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Abstract: In this paper, through constructing some novel Lyapunov-Krasovskii functional (LKF) terms and using some effective
techniques, two sufficient conditions are derived to guarantee a class of discrete-time time-delay systems with distributed delay to be
asymptotically and robustly stable, in which the linear fractional uncertainties are involved and the information on the time-delays is
fully utilized. By employing the improved reciprocal convex technique, some important terms can be reconsidered when estimating
the time difference of LKF, and the criteria can be presented in terms of linear matrix inequalities (LMIs). Especially, these derived
conditions heavily depend on the information of time-delay of addressed systems. Finally, three numerical examples demonstrate that
our methods can reduce the conservatism more efficiently than some existing ones.
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1 Introduction

Since Lyapunov functional approach presented some sim-
ple and delay-independent results, the Lyapunov-Krasovskii
functional (LKF) one has been widely utilized, and its
analyzing procedure could fully utilize the information of
time-delay system. Thus for the past decades, the delay-
dependent stability has become a topic of primary signifi-
cance, in which the main purpose is to derive the maximum
allowable upper bound (MAUB) on time-delay, such that
the addressed systems keep to be convergent in different
ways[1−22].

Meanwhile, in order to implement the continuous-time
system for simulation or computation, it is important to
formulate discrete-time systems which are the analogues of
the continuous-time systems. The discrete-time models are
usually obtained from the continuous-time ones by using a
discretization technique. Ideally, the discrete-time analogue
should inherit the dynamical behaviors of the continuous-
time models and maintain the functional similarity to
continuous-time models. Unfortunately, the discretization
cannot always preserve the dynamics of the continuous-time
counterpart even for a small sampling period[23]. Thus,
many elegant results have been reported to study the sta-
bility for various discrete-time time-delay systems[9−22]. In
[9, 10], by using finite sum inequality approach, the sta-
bility was studied for discrete-time delay systems, and the
delayed controller design was also presented based on lin-
ear matrix inequality (LMI) technique. Some researchers
have also investigated the robust stability for the systems
with uncertain parameters[11−13]. At the same time, to aim
additive time-varying delays, some LMI results have been
derived for discrete-time systems[14, 15]. Especially, Zhao et
al. have discussed the global stability for the discrete-time
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networked control system[16], descriptor system[17], Lur′e
system[18], and neural networks[22]. Recently, by utiliz-
ing some developed techniques such as reciprocal convex
technique, some less conservative results have been given,
as compared with these previous ones[19, 20]. Furthermore,
since the delay-partitioning idea is efficient in reducing the
conservatism, this idea and improved one were also used
to study the stability for discrete-time systems, and the
conservatism can be greatly reduced by thinning the delay
intervals[21, 22].

Though those aforementioned results were elegant, there
still exist some points waiting for improvements. Firstly,
those constructions of LKF and utilized techniques still
need some improvement since they cannot employ the
whole information of the addressed systems. Secondly,
as for τ(t) ∈ [0, τm] in the continuous time-delay sys-

tem, the LKF term
τ2

m
2

∫ 0

−τm

∫ 0

θ

∫ t

t+ν
ẋT(s)Qẋ(s)dsdνdθ was

first chosen and played an important role in reducing the
conservatism[7]. Yet, some important terms have been ig-
nored when estimating its upper bound on its time deriva-
tive. Thus, some better methods should be employed to
deal with this problem. Especially, few works have extended
this LKF term to the discrete-time time-delay system.

In this paper, we will study the robust stability for a
class of discrete-time time-delay systems, in which the lin-
ear fractional uncertainties and the distributed delay are in-
volved. Through constructing a novel Lyapunov-Krasovskii
functional and utilizing some elegant techniques, two novel
conditions are presented in terms of LMIs, and the feasibil-
ity can be easily checked. Finally, numerical examples show
that the proposed ideas are less conservative.

Notations. In denotes an n × n identity matrix and
0m×n means an m× n zero matrix.

2 Problem formulations

In this paper, we consider the uncertain discrete-time
time-delay system described by
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x(k + 1) = A(k)x(k) + B(k)x(k − τ(k)) +

D(k)×
+∞∑
i=1

δ(i)x(k − i) (1)

x(k) = φ(k), k = −τm,−τm + 1, · · · , 0 (2)

for k = 1, 2, · · · , where x(k) = [x1(k), · · · , xn(k)]T ∈ Rn is
the system state vector, A(k) = A + ∆A(k), B(k) = B +
∆B(k), D(k) = D + ∆D(k) are the time-variant matrices
of appropriate dimensions, and φ(k) is the initial condition
of system (1).

The following assumptions are made for system (1)
throughout the paper.

Assumption 1. The time-varying delay τ(k) satisfies

τ0 6 (k) 6 τm (3)

where τ0 and τm are known positive integers. Here, we
denote τ̄m = τm − τ0.

Assumption 2. There exists a constant scalar ξ > 0
such that function δ(i) satisfies

∑+∞
i=1 δ(i) = ξ < +∞.

Assumption 3. ∆A(k), ∆B(k), and ∆D(k) represent
the time-varying parameter uncertainties, and are assumed
to satisfy the following linear fractional forms:

[∆A(k) ∆B(k) ∆D(k)] = F∆(k) [Ea Eb Ed] (4)

∆(k) = Λ(k)(I − JΛ(k))−1, I − JTJ > 0 (5)

where F, J, Ea, Eb, Ed are known constant matrices of
the appropriate dimensions, and Λ(k) is an unknown time-
varying matrix function satisfying ΛT(k)Λ(k) 6 I.

Remark 1. From Assumption 3, it is easy to check that
the structured linear fraction in (5) includes the widely used
norm-bounded uncertainty as its special case when J = 0.

3 Delay-dependent stability results

Firstly, denoting y(k) = x(k+1)−x(k), we can represent
the nominal system of (1) as the following form:

x(k + 1) = Ax(k) + Bx(k − τ(k))+

D

+∞∑
i=1

δ(i)x(k − i). (6)

In what follows, some lemmas are introduced to help de-
rive our main results.

Lemma 1.[9] Let M ∈ Rn×n be a positive-definite ma-
trix, Xi ∈ Rn, ai > 0 (i = 1, 2, · · · ). If the sums concerned
are well defined, then

[
+∞∑
i=1

aiXi

]T

M

[
+∞∑
i=1

aiXi

]
6

[
+∞∑
i=1

ai

]
+∞∑
i=1

aiX
T
i MXi




−1∑
i=−N

k−1∑

i=k+j

Xj




T

M




−1∑
i=−N

k−1∑

i=k+j

Xj


 6

N2

2

−1∑
i=−N

k−1∑

i=k+j

XT
j MXj .

Lemma 2.[20] For vectors ζ1 and ζ2, given constant ma-
trices R, S, and real scalars α > 0, β > 0 satisfying that[

R S

∗ R

]
> 0 and α + β = 1, the following inequality

holds:

− 1

α
ζT
1 Rζ1 − 1

β
ζT
2 Rζ2 6 −

[
ζ1

ζ2

]T [
R S

∗ R

] [
ζ1

ζ2

]
.

Lemma 3.[22] If Ω, Ξ1, and Ξ2 are the constant ma-
trices of appropriate dimensions, α ∈ [0, 1], then Ω +
[αΞ1 + (1− α)Ξ2] < 0 holds, if the inequalities Ω + Ξ1 < 0
and Ω + Ξ2 < 0 hold simultaneously.

Lemma 4.[20] For the symmetric appropriate dimen-
sional matrices R > 0, Ξ, matrix Γ, the following two state-
ments are equivalent: 1) Ξ − ΓTRΓ < 0; 2) there exists a
matrix of appropriate dimension Λ such that

[
Ξ + ΓTΛ + ΛTΓ ΛT

∗ −R

]
< 0.

Lemma 5.[22] Let I −GTG > 0, and define the set Υ ={
∆(t) = Σ(t)[I −GΣ(t)]−1, ΣT(t)Σ(t) 6 I

}
. For given ma-

trices H, Q, R and symmetrical matrix H, H + Q∆(t)R +
RT∆T(t)QT < 0, if and only if there exists a scalar ρ > 0

such that H +

[
ρ−1R

ρQT

]T [
I −G

−GT I

]−1 [
ρ−1R

ρQT

]
<

0.
Theorem 1. For positive integers 0 6 τ0 6 τm, the

origin of discrete-time system (6) is asymptotically sta-
ble, if there exist 9n × n matrices Πi (i = 1, 2) mak-

ing Π =
[

Π1 Π2

]
, n × n matrices P > 0, Pi > 0

(i = 1, 2, 3, 4, 5), Qj > 0, Rj > 0 (j = 4, 5), Q > 0, R > 0,

T > 0, S, X5, Y5, V5, Z5, N1, N2 making

[
P4 H4

∗ Q4

]
> 0,




P5 H5 X5 Y5

∗ Q5 V5 Z5

∗ ∗ P5 H5

∗ ∗ ∗ Q5


 > 0,

[
R S

∗ R

]
> 0, such that

the LMIs in (7) and (8) hold.




Ω + ΥT
1 ΠT + ΠΥ1 Π1 Π2

∗ −R −S

∗ ∗ −R


 < 0 (7)




Ω + ΥT
2 ΠT + ΠΥ2 Π1 Π2

∗ −R −S

∗ ∗ −R


 < 0 (8)

where

Υ1 =

[
τ̄mIn 0n×4n −In 0n×3n

0n 0n×5n −In 0n×2n

]

Υ2 =

[
0n 0n×4n −In 0n×3n

τ̄mIn 0n×5n −In 0n×2n

]
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Ω =



Ω11 R4 Ω13 0 Ω15 0 0 Ω18 Ω19

∗ Ω22 Ω23 Z5 QT
4 −QT

5 −Y T
5 0 0

∗ ∗ Ω33 Ω34 0 Ω36 Ω37 0 Ω39

∗ ∗ ∗ Ω44 0 V5 QT
5 0 0

∗ ∗ ∗ ∗ Ω55 0 0 0 0

∗ ∗ ∗ ∗ ∗ Ω66 XT
5 0 0

∗ ∗ ∗ ∗ ∗ ∗ Ω77 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ − 1
ξ

T
Ω89

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Ω99




with

Ω11 = NT
1 (A− In) + (A− In)TN1 + P1 −R4 − τ̄2

0 Q+

(τ̄m + 1)P3 + τ2
0 P4 + τ̄2

mP5 + ξT

Ω13 = NT
1 B

Ω15 = τ0Q−QT
4

Ω18 = NT
1 D

Ω19 = P −NT
1 + (A− In)TN2 + τ2

0 Q4 + τ̄2
mQ5

Ω22 = P2 − P1 −R4 −R5

Ω23 = R5 − ZT
5

Ω33 = −P3 − 2R5 + ZT
5 + Z5

Ω34 = R5 − ZT
5

Ω36 = QT
5 − V5

Ω37 = Y T
5 −QT

5

Ω39 = BTN2

Ω44 = −P2 −R5

Ω55 = −Q− P4

Ω66 = −P5

Ω77 = −P5

Ω89 = DTN2

Ω99 = −NT
2 −N2 + P + τ2

0 R4 + τ̄2
mR5+

τ4
0

4
Q +

(τ2
m − τ2

0 )2

4
R.

Proof. Firstly, together with Assumptions 1 and 2, we
can construct the Lyapunov-Krasovskii functional as

V (x(k)) = V1(x(k)) + V2(x(k)) + V3(x(k)) (9)

where

V1(x(k)) = xT(k)Px(k) +

k−1∑

i=k−τ0

xT(i)P1x(i)+

k−τ0−1∑

i=k−τm

xT(i)P2x(i) +

k−1∑

i=k−τ(k)

xT(i)P3x(i)+

k−τ0∑

i=k−τm+1

k−1∑
j=i

xT(i)P3x(i)

V2(x(k)) =
τ2
0

2

−1∑
i=−τ0

0∑
j=i

k−1∑

l=k+j

yT(l)Qy(l)+

τ2
m − τ2

0

2

−τ0−1∑
i=−τm

0∑
j=i

k−1∑

l=k+j

yT(l)Ry(l)

V3(x(k)) = τ0

−1∑
i=−τ0

k−1∑

j=k+i

η(j)TΦ4η(j)+

τ̄m

−τ0−1∑
i=−τm

k−1∑

j=k+i

η(j)TΦ5η(j)+

+∞∑
i=1

δ(i)

k−1∑

j=k−i

xT(j)Tx(j)

η(j) =

[
x(j)

y(j)

]

Φl =

[
Pl Ql

∗ Rl

]
, (l = 4, 5).

Through directly computing, we can obtain the time differ-
ence of Vi(x(k))(i = 1, 2) along the trajectories of system
(6) as

∆V1(x(k)) 62xT(k)Py(k) + yT(k)Py(k)+

xT(k) [P1 + (τ̄m + 1)P3] x(k)−
xT(k − τ0)(P1 − P2)x(k − τ0)−
xT(k − τm)P2x(k − τm)−
xT(k − τ(k))P3x(k − τ(k)) (10)

∆V2(x(k)) =yT(k)

[
τ4
0

4
Q +

(τ2
m − τ2

0 )2

4
R

]
y(k)−

τ2
0

2

−1∑
i=−τ0

k−1∑

i=k+j

yT(j)Qy(j)−

τ2
m − τ2

0

2

−τ0−1∑
i=−τm

k−1∑

i=k+j

yT(j)Ry(j). (11)

Based on Lemmas 1 and 2, we can derive two terms in
(11) satisfying

− τ2
0

2

−1∑
i=−τ0

k−1∑

i=k+j

yT(j)Qy(j) 6

−



−1∑
i=−τ0

k−1∑

i=k+j

y(j)




T

Q




−1∑
i=−τ0

k−1∑

i=k+j

y(j)


 =

−

τ0x(k)−

k−1∑

i=k−τ0

x(i)




T

Q


τ0x(k)−

k−1∑

i=k−τ0

x(i)




(12)

− τ2
m − τ2

0

2

−τ0−1∑
i=−τm

k−1∑

j=k+i

yT(j)Ry(j) =

− τ2
m − τ2

0

τ2(k)− τ2
0

τ2(k)− τ2
0

2

−τ0−1∑

i=−τ(k)

k−1∑

i=k+j

yT(j)Ry(j)−
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τ2
m − τ2

0

τ2
m − τ2(k)

τ2
m − τ2(k)

2

−τ(k)−1∑
i=−τm

k−1∑

i=k+j

yT(j)Ry(j) 6

−


−τ0−1∑

i=−τ(k)

k−1∑

i=k+j

y(j)




T

R



−τ0−1∑

i=−τ(k)

k−1∑

i=k+j

y(j)


−



−τ0−1∑

i=−τ(k)

k−1∑

i=k+j

y(j)




T

2S



−τ(k)−1∑
i=−τm

k−1∑

i=k+j

y(j)


−



−τ(k)−1∑
i=−τm

k−1∑

i=k+j

y(j)




T

R



−τ(k)−1∑
i=−τm

k−1∑

i=k+j

y(j)


 =

−

[τm − τ(k)]x(k)−

k−τ(k)−1∑

i=k−τm

x(i)




T

R×


[τm − τ(k)]x(k)−

k−τ(k)−1∑

i=k−τm

x(i)


−


[τ(k)− τ0]x(k)−

k−τ0−1∑

i=k−τ(k)

x(i)




T

2S×

[τm − τ(k)]x(k)−

k−τ(k)−1∑

i=k−τm

x(i)


−


[τ(k)− τ0]x(k)−

k−τ0−1∑

i=k−τ(k)

x(i)




T

R×

[τ(k)− τ0]x(k)−

k−τ0−1∑

i=k−τ(k)

x(i)


 =

− ξT(k)ΥT(k)

[
R S

∗ R

]
Υ(k)ξ(k) (13)

where

ξT(k) =

[
xT(k) xT(k − τ0) xT(k − τ(k)) xT(k − τm)×




k−1∑

j=k−τ0

x(j)




T 


k−τ0−1∑

j=k−τ(k)

x(j)




T

×




k−τ(k)−1∑

j=k−τm

x(j)




T [
+∞∑
i=1

δ(i)x(k − i)

]T

yT(k)

]

Υ(k) =

[
(τ(k)− τ0)In 0n×4n −In 0n×3n

(τm − τ(k))In 0n×5n −In 0n×2n

]
.

Furthermore, it follows from the conditions in Theorem 1,

Lemma 2, and
∑+∞

i=1 δ(i) = ξ that

∆V3(x(k)) 6
[

x(k)

y(k)

]T [
τ2
0 P4 τ2

0 Q4

∗ τ2
0 R4

] [
x(k)

y(k)

]
−




k−1∑
j=k−τ0

x(j)

x(k)− x(k − τ0)




T [
P4 Q4

∗ R4

]
×




k−1∑
j=k−τ0

x(j)

x(k)− x(k − τ0)


 +

[
x(k)

y(k)

]T [
τ̄2

mP5 τ̄2
mQ5

∗ τ̄2
mR5

] [
x(k)

y(k)

]
−




k−τ(k)−1∑
j=k−τm

x(j)

x(k − τ(k))− x(k − τm)




T [
P5 Q5

∗ R5

]
×




k−τ(k)−1∑
j=k−τm

x(j)

x(k − τ(k))− x(k − τm)


−




k−τ0−1∑
j=k−τ(k)

x(j)

x(k − τ0)− x(k − τ(k))




T [
P5 Q5

∗ R5

]
×




k−τ0−1∑
j=k−τ(k)

x(j)

x(k − τ0)− x(k − τ(k))


−




k−τ(k)−1∑
j=k−τm

x(j)

x(k − τ(k))− x(k − τm)




T [
2X5 2Y5

2V5 2Z5

]
×




k−τ0−1∑
j=k−τ(k)

x(j)

x(k − τ0)− x(k − τ(k))


 + xT(k)(ξT)x(k)−

[
+∞∑
i=1

δ(i)x(k − i)

]T
1

ξ

[
+∞∑
i=1

δ(i)x(k − i)

]
. (14)

Moreover, it follows from (6) and n×n matrices N1 and N2

that

0 =2 [N1x(k) + N2y(k)]T [−y(k) + (A− I)x(k)+

Bx(k − τ(k)) + D

+∞∑
i=1

δ(i)x(k − i)

]
. (15)

Now replacing the terms (12) and (13) into (11), and em-
ploying the right-hand sides in (10), (11), (14), (15) for
∆V (x(k)), we can deduce

∆V (x(k)) 6 ξT(k)

[
Ω−ΥT(k)

[
R S

∗ R

]
Υ(k)

]
ξ(k)

where Ω is presented in (7) and (8), Υ(k), and ξ(k) are
expressed in (13). The LMI results in (7) and (8) mean
the inequalities Ω + ΥT

i ΠT + ΠΥi < 0 for i = 1, 2. Then
utilizing Lemma 3, the terms Ω + ΥT

i ΠT + ΠΥi < 0 can
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guarantee

Ω + ΥT(k)ΠT + ΠΥ(k) < 0.

Now, the LMIs in (7) and (8) can make




Ω + ΥT(k)ΠT + ΠΥ(k) Π1 Π2

∗ −R −S

∗ ∗ −R


 < 0. (16)

Then together with Lemma 4, we can derive

Ω−ΥT(k)

[
R S

∗ R

]
Υ(k) < 0. (17)

Thus, there must exist a positive scalar χ > 0 such that

∆V (x(k)) 6 −χ‖x(k)‖2 < 0, ∀ x(t) 6= 0. (18)

Thus, it follows from Lyapunov-Krasovskii stability theo-
rem that system (6) is asymptotically stable. ¤

Remark 2. During the proof procedure in Theorem 1,
we can easily check that our LKF has fully included the in-
formation of system (6), and some mathematical techniques
were used in (13) and (16), which can reduce the conser-
vatism more efficiently than ever. Especially, the LKF term
V2(x(k)) in (9) was first put forward and the reciprocal con-
vex technique was used in (13) and (14), and one less con-
servative sufficient condition has been given in Theorem 1,
whose feasibility can be easily checked without tuning any
parameter by LMI in the Matlab toolbox.

In the following, through employing Lemma 5, Theorem 2
can be directly established for the robust stability of system
(1) based on Theorem 1.

Theorem 2. For positive integers 0 6 τ0 6 τm,
the origin of discrete-time time-delay system (1) and
(2) is robustly stable, if there exist two positive scalars
µ > 0, ν > 0, 9n × n matrices Πi (i = 1, 2) mak-

ing Π =
[

Π1 Π2

]
, n × n matrices P > 0, Pi > 0

(i = 1, 2, 3, 4, 5), Qj > 0, Rj > 0 (j = 4, 5), Q > 0, R >

0, T > 0, S, X5, Y5, V5, Z5, N1, N2 making
[

P4 H4

∗ Q4

]
> 0,




P5 H5 X5 Y5

∗ Q5 V5 Z5

∗ ∗ P5 H5

∗ ∗ ∗ Q5


 > 0,

[
R S

∗ R

]
> 0, such that the

LMIs in (18) and (19) hold.




Ω + ΥT
1 ΠT + ΠΥ1 Π1 Π2 µΦT Θ

∗ −R −S 0 0

∗ ∗ −R 0 0

∗ ∗ ∗ −µIn µJ

∗ ∗ ∗ ∗ −µIn




< 0

(19)



Ω + ΥT
2 ΠT + ΠΥ2 Π1 Π2 νΦT Θ

∗ −R −S 0 0

∗ ∗ −R 0 0

∗ ∗ ∗ −νIn νJ

∗ ∗ ∗ ∗ −νIn




< 0

(20)

where Ω, Υ1, and Υ2 are identical to the counterparts in
Theorem 1, and

Φ = [Ea 0n×n Eb 0n×5n Ed]

Θ =
[
FTN1 0n×7n FTN2

]T

.

Proof. Together with LMI results of Theorem 1, by
replacing A, B, and D in (7) and (8) with A + ∆A(k), B +
∆B(k), and D + ∆D(k) in (4), respectively, it follows from
Lemma 5 and Schur-complement that there must exist two
positive scalars ρ > 0 and υ > 0 such that




Ω + ΥT
1 ΠT + ΠΥ1 Π1 Π2

∗ −R −S

∗ ∗ −R


 +




ρ−1ΦT ρΘ

0 0

0 0


×

[
In −J

−JT In

]−1



ρ−1ΦT ρΘ

0 0

0 0




T

< 0 (21)




Ω + ΥT
2 ΠT + ΠΥ2 Π1 Π2

∗ −R −S

∗ ∗ −R


 +




υ−1ΦT υΘ

0 0

0 0


×

[
In −J

−JT In

]−1



υ−1ΦT υΘ

0 0

0 0




T

< 0. (22)

Then by utilizing the definition of Schur-complement, the
inequalities in (20) and (21) can be equivalent to the LMIs
in (18) and (19) through setting µ = ρ−2 and ν = υ−2. ¤

Remark 3. Based on [7], we can easily check that the
Lemma 1 in this work is stemmed from the continuous-time
counterpart. Park et al.[8] first utilized reciprocal convex
approach to tackle the continuous-time time-delay system
and it could reduce the conservatism more effectively than
some previous convex ones[1, 12, 15, 19, 22]. Yet, it has come
to our attention that the reciprocal convex one has not been
utilized to study the discrete-time time-delay system, which
has been fully addressed in our work.

Remark 4. Though in this work, some novel Lyapunov
functional terms are constructed, such as V2(x(k)) in (9),
and the effective techniques are employed during the proof
procedure, Theorems 1 and 2 are still rigorous and limited.
In recent years, the delay-partitioning idea and improved
ones have been widely used to further reduce the conser-
vatism in [21, 22], and they could be used in our work to
get better results. However, these techniques would add
significantly to the complexities of the proof and results.

Remark 5. It is worth pointing out that, though in (13),
we can estimate the time difference of V2(x(k)) efficiently,
the free-weighting matrix Π = [Π1 Π2] is also introduced in
(7), (8), (18) and (19), and will induce some computational
complexity when checking the theorems. Thus, we will give
some discussions on this point in future works. Moreover,
we can extend the derived idea to more general cases.

4 Numerical examples

In this section, three examples are used to demonstrate
the validity of the proposed methods.
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Example 1. We consider the discrete-time system of (6)
with the parameters as

A =

[
0.8 0

0.05 0.9

]
, B =

[
−0.1 0

−0.2 −0.1

]

which has been extensively studied[11, 12, 19, 20]. By using
Theorem 1 and LMI in Matlab toolbox, the aim of Example
1 is to find the maximum allowable upper bounds τmax with
various τ ′0s such that the system is asymptotically stable.
The computational results are shown in Table 1, which can
summarize the derived MAUBs. Table 1 also shows that
the stability criterion expressed in Theorem 1 can be less
conservative than the results proposed in [12, 19, 20].

Table 1 The maximum allowable upper bounds for various τ ′0s

in Example 1

Method
τ0

6 7 10 15 20

Theorem 1[12] 16 16 18 21 25

Proposition 2[19] 16 16 18 21 25

Proposition 1[19] 18 18 20 23 27

Theorem 3[20] 17 17 19 22 26

Theorem 1[20] 18 18 20 23 27

Theorem 1 18 19 21 24 28

Example 2. We consider the discrete-time system of (1)

x(k + 1) = A(k)x(k) + B(k)x(k − τ(k))

with the following parameters

A(k) =

[
0.8 + α(k) 0

0 0.9

]
, B(k) =

[
−0.1 0

−0.1 −0.1

]

which has been studied in [11−13]. If | α(k) |6 ᾱ, then

F =

[
α

0

]
, Ea =

[
1 0

]
, Eb =

[
0 0

]
, and J = 0.

Now, given τ0 and τm, we want to find the upper values
of ᾱ obtained by employing different techniques. It is clear
from Table 2 that Theorem 2 can be less conservative and
more applicable than the results in [12, 13].

Table 2 The upper bounds of ᾱ for interval [τ0, τm] in

Example 2

Method
τ0

[2, 7] [3, 9] [5, 10] [6, 12]

Theorem 4[12] 0.192 0.155 0.142 0.115

Theorem 2[13] 0.195 0.165 0.154 0.131

Theorem 2 0.205 0.172 0.161 0.138

Example 3. Consider a 2-dimensional discrete time-
delay system of (6) as

x(k + 1) = Ax(k) + Bx(k − τ(k)) + D
+∞∑
i=1

e−2ix(k − i)

with the following parameters

A =

[
0.4 0.1

0.2 0.4

]
, B =

[
0.4 0.2

0.1 0.2

]
, D =

[
−0.1 0.1

0.2 0.1

]
.

As for τ(t) = 24 + 4 cos(πk
2

), we have τ0 = 20 and τm =
28. Based on Theorem 1 and Matlab LMI toolbox, we can
easily verify that there exists the feasible solution to the
LMIs in (7) and (8) that the system is asymptotically stable,
which can also be further supported by Fig. 1 with the initial
condition x(0) = [0.5,−1]T.

Fig. 1 The state trajectories of the system

5 Conclusions

The paper has studied the robust stability for discrete-
time system with both interval time-varying and distributed
delays. Through choosing some novel Lyapunov-Krasovskii
functional terms, two obtained stability criteria with signifi-
cantly reduced conservatism have been established in terms
of LMIs. The proposed stability criteria benefit from the
improved convex technique. Finally, three numerical exam-
ples have been given to demonstrate the effectiveness of the
presented criteria and their improvement over some exist-
ing ones. Finally, it should be worth noting that the ideas
presented in the paper is applicable to many application
fields.
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