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Abstract: Type-1 fuzzy sets cannot fully handle the uncertainties. To overcome the problem, type-2 fuzzy sets have been proposed.

The novelty of this paper is using interval type-2 fuzzy logic controller (IT2FLC) to control a flexible-joint robot with voltage control

strategy. In order to take into account the whole robotic system including the dynamics of actuators and the robot manipulator, the

voltages of motors are used as inputs of the system. To highlight the capabilities of the control system, a flexible joint robot which

is highly nonlinear, heavily coupled and uncertain is used. In addition, to improve the control performance, the parameters of the

primary membership functions of IT2FLC are optimized using particle swarm optimization (PSO). A comparative study between the

proposed IT2FLC and type-1 fuzzy logic controller (T1FLC) is presented to better assess their respective performance in presence of

external disturbance and unmodelled dynamics. Stability analysis is presented and the effectiveness of the proposed control approach

is demonstrated by simulations using a two-link flexible-joint robot driven by permanent magnet direct current motors. Simulation

results show the superiority of the IT2FLC over the T1FLC in terms of accuracy, robustness and interpretability.
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1 Introduction

Electrically driven robots are efficiently used in various

applications. Because their motors provide low torque at

high speed, the robotic systems are equipped with power

transmission systems to provide high torque at low speed for

performing the tasks. However, deformation of the trans-

mission system produces flexibility in the joints. This phe-

nomenon is the main source of vibration in industrial robot

manipulators. Compared with rigid robots, the number of

degrees of freedom becomes twice as the number of control

actions due to flexibility in the joints, and the matching

property between nonlinearities and inputs is lost[1]. Per-

forming high-precision tasks by a flexible-joint robot seems

to be difficult since the link position cannot follow the ac-

tuator position directly. As a result, flexibility in joints

should be compensated to improve the performance and

avoid unwanted oscillations. However, controlling such sys-

tems still faces numerous challenges such as the severe non-

linearities, weak coupling, joint flexibility, varying operating

conditions, and wide range of uncertainties[2].

Over the years, researchers attempted various control

methods for flexible-joint manipulators including singular

perturbation theory[3], feedback linearization[4], adaptive

control[5], sliding mode control[6], robust control[7], fuzzy

control[8] and neural control[9]. The presented methods be-

long to the class of the commonly used control strategy,

which is called torque control strategy. The torque con-

trol strategy pays attention to dynamics of robot manipula-

tor. However, model of the flexible robot is so complicated,
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highly nonlinear, heavily coupled, computationally exten-

sive and uncertain. Thus, torque control approaches, par-

ticularly the model-based techniques, face the challenging

problems associated with manipulator dynamics[10]. It is

found that the voltage control strategy[11] is superior to the

torque-control strategy for the robust control of the rigid

manipulators[12] in terms of simplicity in the controller de-

sign and performance of the control system. Since flexibility

in the joints provides complex dynamics, the voltage con-

trol strategy is more efficient than the torque-control strat-

egy. Recently, robust control[10] and adaptive control[13] of

flexible-joint robots have been developed using the voltage

control strategy. In [14], a neural-network-based adaptive

controller has been proposed for the tracking problem of

manipulators with uncertain kinematics, dynamics and ac-

tuator model, using voltage control strategy.

On another aspect, tools of computational intelligence,

such as artificial neural networks and fuzzy logic controllers,

have been credited in various applications as powerful tools.

They can provide robust controllers for mathematically ill-

defined systems subjected to structured and unstructured

uncertainties[15]. Fuzzy control, as a model-free approach,

is simply designed for complicated systems that may be

difficult to model analytically[16, 17]. Type-1 fuzzy logic

control systems (T1FLC) are known for their ability to

compensate for structured and unstructured uncertainties

to a certain degree. Compared to T1FLC, type-2 fuzzy

logic control systems (T2FLC) have been credited to be

more powerful in compensating for even higher degrees of

uncertainties[18]. The concept of type-2 fuzzy set was in-

troduced by Zadeh in 1975 as an extension of the type-1
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fuzzy set[19]. Type-2 fuzzy sets are able to model such

uncertainties because their membership functions (MFs)

are fuzzy. MFs of type-1 fuzzy sets are two-dimensional,

whereas membership functions of type-2 fuzzy sets are

three-dimensional. The third dimension of type-2 fuzzy

sets provides an additional degree to model the uncertain-

ties directly[18]. In contrast, the performance of a T1FLC

may be improved by partitioning the input domains with a

larger number of fuzzy sets. Then, a trade-off between ac-

curacy, performance and interpretability is required[20]. A

larger number of MFs result in a bigger rule base that would

be harder for a human to interpret because of the curse

of dimensionality[21]. The IT2FLC is particularly suit-

able for time-variant systems with unknown time-varying

dynamics[22]. Though fuzzy control is the most widely used

application of fuzzy set theory, T2FLC have been used in

very few control applications, such as nonlinear control and

mobile robot navigation[22], decision making[23], and quality

control of sound speakers[24].

In order to obtain optimal performance of control sys-

tems, optimization algorithms, such as genetic algorithm

(GA) and particle swarm optimization (PSO), have been

frequently used[25]. The PSO was first introduced by

Kennedy and Eberhart in 1995[26]. Through the simula-

tion of a simplified social system, the behavior of PSO can

be treated as an optimization process. As compared with

other optimization algorithms like GA, the PSO requires

less computational time. Therefore, it has successfully been

applied to solve many optimization problems[25, 27].

This paper develops an interval T2FLC (IT2FLC) ap-

proach using voltage control strategy to control electri-

cally driven flexible-joint robot manipulators. The IT2FLC

is computationally cheaper and more efficient than

T2FLC[18].

The novelty is the design of IT2FLC using the voltage

control strategy and employing PSO to optimize control

design parameters. As a result, the control performance is

improved. Stability analysis is presented and the superior-

ity of the IT2FLC to T1FLC is shown in the presence of

uncertainties. This paper is organized as follows. Section

2 presents modeling of flexible-joint robots. Interval type-

2 fuzzy logic is briefly introduced in Section 3. Section 4

outlines the particle swarm optimization. The design of

the proposed controller is detailed in Section 5. Stability

analysis is presented in Section 6. Section 7 presents the

simulation results. Section 8 concludes the paper.

2 Electrically driven flexible-joint

robot dynamics

In a simplified model of the flexible-joint robot[7], the

manipulator links are assumed rigid and motors are elasti-

cally coupled to the links. The motor torques are assumed

as inputs of the robotic system. In this paper, the simpli-

fied model is applied on an electrically driven robot with

some modifications to obtain the motor voltages as the in-

puts. In this study, we consider a two-link manipulator[28]

as shown in Fig. 1 with revolute joints driven by geared

permanent magnet direct current motors. If the joint flex-

ibility is modeled by a linear torsional spring, the dynamic

equation of motion can be expressed as

D(θ)θ̈ + C(θ, θ̇)θ̇ + g(θ) + τf (θ̇) = K(rθm − θ) (1)

Jθ̈m + Bθ̇M + rK(rθm − θ) = τ (2)

where θ ∈ R2 is a vector of joint angles, and θm ∈ R2 is a

vector of rotor angles. Thus, this system possesses 4 coor-

dinates as [θ θm]. The matrix D(θ) is a 2×2 matrix of ma-

nipulator inertia, C(θ, θ̇)θ̇ ∈ R2 is the vector of centrifugal

and Coriolis forces, g(θ) ∈ R2 is a vector of gravitational

forces, τ ∈ R2 is a torque vector of motors, and τf (θ̇) is

the frictional torques. The diagonal matrices J, B and r

represent coefficients of the motor inertia, motor damping,

and reduction gear, respectively. The diagonal matrix K

represents the lumped flexibility provided by the joint and

reduction gear. To simplify the model, both the joint stiff-

ness and gear coefficients are assumed constant. The vector

of gravitational forces g(θ) is assumed the function of only

the joint positions as used in the simplified model[7]. Note

that the vector and matrix are represented in bold form for

clarity.

Fig. 1 An articulated two-link manipulator

The details are given in [28].

D(θ) =

[
d1 d2

d2 d3

]

C(θ, θ̇) =

[
−m2l1lc2 θ̇2 sin(θ2) −m2l1lc2(θ̇1 + θ̇2) sin(θ2)

m2l1lc2 θ̇1 sin(θ2) 0

]

G(θ) =

[
(m1lc1 + m2l1)gcos(θ1) + m2lc2gcos(θ1 + θ2)

m2lc2gcos(θ1 + θ2)

]

τf (θ̇) =

[
b1θ̇1 + c1sign(θ̇1)

b2θ̇1 + c2sign(θ̇1)

]
(3)
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where

d1 = m1lc1 + m2(l
2
1 + l2c1 + 2l1lc1cos(θ2)) + l1 + l2 (4)

d2 = m2(l
2
c1 + l1lc1cos(θ2)) + l2 (5)

d3 = m2l
2
c2 + l2 (6)

θi (i = 1, 2) denotes the joint angle, li is the link length,

mi is the link mass, Ii is the link′s moment of inertia given

with respect to center of mass, lci is the distance between

the center of mass of link, and the i-th joint bi(i = 1, 2) and

ci(i = 1, 2) are constants.

System (1)–(2) is highly nonlinear, extensively computa-

tional and heavily coupled. Complexity of the model has

been a serious challenge in robot modeling and control in

literature. It is expected to face a higher complexity if the

proposed model includes the actuator dynamics. In order

to obtain the motor voltages as inputs, we consider electri-

cal equation of the geared permanent magnet direct current

motors in the matrix form

u = RIA + Lİa + Kbθ̇m (7)

where u ∈ R2 is a vector of motor voltages, Ia ∈ R2 is a

vector of motor currents, and θ̇m is a vector of rotor veloc-

ities. The diagonal matrices R, L and Kb represent the co-

efficients of armature resistance, armature inductance and

back-emf constant, respectively. The motor torques τ , as

input of dynamic equation (2), is produced by the motor

currents as

KmIa = τ (8)

where Km is a diagonal matrix of the torque constants.

Equalities (1), (2), (7) and (8) form the robotic system such

that the voltage vector u is the input vector and the joint

angle vector θ is the output vector.

3 Interval type-2 fuzzy logic systems

A fuzzy logic system that uses at least one type-2 fuzzy

set is called a type-2 fuzzy logic system. It is very useful in

circumstances, where the determination of an exact mem-

bership grade for a fuzzy set is difficult[18]. As illustrated

in Fig. 2, a type-2 fuzzy MF can be obtained by starting

with a type-1 MF and blurring it. The extra mathemati-

cal dimension provided by the blurred area represents the

uncertainties in the shape and position of the type-1 fuzzy

set and is referred to as the footprint of uncertainty (FOU).

The FOU is bounded by upper and lower MFs, and points

within the “blurred area” have membership grades given by

type-1 MFs. The most frequently used type-2 fuzzy sets are

interval fuzzy sets, where each point in the FOU has unity

secondary membership grade[22].

An interval type-2 fuzzy set Ã in X is defined as[19]

Ã =

∫

x∈X




∫

u∈Jx

1/u


 /x, Jx ⊆ [0 1] (9)

where x is the primary variable with domain X, u is the

secondary variable which has domain Jx, Jx is called the

primary membership of x. Uncertainty about Ã is conveyed

by the union of all the primary memberships called the

footprint of uncertainty (FOU) of Ã[16], i.e.,

FOU(Ã) = Jx, x ∈ X. (10)

The structure of a typical type-2 fuzzy logic system is shown

in Fig. 3. It is similar to its type-1 counterpart. The major

difference is that at least one of the fuzzy sets is type-2 and

a type-reducer is needed to convert the type-2 fuzzy output

sets into type-1 sets so that they can be processed by the

defuzzifire to give a crisp output[18]. General type-2 fuzzy

logic systems (FLSs) are computationally intensive because

type-reduction is very intensive[18, 29]. Therefore, we will

use in this work the interval type-2 fuzzy logic systems for

their simplicity and efficiency. We design the fuzzy con-

troller by the use of two inputs namely tracking error and

its derivative (derror), respectively. If we select three fuzzy

sets for each input, the whole control space will be covered

by 9 fuzzy rules. The fuzzy rules are of the form of

Ri : if x1 is X̃i
1 and x2 is X̃i

2,

then yi = ai1x1 + ai2x2 + ai0, i = 1, 2, · · · , m (11)

where X̃i
j (j = 1, 2) is an interval type-2 fuzzy set and

the inputs of rule Ri is x = (x1, x2) ∈ U ∈ R2, U is the

universe of discourse. M is the number of rules, and in the

i-th rule (Ri), ai1 and ai2 are the gains in consequent part

for i = 1, 2, yi is the crisp output. The proposed interval

type-2 fuzzy controller is for the case when antecedents are

interval type-2 fuzzy sets (A2) and consequents are crisp

numbers (C0)[30]. The inference engine combines all the

firing rules and gives a nonlinear mapping from the input

interval type-2 fuzzy sets to the output interval type-2 fuzzy

sets.

Fig. 2 Type-2 fuzzy logic membership function

The firing strength set of the i-th rule is[29]

F i(x) = [f i(x), f
i
(x)] = [f i, f

i
] (12)

where

f i(x) = µ
X̃i

1(x1)
× µ

X̃i
2(x2)

(13)

f
i
(x) = µX̃i

1(x1) × µX̃i
2(x2). (14)



M. M. Zirkohi et al. / Type-2 Fuzzy Control for a Flexible-joint Robot Using Voltage Control Strategy 245

Fig. 3 Scheme of a type-2 fuzzy logic system

The terms µ
X̃i

j

(j = 1, 2) and µX̃i
j
(j = 1, 2) are the lower

and upper membership grades of µX̃i
j
, respectively.

The type-2 fuzzy inference engine produces an aggregated

output type-2 fuzzy set. The type reduction block operates

on this set to generate a centroid type-1 fuzzy set known

as the “type-reduced set” of the aggregate type-2 fuzzy set.

Several type-reduction methods have been suggested in the

literature, such as the center-of-sums, the height, the mod-

ified height and the center-of-sets[18, 29]. The most com-

monly used one is the center-of-sets type-reducer due to its

computational efficiency. That may be expressed as[18, 29]

Ycos(x) = [yl, yr] =
⋃

fi∈F i(x)

M∑
i=1

f iyi

M∑
i=1

f i

(15)

where Ycos is the interval set determined by two end points

yl and yr, and firing strengths f i = [f i, f
i
] ∈ F i(x). yl and

yr can be expressed as

yl =

L∑
i=1

f
i
yi +

M∑
i=L+1

f iyi

L∑
i=1

f
i
+

M∑
i=L+1

f i

(16)

yr =

R∑
i=1

f
i
yi +

M∑
i=R+1

f
i
yi

R∑
i=1

f i +
M∑

i=R+1

f
i

. (17)

Two end points yl and yr can be computed efficiently using

the Karnik-Mendel (KM) algorithms[29]. Since the type-

reduced set is an interval type-1 set, the defuzzifire output

is[18]

y(x) = 0.5(yl + yr). (18)

4 Particle swarm optimization (PSO)

The PSO algorithm is performed as follows. The un-

known parameters are called the particles that form the

population size denoted by n. Starting with a randomly

initialization, the particles will move in a searching space

to minimize an objective function. The parameters are es-

timated through minimizing the objective function. The

fitness of each particle is evaluated according to the ob-

jective function for updating the best position of particle

and the best position among all particles as two goals in

each step of computing. Each particle is directed to its pre-

vious best position and the previous best position among

particles. Consequently, the particles tend to fly towards

the better searching areas over the searching space. The

velocity of i-th particle vi will be calculated as[26, 27]

vi(k + 1) = χ(vi(k) + c1r1(pbesti(k)− xi(k))+

c2r2(gbest− xi(k))) (19)

where for the i-th particle in the k-th iteration, χi is the

position, pbesti is the previous best position, gbest is the

previous global best position of particles, c1 and c2 are

the acceleration coefficients namely the cognitive and so-

cial scaling parameters, r1 and r2 are two random numbers

in the range of [0 1], ϕ = c1+c2, ϕ > 4, and χ is constriction

coefficient given by

χ =
2∣∣∣4− ϕ−
√

ϕ2 − 4ϕ
∣∣∣
. (20)

Constriction coefficient is controlled by the convergence of

the particle. As a result, it prevents explosion and ensuring

convergence[26].

A new position of the i-th particle is then calculated as

xi(k + 1) = xi(k) + vi(k + 1). (21)

The PSO algorithm performs repeatedly until the goal is

achieved. The number of iterations denoted by kmax can

be set to a specific value as a goal of optimization. The

most crucial step in applying PSO is to choose the best

cost functions which are used to evaluate the fitness of each

particle. During tuning process with PSO, the mean of root

of squared error (MRSE) is used.

The cost functions for the i-th particle are computed as

MRSE = E(k) =
1

N

N∑
i=1

√
e2
1(i) + e2

2(i) (22)

where e1(i) is the trajectory error of the i-th sample for the

first joint, e2(i) is the trajectory error of the i-th sample for

the second joint, N is the number of samples, and k is the

iteration number.

PSO algorithm initializes randomly. However, the speed

of convergence is sensitive to the initialization. On the other

hand, by using constriction coefficient, the PSO algorithm

should find the optimum solution whatever the initial values
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of the particles are[26]. In addition, the PSO runs off-line,

thus computing time is not as important as in real time

control. Since the control design uses the optimal solution

provided by PSO, the PSO-based control strategy is not

dependent on the initial values.

5 Control strategy

We adopt two-input-one-output FLC to introduce the

design procedures of IT2FLC, i.e., we consider the error x1

and error rate x2 as inputs. Let x = θ − θd, where θ is a

vector of joint angles and θd is a vector of the desired joint

angles. The IT2FLC takes these two inputs and provides a

control action u ∈ R2.

The membership functions of an FLC can be assumed as

triangular functions, trapezoidal functions, Gaussian func-

tions, etc[21]. In this study, Gaussian functions are used.

Gaussian membership function has less parameters than

the triangular one[21], which is preferred for optimization.

The membership functions adopted by both types of control

systems are shown in Figs. 4 and 5, respectively. Note that

“N” stands for negative, “E” stands for 0, and “P” stands

for positive. The rules of the fuzzy controllers are given in

Section 6.

To assess the performance of both types of controllers,

the proposed fuzzy controller is implemented in two differ-

ent ways: the first is based on a type-1 fuzzy control scheme,

while the second is based on a type-2 fuzzy control scheme.

In the case of the implementation of the IT2FLC, we have

the same characteristics as in T1FLC, but we used type-2

fuzzy sets as membership functions for the inputs as shown

in Fig. 5.

All the universes of discourses are normalized and ar-

ranged in [−1 1]. Moreover, scaling factors external to the

FLC used to give appropriate values to the variables. The

role of input scaling factors becomes more important for

using the Gaussian MFs for inputs. The input scaling fac-

tors are employed to take the input into the operating range

covered by MFs, otherwise the controller will not respond

to the input.

Fig. 4 Membership function of type-1 FLC for joint 1 (a,b) and joint 2 (c,d)
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Fig. 5 Membership function of type-2 FLC for joint 1 (a,b) and joint 2 (c,d)

Fig. 6 Simulink model of proposed method
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Input variables and output variable have scaling factors

k1, k2, ko and k′1, k′2 and k′o for joint 1 and joint 2, respec-

tively. Simulink model of the proposed method is shown in

Fig. 6.

A Gaussian MF with certain mean (m) and uncertain

variance (δ) can be completely defined by 3 parameters: m

and (δ1, δ2)
[29]. Since a different IT2FLC is applied to each

link and each IT2FLC has 6 input type-2 MFs and 3 differ-

ent scaling factors, IT2FLC has a total of 2×(6×3+3) = 42

parameters to be optimized. As the PSO will only tune

the membership functions of both T1FLC and IT2FLC, the

rules are fixed.

In the similar manner, since a different T1FLC is applied

to each link, two parameters are sufficient to determine a

Gaussian type-1 MF, and 3 different scaling factors, the

PSO has to optimize a total of 2× (6× 2 + 3) = 30 param-

eters. As T1FLC and IT2FLC have the same number of

MFs and rules, comparing their performance may provide

insights into the contributions made by the FOU.

Using the output scaling factor k0, the fuzzy controller is

formed as

u = k0y(x). (23)

Each joint is controlled separately using fuzzy controller

(23). Thus,

u = [u1 u2]
T (24)

where u1 and u2 are the fuzzy controllers for joint 1 and 2,

respectively as expressed in (23).

6 Stability analysis of the control sys-

tem

In other words, yl in (16) can be rewritten as

yl =

L∑
i=1

qi
l(ai1x1 + ai2x2 + ai0)+

M∑
i=L+1

qi

l
(ai1x1 + ai2x2 + ai0) (25)

where qi
l = f

i

Dl
and qi

l
=

fi

Dl
. In the meantime, we have

Dl =
∑L

i=1 f
i
+

∑M
i=L+1 f i.

In the similar manner, yr in (17) can be rewritten as

yr =

R∑
i=1

qi

r
(ai1x1 + ai2x2 + ai0)+

M∑
i=R+1

qi
r(ai1x1 + ai2x2 + ai0) (26)

where qi
r = f

i

Dl
and qi

r
=

fi

Dr
. In the meantime, we have

Dr =
∑R

i=1 f i +
∑M

i=R+1 f
i
.

From (18), after some manipulation, one can obtain

y(x) = C1(x)x1 + C2(x)x2 + C0(x) (27)

where

C1(x) = 0.5× (

L∑
i=1

qi
lail +

L∑
i=L+1

qi

l
ai1+

R∑
i=1

qi

r
ail +

M∑
i=R+1

qi

r
ai1) (28)

C2(x) = 0.5× (

L∑
i=1

qi
lai2 +

L∑
i=L+1

qi

l
ai2+

R∑
i=1

qi

r
ai2 +

M∑
i=R+1

qi

r
ai2) (29)

C0(x) = 0.5× (

L∑
i=1

qi
lai0 +

M∑
i=L+1

qi

l
ai0+

R∑
i=1

qi

r
ai0 +

M∑
i=R+1

qi

r
ai0). (30)

The obtained analytical structure of the fuzzy controller

improves our study to develop the analysis and design. To

normalize the controller, we use the input scaling factors

k1 > 0 and k2 > 0, and the output scaling factor k0 > 0.

The input vector is formed as

x = [k1z1 k2z2]
T (31)

where for the i-th joint, z1 and z2 are defined as

z1 = θdi − θi (32)

z2 = θ̇di − θ̇i (33)

where θdi and θi are the desired and actual joint position,

respectively. From (32) and (33), we have ż1 = z2. Using

x1 = k1z1 and x2 = k2z2, we obtain

ẋ1 = αx2 (34)

where α = k1
k2

> 0.

Fuzzy controller by the use of scaling factors is formed as

u(x) = k0(C1(x)x1 + C2(x)x2 + C0(x)). (35)

This general structure shows a nonlinear variable gain con-

troller that finds many applications in control. The non-

linear gain Ci(x) covers the nonlinearity of the controller

by parameters in hand. The control purposes are simply

described by linguistic rules in fuzzy controller transformed

to a nonlinear function as stated by (35).

Substituting (35) into (7) forms the closed loop system

as

(C1(x)x1 + C2(x)x2 + C0(x))k0 = RIa + Lİa + Kbθ̇m.

(36)

Assume that the motor voltage u expressed by (7) is limited

such that

|RIa + LIa + Kbθ̇m| 6 umax (37)

where umax > 0 is a maximum permitted voltage for the

motor. This assumption is a technical regard to protect the
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motor against over-voltages. The complexity of design and

analysis has been changed to simplicity by using the model

of motor in place of model of manipulator. Here, we should

know only the upper limits of the motor voltages (umax) as

inputs of robotic system. Because electrical motors drive

the electrical manipulator, the motor voltages are the sys-

tem inputs. The desired trajectory should be planned con-

sidering the maximum permitted voltages for motors. This

means that each motor is so strong that it can track the

desired trajectory under the permitted voltage. Moreover,

the desired trajectory should be smooth that its derivatives

up to the required order are available and limited. To find a

control law for the convergence of error, a positive definite

function is proposed as

V =

∫ x1

0

C2(x)x1dx1 (38)

where V is a positive definite function of x1 if C2(x) is pos-

itive. To satisfy C2(x) > 0, it is sufficient that ai2 > 0.

Proof. Assume that 0 < C2 < C2(x), where C2 is a

positive constant. Thus,

C2

∫ x1

0

x1dx1 <

∫ x1

0

C2(x)x1dx1. (39)

We have
∫ x1
0

C2x1dx1 = 0.5C2x
2
1. Hence, 0.5C2X

2
1 <∫ x1

0
C2x1dx1. Thus, (39) implies that V > 0 for x1 6= 0.

Since
∫ x1
0

C2x1dx1 = 0 and C2(x)x1 is limited, V = 0 if

x1 = 0. Thus, V is a positive definite function of x1. ¤
The time derivative of V is calculated as

V̇ = C2(x)x1ẋ1 = αC2(x)x1x2. (40)

From (36), we can write

C2(x)x2 = −C1(x)x1 − C0(x) +
RIa + Lİa + Kbθ̇m

k0
. (41)

Substituting (41) into (40) yields

V̇ = −αC1(x)x2
1 − αC0(x)x1+

αx1 × (RIa + Lİa + Kbθ̇m)

k0
(42)

Since −αC1(x)x2
1 6 0 for C1(x) > 0, to satisfy V̇ 6 0 for

stability, it is required that

x1(RIa + Lİa + Kbθ̇m) 6 k0C0(x)x1. (43)

As we known,

x1(RIa + Lİa + Kbθ̇m) 6
|x1||RIa + Lİa + Kbθ̇m| 6 |x1|umax. (44)

To satisfy (43), it is sufficient that

|x1|umax 6 k0C0(x)x1. (45)

Since k0 > 0, to guarantee the stability, x1C0(x) must be

positive. This means that C0(x) must be designed with the

same sign as x1. This condition is simply satisfied if ai0 is

selected with the same sign as x1.

From (45) and x1C0(x) > 0, we obtain

umax

|C0(x)| 6 k0. (46)

From (30), we can obtain

c0,min 6 C0(x) 6 c0,max (47)

where c0,min and c0,max are two constants. To select a con-

stant value, we should select a value for k0 that satisfies

(46) in all the cases. The maximum permitted value for k0

is then selected as

umax

c0,max
= k0. (48)

Therefore, stability is guaranteed under assumptions

C1(x) > 0, C2(x) > 0, x1C0(x) > 0 and umax
c0,max

= k0. In

the i-th rule, ai0 is selected with the same sign as x1 to

satisfy x1C0(x) > 0. We can select ai1 > 0 and ai2 > 0 in

all rules but to satisfy C2(x) > 0 and x1C0(x) > 0. There

is at least one rule that ai1 > 0 and ai2 > 0.

Fuzzy rules for i = 1, · · · , 9 are designed where the fol-

lowing cases occur:

Case 1. Assume that x1x2 < 0 result in asymptotic sta-

bility by V̇ < 0 in (40). Thus, u should be small.

Case 2. Assume that x1 = 0 or x2 = 0 result in Lyapunov

stability by V̇ = 0 in (40). Thus, u should be medium.

Case 3. Assume that x1x2 > 0 result in instability by

V̇ > 0 in (40). Thus, u should be very high.

The fuzzy rules for the first and second controllers are

given as follows:

Rule 1: If x1 is P and x2 is P , then y = 1.

Rule 2: If x1 is P and x2 is Z, then y = 0.75.

Rule 3: If x1 is P and x2 is N , then y = 0.25.

Rule 4: If x1 is Z and x2 is P , then y = 0.5.

Rule 5: If x1 is Z and x2 is Z, then y = 150x1 + 10x2.

Rule 6: If x1 is Z and x2 is N , then y = −0.5.

Rule 7: If x1 is N and x2 is P , then y = −0.25.

Rule 8: If x1 is N and x2 is Z, then y = −0.75.

Rule 9: If x1 is N and x2 is N , then y = −1.

Therefore, using the above analysis, x1 and x2 are

bounded. Then, one can imply the boundedness of u be-

cause of boundedness of x1 and x2.

Proof. From (28) to (30), C1(x), C2(x) and C0(x) are

bounded as

|C1(x)| 6 0.5α1|x1| (49)

|C2(x)| 6 0.5α2|x2| (50)

|C0(x)| 6 0.5α0 (51)
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where
∣∣∣∣∣

L∑
i=1

qi
lai1 +

M∑
i=L+1

qi

l
ai1 +

R∑
i=1

qi

r
ai1 +

M∑
i=R+1

qi
rai1

∣∣∣∣∣ 6 α1

(52)
∣∣∣∣∣

L∑
i=1

qi
lai2 +

M∑
i=L+1

qi

l
ai2 +

R∑
i=1

qi

r
ai2 +

M∑
i=R+1

qi
rai2

∣∣∣∣∣ 6 α2

(53)
∣∣∣∣∣

L∑
i=1

qi
lai0 +

M∑
i=L+1

qi

l
ai0 +

R∑
i=1

qi

r
ai0 +

M∑
i=R+1

qi
rai0

∣∣∣∣∣ 6 α0

(54)

and α1, α2, α0 are constant.

Considering (13) and (14), we have

f i(x) 6 1 (55)

f
i
(x) 6 1. (56)

Thus, one can imply that qi
l, qi

l
, qi

r and qi

r
are bounded.

The coefficient ai1 is a constant parameter. As a result,

inequality (52) is verified.

Similarly, inequality (53) and (54) are proven. ¤
Therefore, u is bounded using (35) as

|u| 6 k0(α1|x1|+ α2|x2|+ α0). (57)

According to the proof given by [31], since the input u is a

bounded variable, Ia is bounded.

Since the desired joint angle θd and its time derivative θ̇d

are bounded, the bounded variables x1 and x2 imply that

θ = θd − x1 and θ̇ = θ̇d − x2 are bounded.

Since Ia is bounded, (4) implies that τ is a bounded.

From (2), we have

Jθ̈m + Bθ̇m + r2Kθm = τ + rKθ. (58)

System (58) is a second order linear system with positive

gains J, B, r2K, and a limited input τ + rKθ. This system

is stable based on the Routh-Hurwitz criterion and implies

that θm, θ̇m and θ̈m are bounded.

Since all the states associated with each joint, i.e.,

θ, θ̇, θm, θ̇m and Ia, are bounded, vectors θ, θ̇, θm, θ̇m and

Ia are bounded. As a conclusion, based on the stability

analysis, all the required signals are bounded.

7 Simulation results

In this section, to compare the performance of T1FLC

and IT2FLC, the performance of position and tracking con-

trol of an electrical flexible-joint articulated robot manip-

ulator are presented. Fig. 6 shows the control system used

for obtaining the simulation results. The parameters of the

manipulator and motors are given in Tables 1 and 2, re-

spectively. Moreover, the voltage of motors is limited to

±40 V to protect motor from over-voltage. The desired joint

trajectory for the joints is shown in Fig. 7. The desired

trajectory should be sufficiently smooth such that all its

derivatives up to the required order are bounded.

Fig. 7 Desired joint trajectory

Table 1 The dynamical parameters of robot

Links L (m) Lc (m) m I (kg ·m2) b c

1 1 0.5 1 0.12 1 5

2 1 0.5 2 0.25 1 5

Table 2 The motor parameters

Motors u R kb L I B r k

1.2 40 1.6 0.26 0.001 0.0002 0.001 0.02 500

Simulation 1. The control system is simulated for set

point control, where a desired value of rad is given to the

joints. Set point application is used for point-to-point mo-

tion control of robot manipulators. In industry, the set

point control is also a dominant approach in the process

control. Scaling factors are given in Table 3. To have satis-

factory performance, the gains of input and output scaling

factors are selected by trial and error method.

Table 3 Scaling factors of type-1 and type-2 FLC

Scaling factor controller k1 k2 k0 k′1 k′2 k′0

Type-1 FLC 0.003 35 100 0.0027 25 93

Type-2 FLC 0.002 36 105 0.002 28 111

The control system responses using T1FLC and IT2FLC

are shown in Fig. 8. As shown in Fig. 8, the performance of

the IT2FLC is better than T1FLC to some extent. How-

ever, the transient responses of both type of controllers are

not good. The responses have overshoot with zero steady

state error. An optimization algorithm, such as particle

swarm optimization algorithm, can be applied to find op-

timum values for control design parameters to achieve the

desired performance.
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Simulation 2. In this simulation, the performance of

controllers in tracking a desired trajectory is compared.

Fig. 8 Control system responses using type-1 and type-2 FLC

The desired joint trajectory for the joints is shown

in Fig. 7. Other conditions are the same as Simulation

1. The control system performs well as shown in Fig. 9,

while the maximum values of errors for joints 1–2 are

0.022 rad, 0.02 rad, and 0.0224 rad, 0.022 rad, using T1FLC

and IT2FLC, respectively. The motor voltages of both

joints are shown in Fig. 10. All of the voltages of motors

lie under the valid limited values without chattering prob-

lem. It is seen that there is no change in voltage polarity,

which offers good reasons to tolerate the high oscillations.

In this case, the control efforts perform well. However, the

joint tracking errors are not very good.

Simulation 3. As mentioned earlier, the control design

parameters were obtained by trial and error method. How-

ever, we can use the proposed PSO algorithm to obtain

better performance by finding the optimal control design

parameters. In this simulation, the parameters of PSO algo-

rithm presented in Section 4 are set to c1 = 2.05, c2 = 2.05

and ϕ = 0.72. The number of particles and iterations are

set as 150 and 100, respectively. As a result of applying the

PSO algorithm, the scaling factors of the optimized T1FLC

and IT2FLC are reported in Table 4. Moreover, the MFs

of the optimized IT2FLC and T1FLC are shown in Figs. 11

and 12, respectively.

Fig. 9 Tracking performance of type-1 & type-2 FLC

Fig. 10 Voltage of motors
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Fig. 11 Membership functions of the optimized type-2 FLC for joint 1 (a,b) and joint 2 (c,d)

Fig. 12 Membership functions of the optimized type-1 FLC for joint 1 (a,b) and joint 2 (c,d)
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Table 4 Scalling factors of the optimized type-1 and type-2 FLC

Optimal scaling factors controller k1 k2 k0 k′1 k′2 k′0
Type-1 FLC 0.0021 35.04 103.5 0.0017 33.86 99.67

Type-2 FLC 0.0022 36.67 129.67 0.0018 37.08 120.89

The speed of convergence versus iteration is shown in

Fig. 13. It indicates that the fitness values have converged.

Another observation is that the additional mathematical di-

mension provided by the FOU enables IT2FLC to achieve

a lower MRSE than T1FLC. Set point performance and

tracking errors are shown in Figs. 14 and 15, respectively.

The control system behaves well in these cases, as well. As a

result of applying optimized T1FLC, the maximum value of

tracking error for joint 1 and 2 in the simulations is reached

to the value of 7×10−3 and 8×10−3, respectively. As a re-

sult of applying optimized IT2FLC, the maximum value of

tracking error for joint 1 and 2 in the simulations is reached

to the value of 6 × 10−3 and 7.98 × 10−3, respectively. It

is seen that the results are much better than simulation 1.

To assess the performance of control system better, another

desired trajectory is considered as

θd = sin(t), θ(0) = 1, 0 6 t 6 10. (59)

The performance of control system is shown in Fig. 16,

where the joint tracking error is reduced as well.

Fig. 13 The cost function of PSO

Fig. 14 Set point performance

Fig. 15 Tracking performance

Simulation 4. In this case, for the robustness evalu-

ation of the controllers, external disturbances are added to

the robot system. The disturbance is inserted to the input

of each motor as a periodic pulse function with a period of

2 s, having a different value of amplitude, with time delay

of 0.7 s, and pulse-width 30% of the period[32]. This form

of disturbance is general. But it includes jumps to cover

the complex cases. All the values of the cost functions for

different amplitude of disturbance in the cases of T1FLC

and IT2FLC are given in Table 5.

Table 5 Comparison between type-1 and type-2 FLC for

different amplitudes of disturbance

Amplitude Type-1 FLC (MRSE) Type-2 FLC (MRSE)

A=0 0.1892 0.1860

A=1 0.1958 0.1879

A=2 0.2044 0.1910

A=4 0.2337 0.2022

As seen from Table 5, the performance of the T1FLC

is similar to IT2FLC to some extent as long as the am-

plitude of disturbance is low or there is no disturbance.

However, when the amplitude of disturbance in the Table 5

is increased, it is seen that the performance of T1FLC de-

grades significantly. Hence, the performance of the T1FLC

will be unacceptable under this disturbance. Thus, the

T1FLC cannot be used in such noisy environment. On the

other hand, IT2FLC can handle the external disturbances

to give a very good performance effectively. As a result, the

IT2FLC is able to handle the uncertainty and outperform

the type-1 controller.

Simulation 5. In this case, the ability of the T1FLC and

IT2FLC to handle unmodelled dynamics is investigated. To

this end, transport delay is deliberately introduced into the

feedback loop[20]. First, a transport delay equalling to 0.2 s

is artificially added to the nominal system. The step re-

sponses are shown in Fig. 17. When a the transport delay

equalling to 0.3 s is added to the system, the corresponding
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step responses are shown in Fig. 18. As shown in Figs. 17

and 18, large oscillations are obtained when T1FLC is used

to control the plant. Of the two controllers, IT2FLC pro-

vided the best performance as its step responses have the

smallest overshoot and are least oscillatory. The simulation

results again confirm that the IT2FLC is able to handle the

uncertainty and unmodelled dynamics, and outperform the

T1FLC controller.

Fig. 16 Tracking performance

Fig. 17 Set point performance under unmodelled dynamics with

time delay 0.2 s

Fig. 18 Set point performance under unmodelled dynamics with

time delay 0.3 s

As a result, the main advantage of the IT2FLC is its

ability to eliminate persistent oscillations, especially when

unmodelled dynamics is introduced.

8 Conclusions

In this paper, interval type-2 fuzzy logic controller was

used to control a two-joint articulated flexible-joint robot

driven by permanent magnet direct current motors using

voltage control strategy. Stability analysis was presented

and the performance of the IT2FLC was compared with

that of T1FLC. In addition, an optimal IT2FLC for flexible-

joint robot was introduced using particle swarm optimiza-

tion. In fact, parameters of the primary membership func-

tions of IT2FLC were optimized to improve the performance

and increase the accuracy of IT2FLC. We observed using

performance criteria such as MRSE, when the amplitude of

external disturbance is low, the performance of both T1FLC

and IT2FLC is somehow identical. However, it is known

that T1FLC can handle the nonlinearities and uncertain-

ties up to some extent. Therefore, by increasing amplitude

of external disturbance and considering unmodelled dynam-

ics, the results demonstrate that IT2FLC can outperform

T1FLC. Thus, the IT2FLC is more appealing than its type-

1 counterpart with regards to accuracy and interpretability.

The main advantage of the IT2FLC appears to be its abil-

ity to eliminate the persistent oscillations, especially when

unmodelled dynamics is introduced. This ability to han-

dle modeling error is particularly useful when fuzzy logic

controllers are tuned off-line using PSO.
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