`(x) =

n∏
i=1

µF `
i
xi

M∑
`=1

n∏
i=1

µF `
i
xi

. (9)

Two main reasons arise for using the fuzzy system (6) as
the basic building block of adaptive fuzzy controllers. First,
the fuzzy systems in the form of (6) were proven in [22] to be
universal approximators, i.e., for any given real continuous
function f on a compact set U , there exists a fuzzy system
(6) such that it can uniformly approximate f over U to any
arbitrary accuracy. Therefore, the fuzzy systems (6) are
qualified for modeling nonlinear systems. Second, the fuzzy
systems (6) are constructed from the fuzzy IF-THEN rules
of (7) using some specific fuzzy inference, fuzzification, and
defuzzification strategies. Therefore, linguistic information
from a human expert can be directly incorporated into the
controller.

3 Observer-based adaptive fuzzy con-
trol

In this section, the observer-based adaptive fuzzy con-
troller is designed and the boundedness of the closed-loop
signal is proved. The observer proposed in this paper takes
the following form[4]:

{
˙̂xi = x̂i+1 + ki(x1 − x̂1), i = 1, 2, · · · , n− 1
˙̂xn = g(x̂)u(t) + f(x̂) + kn(x1 − x̂ 1)

(10)
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where parameters ki(i ∈ [1, · · · , n]) are the observer gains,
which are selected to make sure that the characteristic poly-
nomial sn + knsn−1 + kn−1s

n−2 + · · ·+ k1 = 0 is Hurwitz.
Assumption 3. For 1 6 i 6 n, the signs of g(x̂) are

known, and there exist unknown positive constants b and c
such that 0 < b 6 |g(x̂)| 6 c < ∞, ∀x ∈ Ri. Without loss
of generality, it is assumed that g(x̂) > b > 0.

Remark 2. It should be emphasized that bounds b and
c are only required for analytical purposes, their true val-
ues are not necessarily known since they are not used for
controller design.

Assumption 4. The unknown functions f(·), i =
1, 2, · · · , n can be expressed as a fuzzy logic system of the
form (8), i.e.,

f(x̂) = f(x̂ |θf ) = θT
f ζ(x̂) (11)

where θT
f is the estimation of the unknown parameter vector

and ζ(x̂) is the associated fuzzy basis function.
From (1) and (3), we obtain

ės = f(x) + g(x)u(t) + h(x(t− τx) + v1 (12)

where v1 = [0 ΛT
1 ]e− y

(n)
d .

From (4) and (10), we also obtain

˙̂es = θT
f ζ(x̂) + g(x̂)u + v2 (13)

where v2 = [0 ΛT
2 ]ê− y

(n)
d + kne1.

Subtracting (13) from (12) yields

˙̃es = (f(x)− f(x̂) + (g(x)− g(x̂))u+

(v1 − v2) + hn(x(t− τ)).
(14)

Define the minimum approximation error as

w = (f(x)− f(x̂)) + (g(x)− g(x̂))u. (15)

Equality (14) can be rewritten as

˙̃̇es = v3 + w + hn(x(t− τ)) (16)

where v3 = v1 − v2.
If the smooth function is chosen as

Ves =
1

2
(ê2

s + ẽ2
s) (17)

then its time derivative along (13) and (14) is given by
.

V
es

= ês(g(x̂)u + θT
f ζ(x̂) + v2)+

ẽs(v3 + w + hn(x(t− τ))).
(18)

By the triangular inequality, we have

ẽshn(x(t− τn)) 6 ẽ2
s

2
+

h2
n(x(t− τ))

2
. (19)

Substituting (19) into (18) yields
.

V
es

6 ês(g(x̂)u + θT
f ζ(x̂) + v2)+

ẽs(v3 + w +
ẽs

2
) +

h2
n(x(t− τ))

2
.

(20)

In order to facilitate the procedure in the presence of
the unknown time-delay, the following Lyapunov-Krasovskii
functional is considered:

VU =
1

2

∫ t

t−τn

h2
n(x(τ))dτ . (21)

Then it follows from (20) and (21) that

.

V
es

+
.

V
U

6 ês(g(x̂)u + θT
f ζ(x̂) + L(Z)) (22)

where

L(Z) = v2 +
h2

n(x)

2ês
+

ẽs

ês

(
v3 + w +

ẽs

2

)
(23)

with Z = [x̂T, yT
d ]T ∈ ΩZ ⊂ R2n+1 and ΩZ being a com-

pact set. Because of containing unknown function h(x(t)),
the last two terms in (23) cannot be used directly to con-
struct the control law u. In addition, the last two terms in
(23) cannot be approximated by the fuzzy logic system be-
cause it is not well-defined when ês = 0. To make the fuzzy
approximation efficient, as done in [14], we define compact
sets Ω0

Z and ΩCs ⊂ ΩZ as

Ω0
Z = ΩZ − ΩCs (24)

ΩCs = {ês : |ês| < Cs} ⊂ ΩZ (25)

where Cs is a positive design constant that can be chosen
arbitrarily small and the sign “–” in (24) denotes the com-
plement of set ΩCs in set ΩZ . Moreover, it has been proven
that Ω0

Z is a compact set on which the unknown function
L(Z) is continuous. Therefore, the fuzzy logic system (8)
can be used to approximate L(Z) over the compact set Ω0

Z

such that
L(Z) = θ̂T

L ζ(Z) + δ(Z) (26)

where δ(Z) is the approximation error and satisfies |δ(Z)| 6
ε with ε being an arbitrarily small constant. ¤

4 Main results

In this section, the boundedness of the closed-loop signals
is proved using the Lyapunov function approach.

Theorem 1. For the nonlinear system (1), if the adap-
tive fuzzy control is chosen as

u =





−α1 ês − θ̂T
f ζ(x̂)− θ̂T

Lζ(Z)− ês

2
, ês ∈ Ω0

Z

0, ês ∈ ΩCs

(27)
where α1 > 0 is any positive constant, and the parameters
are updated by

˙̂
θf =

{
γ1ζ(x̂)ês, ês ∈ Ω0

Z

0, ês ∈ ΩCs

(28)

˙̂
θL =

{
γ2ζ(Z)ês, ês ∈ Ω0

Z

0, ês ∈ ΩCs

(29)

where γ1 and γ2 are positive design parameters, then for
any initial conditions Z(0), θ̂fn(0) and θ̂L(0), all the signals
in the closed-loop system are bounded, and the estimated
tracking error ês will stay in the compact set ΩCs finally.

Proof. To show that Ω0
Z is a domain of attraction, we

first find a Lyapunov function candidate V (t) > 0 such
that V̇ (t) 6 0, ∀ ês /∈ Ω0

Z . For ês /∈ Ω0
Z , let us consider the

following Lyapunov function candidate:

V = Ves + VU +
r1

2γ1
θ̃T

f θ̃f +
r2

2γ2
θ̃T

L θ̃T
L (30)
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where r1 and r2 are positive constants, θ̃f = θ̂f − θ∗f , and

θ̃L = θ̂L − θ∗L, where the “*” denotes the optimal estima-
tions.

Assumption 5. The optimal estimations θ∗f and θ∗L of
the parameters of θf and θL are assumed to have the forms
‖θf

∗‖ = α ‖θf‖ and ‖θL
∗‖ = β ‖θL‖, where α and β are

arbitrary constants.
The time derivative of (30) is given by

V̇ = V̇es + V̇U +
r1

γ1
θ̃T

f
˙̂
θf +

r2

γ2
θ̃T

L
˙̂
θT

L . (31)

Now, using (22), (28) and (29), we get
.

V 6 êsg(x̂)u(t) + êsθ̂
T
f ζ(x̂) + êsθ̂

T
Lζ(Z)+

êsδ(Z) + r1θ̃
T
f êsζ(x̂) + r2θ̃

T
1 êsζ(Z).

(32)

Using Assumption 2 and the following triangular inequal-
ity

êsδ(Z) 6 bê2
s

2
+

ε2

2b
(33)

it can be easily verified that
.

V 6 −α1 bê2
s − bêsθ̂

T
f ζ(x̂)− bêsθ̂

T
Lζ(Z)−

bê2
s

2
+

ε2

2b
+ êsθ̂

T
f ζ(x̂) + êsθ̂

T
Lζ(Z)+

r1(θ̂
T
f −

∗
θ

T
f )êsζ(x̂) + r2(θ̂

T
1 −

∗
θ

T
1 )êsζ(Z) (34)

where the control law (27) has been substituted in (34).
Equality (34) can be reduced to

.

V 6 −α1 bê2
s +

ε2

2b
+

(
r1 − b + 1

r1
θ̂T

fn
− ∗

θ
T
f

)
r1êsζ(x̂)+

(
r2 − b + 1

r2
θ̂T

L −
∗
θ

T
L

)
r2êsζ(Z).

(35)
By using Assumption 5, (35) becomes

.

V 6 −α1 bê2
s +

ε2

2b
. (36)

As ε is a small positive constant representing the approx-
imation error in L(Z), we conclude that V (t) is a Lyapunov
function. Therefore, ês(t), x̂1(t), θ̂T

f and θ̂T
L are bounded.

In addition, the domain Ω0
Z is attractive in the sense that

ês will be driven to Ω0
Z in a finite time, and then afterwards

stays within it. For ês ∈ ΩCs since ê1 = x̂1 − yd,
˙̂
θf = 0,

and
˙̂
θL = 0, x̂1 is bounded, θ̂T

f and θ̂T
L are kept unchanged

in bounded values. We can readily conclude that the track-
ing error ês ∈ ΩCswhile all the other closed-loop signals are
bounded.

5 Simulation results

In this section, we demonstrate the effectiveness of the
proposed adaptive fuzzy control algorithm using the follow-
ing illustrative example.

Example 1. To demonstrate the effectiveness of the
proposed scheme, we consider the following second-order
nonlinear time-delay system[14]:

ẋ1 = x2

ẋ2 = x1 − 0.3 sin(x1x2) + (2 + cos(x1))u + h(x(t− τ))

y = x1 (37)

where x1and x2 denote the state variables, u is the system
control input, y is the system output, the time-delay term
is h(x(t − τ)) = 2x1(t − τ)x2(t − τ). In this example, we
choose τ = 2 with the bound τmax = 2 and the desired
reference signal as yd = 0.5(sin(t) + sin(0.5t)).

The designed observer takes the following form:

˙̂x1 = x̂2 + k1(x1 − x̂1)

˙̂x2 = x1 − 0.3 sin(x1x̂2) + (2 + cos(x1))u+

k2(x1 − x̂1). (38)

The control objective is to design an adaptive fuzzy track-
ing controller for system (37) such that the system output y
tracks the desired reference signal yd while all the signals in
the closed loop system remain bounded. Vector Z is defined
as Z = [x1, x̂2, yd, ẏd, ÿd]T.

Seven Gaussian membership functions with cen-
ters evenly spaced between [−1.5, 1.5] for variables
x1, x̂2, yd, ẏd and ÿd are chosen as

µF1
i

= e
−0.5(Zi+1.5)2

4

µF2
i

= e
−0.5(Zi+1)2

4

µF3
i

= e
−0.5(Zi+0.5)2

4

µF4
i

= e
−0.5Z2

i
4

µF5
i

= e
−0.5(Zi−0.5)2

4

µF6
i

= e
−0.5(Zi−1)2

4

µF7
i

= e
−0.5(Zi−1.5)2

4 for i = 1, 2, 3, 4, 5. (39)

For the nonlinear system, seven fuzzy rules in the follow-
ing format are employed.

R` : If x1 is F `
1 and x̂2 is F `

2 and yd is F `
3

and
.

yd is F `
4 and

..
yd is F `

5 ,

then y is G`, ` = 1, 2, · · · , 7.

(40)

Denoting D1 =
7∑

`=1

2∏
i=1

µF `
i
x̂i and D2 =

7∑
`=1

5∏
i=1

µF `
i
Zi,

we can then write the FBFs which are used to generate
approximations for both fi(x̄i) and L(Z) as

ζ(xi) =




2∏
i=1

µF1
i
(x̂i)

D1
, · · · ,

5∏
i=1

µF7
i
(x̂i)

D1




T

(41)

ζ(Zi) =




5∏
i=1

µF1
i
(Zi)

D2
, · · · ,

5∏
i=1

µF7
i
(Zi)

D2




T

. (42)

Let k1=10, k2=5, α1 = 25, γ1 = γ2 = 0.1, λi = 5, Cs

= 1 × 10−4, the initial conditions be [x1, x̂2]
T = [0.5, 0]T

and θ̂f2 = θ̂L = 0.
Simulation results are shown in Figs. 1–3, respectively.

Fig. 1 shows the system states x1 and x2 and their estima-
tions x̂1 and x̂2. Fig. 2 shows the system output y and
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the reference signal yd. From Fig. 2, we can see that the
good tracking performance has been achieved. Fig. 3 shows
the control input signal u. From the simulation results, it
can be seen that the proposed controller not only guaran-
tees the boundedness of all the signals in the closed-loop
system, but also achieves the good tracking performance.

Fig. 1 System states and their estimations

Fig. 2 System output y and its trajectory yd

Fig. 3 Control input u

6 Conclusions

Observer-based adaptive fuzzy control has been devel-
oped for a class of nonlinear systems with unknown time-
delays. Since the state variables of nonlinear systems are
assumed to be unknown, the state observer is first de-
signed to estimate state variables, via which fuzzy control
schemes and the Lyapunov-Krasovskii functional are formu-
lated. Based on the Lyapunov stability theorem, it is rig-
orously proved that the stability of the closed-loop system
is assured and the tracking performance is achieved. The
proposed control scheme guarantees the semi-global bound-
edness of all the signals in the closed-loop system and the
good tracking performance. Moreover, the suggested adap-
tive fuzzy controller contains only one adaptive parameter.

This makes our design scheme easier to be implemented
in practical applications. Simulation results show that the
overall control system guarantees that all involved signals
are uniformly ultimately bounded, and the tracking perfor-
mance index is achieved.

Acknowledgement

The authors would like to thank the editors and the
anonymous reviewers for their inspiring encouragement and
constructive comments, which have contributed much to the
improvement of the clarity and presentation of this paper.
The first author acknowledges the support of Sultan Qaboos
University.

References

[1] X. Sun, Q. L. Zhang, C. Y. Yang, Z. Su, Y. Y. Shao. An im-
proved approach to delay-dependent robust stabilization for
uncertain singular time-delay systems. International Jour-
nal of Automation and Computing, vol. 7, no. 2, pp. 205–
212, 2010.

[2] Y. He, Q. G. Wang, C. Lin, M. Wu. Delay-range-dependent
stability for systems with time-varying delay. Automatica,
vol. 43, no. 2, pp. 371–376, 2007.

[3] S. Y. Xu, J. Lamb, Y. Zou. New results on delay-dependent
robust H∞ control for systems with time-varying delays.
Automatica, vol. 42, no. 2, pp. 343–348, 2006.

[4] C. C. Hua, X. P. Guan, P. Shi. Robust backstepping control
for a class of time delayed systems. IEEE Transactions on
Automatic Control, vol. 50, no. 6, pp. 894–899, 2005.

[5] N. Chaibi, E. H. Tissir, A. Hmamed. Delay dependent ro-
bust stability of singular systems with additive time-varying
delays. International Journal of Automation and Comput-
ing, vol. 10, no. 1, pp. 85–90, 2013.

[6] S. S. Ge, F. Hong, T. H. Lee. Robust adaptive control of
nonlinear systems with unknown time delays. Automatica,
vol. 41, no. 7, pp. 1181–1190, 2005.

[7] X. H. Jiao, J. Yang, Q. Li. Adaptive control for a class
of nonlinear systems with time-varying delays in state and
input. Journal of Control Theory and Applications, vol. 9,
no. 2, pp. 183–188, 2011.

[8] Y. Y. Cao, Y. X. Sun. Robust stabilization of uncertain
systems with time-varying multistate delay. IEEE Transac-
tions on Automatic Control, vol. 43, no. 10, pp. 1484–1488,
1998.

[9] M. Wu, Y. He, J. H. She. Stability Analysis and Robust
Control of Time-delay Systems, New York, USA: Springer-
Verlag, 2010.

[10] W. S. Chen, L. C. Jiao, J. Li, R. H. Li. Adaptive NN
backstepping output-feedback control for stochastic nonlin-
ear strict-feedback systems with time-varying delays. IEEE
Transactions on Systems, Man, and Cybernetics – Part B:
Cybernetics, vol. 40, no. 3, pp. 939–950, 2010.

[11] F. Hong, S. S. Ge, T. H. Lee. Practical adaptive neural con-
trol of nonlinear systems with unknown time delays. IEEE
Transaction on Systems, Man, and Cybernetics – Part B:
Cybernetics, vol. 35, no. 4, pp. 849–854, 2005.

[12] D. W. C. Ho, J. M. Li, Y. G. Niu. Adaptive neural con-
trol for a class of nonlinearly parametric time-delay sys-
tems. IEEE Transactions on Neural Networks, vol. 16, no. 3,
pp. 625–635, 2005.



280 International Journal of Automation and Computing 10(4), August 2013

[13] M. Wang, X. P. Liu, P. Shi. Adaptive neural control of pure-
feedback nonlinear time-delay systems via dynamic surface
technique. IEEE Transactions on Systems, Man, and Cy-
bernetics – Part B: Cybernetics, vol. 41, no. 6, pp. 1681–
1692, 2011.

[14] M. Wang, X. L. Li, S. Y. Zhang. Adaptive fuzzy control of
nonlinear time-delay systems. In Proceedings of the Chinese
Control and Decision Conference, IEEE, Yantai, China,
pp. 4722–4727, 2008.

[15] M. Hamdy, G. El-Ghazaly, M. Ibrahim. Adaptive mam-
dani fuzzy backstepping control for a class of strict-feedback
nonlinear time-varying delay systems. Time Delay Systems,
vol. 9, no. 1, pp. 229–234, 2010.

[16] H. Yousef, M. Hamdy. Adaptive Mamdani fuzzy control for
a class of nonlinear time-delays systems. In Proceedings of
the International Conference on Computer Engineering &
Systems, IEEE, Cairo, Egypt, pp. 121–126, 2009.

[17] W. S. Chen, Z. Q. Zhang. Globally stable adaptive back-
stepping fuzzy control for output-feedback systems with un-
known high-frequency gain sign. Fuzzy Sets and Systems,
vol. 161, no. 6, pp. 821–836, 2010.

[18] H. A. Yousef, M. Hamdy, M. Shafiq. Adaptive fuzzy-based
tracking control for a class of strict-feedback SISO non-
linear time-delay systems without backstepping. Interna-
tional Journal of Uncertainty, Fuzziness and Knowledge-
Based Systems, vol. 20, no. 3, pp. 339–353, 2012.

[19] S. C. Tong, Y. Li, Y. M. Li, Y. J. Liu. Observer-based adap-
tive fuzzy backstepping control for a class of stochastic non-
linear strict-feedback systems. IEEE Transactions on Sys-
tems, Man, and Cybernetics – Part B: Cybernetics, vol. 41,
no. 6, pp. 1693–1704, 2011.

[20] M. Hamdy. State observer based dynamic fuzzy logic system
for a class of SISO nonlinear systems. International Journal
of Automation and Computing, vol. 10, no. 2, pp. 118–124,
2013.

[21] S. S. Ge, C. C. Hang, T. Zhang. A direct adaptive controller
for dynamic systems with a class of nonlinear parameteri-
zations. Automatica, vol. 35, no. 4, pp. 741–747, 1999.

[22] L. X. Wang. Adaptive Fuzzy Systems and Control: Design
and Stability Analysis, Englewood Cliffs, NJ: Prentice-Hall,
1994.

Hassan A. Yousef received the B. Sc.
and M. Sc. degrees in electrical engineer-
ing from Alexandria University, Egypt, and
the Ph.D. degree in electrical engineer-
ing from University of Pittsburgh, USA in
1979, 1983 and 1989, respectively. He is
currently a professor with Department of
Electrical and Computer Engineering, Col-
lege of Engineering, Sultan Qaboos Univer-
sity, Sultanate of Oman.

His research interests include intelligent and adaptive control,
fuzzy control applications to electrical drive systems, large scale
systems, and nonlinear control.

E-mail: hyousef@squ.edu.om

Mohamed Hamdy received the B. Sc.,
M. Sc. and Ph. D. degrees in automatic con-
trol engineering from Menofia University,
Egypt in 1995, 2002 and 2007, respec-
tively. He is currently an assistant profes-
sor with Industrial Electronics and Control
Engineering Department, Faculty of Elec-
tronic Engineering, Menof, Menofia Univer-
sity, Egypt.

His research interests include adaptive
control, intelligent control systems, large scale systems, and non-
linear control systems.

E-mail: mohamed.elsayed@el-eng.menofia.edu.eg.com (Corre-
sponding author)


