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Abstract: The mathematical model of a high-speed underwater vehicle getting catastrophe in the out-of-water course and a nonlinear
sliding mode control with the adaptive backstepping approach for the catastrophic course are proposed. The speed change is large
at the moment that the high-speed underwater vehicle launches out of the water to attack an air target. It causes motion parameter
uncertainties and affects the precision attack ability. The trajectory angle dynamic characteristic is based on the description of the
transformed state-coordinates, the nonlinear sliding mode control is designed to track a linear reference model. Furthermore, the
adaptive backstepping control approach is utilized to improve the robustness against the unknown parameter uncertainties. With the
proposed control of attitude tracking, the controlled navigational control system possesses the advantages of good transient performance
and robustness to parametric uncertainties. These can be predicted and regulated through the design of a linear reference model that
has the desired dynamic behavior for the trajectory of the high-speed underwater vehicle to attack its target. Finally, some digital
simulation results show that the control system can be applied to a catastrophic course, and that it illustrates great robustness against
system parameter uncertainties and external disturbances.
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1 Introduction

A high-speed underwater vehicle is a type of stratagem
weapon that is essential for naval equipment as, it can be
used in deep water and control large areas of sea. The
motion of a moving body is a system with the property
of unmodeled dynamics and input uncertainty[1,2]. It has a
control system that meets the requirements of large distance
runs and high-precision tactics, but it is vulnerable to the
impact of model input uncertainty.

Recent studies about launched out-of-water tasks give
rise to challenging control problems involving cross-media
motion process, hydrodynamic parameter uncertainties and
external disturbances. The control system should be able
to learn and adapt to the changes in the dynamics of high-
speed underwater vehicle.

In the past, for nonlinear models of an underwater vehicle
with known dynamics, control laws were designed using the
Lyapunov stability theory and the pure backstepping design
technique[3]. For the control of underwater vehicle models
in the presence of uncertainties, sliding mode control was
considered[4, 5]. Adaptive control laws were also designed
for the control of underwater vehicles[6−8]. A discrete-time
adaptive sliding mode controller for an underwater vehicle
with parameter uncertainties and external disturbance was
presented[8]. From the performance evaluation of an ex-
act feedback-linearization controller, it was seen that this
method is very sensitive to variation of parameters[9]. The
adaptive backstepping control approach in [9–11] is capa-
ble of keeping almost all the robustness properties of the
unknown uncertainties.

However, by means of these design methods[3−8], the
output-generated attitude of the high-speed underwater ve-
hicle out-of-the-water trajectory has a nonlinear and cou-
pled form and hydrodynamic coefficient[12−14]. Therefore,
in order to obtain a linearly controlled attitude and keep
the robustness of nonlinear sliding mode control, a nonlin-
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ear sliding mode control with an adaptive backstepping ap-
proach was designed to achieve a high performance attitude
tracking of catastrophic course.

The main purpose of this paper is to propose a practi-
cable new control method for the process of getting out of
the water. Since the transient dynamics of the high speed
underwater vehicle nonlinear system difficult to evaluate by
the linear control theory, the model-following control tech-
nique is utilized for the proposed control to track a designed
linear reference model. Therefore, the transient dynamics
of the controlled attitude can be simply designed through
a linear reference model. The nonlinear element is consid-
ered for the proposed adaptive backstepping control which
uses a tuning function to avoid repeated estimates with the
same unknown parameters of a pure adaptive backstepping
technique.

The proposed hybrid controller for the high-speed under-
water vehicle when coming out of the water was shown to be
globally asymptotically stable and was proved by the Lya-
punov theory. Compared with the other methods, the pro-
posed method has good dynamic performance in attitude
state, even in a large bound wave input. It not only takes
advantage of nonlinear transformation to simplify the con-
trol system design, but also makes use of invariant features
of the sliding mode with system perturbation and distur-
bance. Simultaneously, the proposal is robust in terms of
parameter uncertainties and system model errors. The cur-
rent study focuses on the analysis and simulation of under-
water supercavitating characteristics[15,16], but the catas-
trophic theory and application of course control are less
from domestic and foreign public documents.

2 Modeling of catastrophic course

A high-speed underwater vehicle-attack aerial target pro-
cess is generally experienced in three stages: “in the water”,
“air” and “water-gas transition”. The biggest problem is
that the features experienced by the missile body in the
underwater section are different from those in the air. The
buoyancy and added mass are zero after the high-speed un-
derwater vehicle comes out of the water and the mathema-
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tical model changes suddenly at the moment. The distribu-
tion of the high-speed underwater vehicle′s shape and in-
ternal mass are symmetrical about the longitudinal plane,
and the symmetrical motion parameters will not have the
force and moment asymmetrically.

In order to avoid the control problem of singular attitude
angle, a new coordinate system is established to enable the
X-axis vertically upward, keep the initial attitude angle as
0, and keep buoyancy, gravity and gravity torque along the
o0x0-axis direction.

According to fluid dynamics theory, a nonlinear model of
the high-speed underwater vehicle is derived as

(m+λ11)v̇x+m(−vyωz−xcω
2
z)=T− 1

2
ρv2SCxs−∆G cos θ

(m + λ22)v̇y + (mxc + λ26)ω̇z + mvxωz =

1

2
ρv2S(Cα

y α + Cδ
yδe + Cω̄z

y ω̄z)−∆G sin θ (1)

(Jz+λ66) ω̇z+(mxc+λ26) v̇y+mxcvxωz =

1

2
ρv2SL(mα

z α + mδe
z δe + mω̄z

z ω̄z) + G(yc cos θ + xc sin θ)

θ̇ = ωz

ẋ0 = v cos(θ − α)

ẏ0 = v sin(θ − α)

α = −arctan
vy

vx

v =
√

v2
x + v2

y

where v̇x = v̇ cos α− α̇v sin α and v̇y = −α̇v cos α− v̇ sin α.
Successive elimination obtains

v̇ =
− (Jzz + λ66) mv cos α sin αωz

(m + λ22) [(mxc + λ26)− (Jzz + λ66)]
+

mxcv cos α sin αωz

(mxc + λ26)− (Jzz + λ66)
+

(Jzz+λ66) (Kyaα+Kyδδh)v2 sin α

(m+λ22) [(mxc + λ26)− (Jzz + λ66)]
+
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−

(Kmzαα+Kmzδδh)v2 sin α

(mxc+λ26)−(Jzz+λ66)
+

[Kmzωωzv+G(yc cos θ+xc sin θ)] sin α

(mxc+λ26)−(Jzz+λ66)
+

[m(−v sin αωz + xcω
2
z)+T −Kxv2 −∆G cos θ] cos α

(m + λ11)
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+
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+

(Jzz+λ66) (Kyaα+Kyδδh)v cos α

(m+λ22) [(mxc+λ26)− (Jzz + λ66)]α
+

[(Jzz+λ66) Kyωωz− 1
v

(Jzz+λ66)∆G sin θ] cos α

(m+λ22) [(mxc+λ26)− (Jzz + λ66)]α
−

(Kmzαα + Kmzδδh)v cos α

(mxc + λ26)− (Jzz + λ66)
+

[Kmzwωz + 1
υ
G(yc cos θ + xc sin θ)] cos α

(mxc + λ26)− (Jzz + λ66)
+

[m(−v sin αωz + xcω
2
z)+T −Kxv2 −∆G cos θ] cos2 α

v sin α (m + λ11)
−

m(−v sin αωz + xcω
2
z) + T −Kxv2 −∆G cos θ

v sin α (m + λ11)

ω̇zz =
(mxc + λ26)[mvxωz − (Kyaα + Kyδδh)v2]

(m + λ22)(Jzz + λ66)− (mxc + λ26)2
+

(mxc + λ26)(−Kyωωzv +4G sin θ)

(m + λ22)(Jzz + λ66)− (mxc + λ26)2
−

(m + λ22)[mxcvxωz − (Kmzαα + Kmzδδh)v2]

(m + λ22)(Jzz + λ66)− (mxc + λ26)2
+

(m + λ22)[Kmzωωzv + G(yc cos θ + xc sin θ)]

(m + λ22)(Jzz + λ66)− (mxc + λ26)2
.

For the phase of water-gas transition, the reduced ac-
celeration force produced in the process of the high-speed
underwater vehicle getting out of the water is caused by
fluid added mass, steady state around flow, gravity, buoy-
ancy and surface friction. In the initial impact phase
of the out-of-the-water, steady-state resistance, buoyancy
and surface friction are small. The momentum equation
for the transition phase of out-of-the-water vehicle is de-
rived as (neglecting surface friction) mv0 − (m + λ)v =∫ t

0
T0dt+

∫ t

0
B0dt−mgt−∫ t

0
Cds

1
2
ρSv2dt. The kinetic equa-

tion is−(m+λ)v̇−vλ̇ = T0+B0−mg− 1
2
CdsρSv2, where S is

the cross-section area, m is the mass, G is the weight, JZ is
the moment of inertia of the buoyancy center, T0 and T are
the propulsion forces, ∆G = G−B̄, B̄ is the buoyancy force,
Cxs and Cds are the resistance coefficients, λ11, λ22, λ26, λ66

and λ are the incremental masses, Cα
y , Cδ

y and Cωz
y are the

lift force derivatives, mα
z , mδe

z and mω
z are the pitching mo-

ment derivatives, α is the angle of attack, θ is the pitching
angle, ωz is the pitching angular velocity, δe is the elevator
deflection angle, xc and yc are the barycentric coordinates,
x0 and y0 are the center of buoyancy coordinates of the
ground coordinate system, v, vx and vy are the velocities of
buoyancy center and its components. λ11, λ22, λ26, λ66, Cxs,
Cα

y , Cδ
y , Cωz

y , mα
z , mδe

z and mω
z are the hydrodynamic pa-

rameters within the certain boundary range, ω̄z = ωzL
v

,
and L is the length.

The system state vector and input vector for the
high-speed underwater vehicle model are chosen as x =[

v α ωz θ
]T

, u = δe.
Therefore, the high-speed underwater vehicle model can

be expressed as an affine nonlinear system:

{
ẋ = f(x) + g(x)u

y = h(x)
(2)

where
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2
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+
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2
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2
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y α + 1
2
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1
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−
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2
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v sin α(m + λ11)
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2
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+

(mxc + λ26)(− 1
2
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−
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2
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−
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1
2
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f4(x) = ωz

g1(x) =
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1
2
ρSv2Cδe

y

(m + λ22) [(mxc + λ26)− (Jzz + λ66)]
sin α−

1
2
ρv2SLmδe

z
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sin α

g2(x) =
(Jzz + λ66)

1
2
ρSvCδe

y

(m + λ22) [(mxc + λ26)− (Jzz + λ66)]
cos α−

1
2
ρvSLmδe

z

(mxc + λ26)− (Jzz + λ66)
cos α

g3(x) =
(mxc + λ26)

1
2
ρSCδe
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1
2
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g4(x) = 0.

In this paper, the controller is only designed for the for-
mer model, whereas the change in dynamics after the high-
speed underwater vehicle emerging out of water is treated
as modeling uncertainty.

For the purpose of achieving the fast pitching angle dy-
namics response and operating in the desired dynamic be-
havior for the beeline or curve trajectory, the attitude con-
trol is considered. So, the system output vector is chosen
as h(x) = θ.

Based on the input-output feedback-linearization con-
trol technique, the following notation is used for the Lie
derivative of a function h(x) along a vector field f(x) =
(f1(x), · · · , fn(x)), Lfh(x) = ∂h

∂x
f(x).

Choose new system states z1 = h(x), z2 = ż1 = Lfh.
Then, the model is given in new coordinates by

(
ż1

ż2

)
=

(
z2

Lf2h(x)

)
+

(
Lgh

LgLfh

)
u (3)

where the Lie derivative functions are given as

Lgh(x) =
∂h

∂x
g(x) = 0

Lfh(x) =
∂h

∂x
f(x) = ωz

LgLfh(x) =
∂Lfh(x)

∂x
g(x) = g3(x)

Lf2h(x) =
∂Lfh(x)

∂x
f(x) = f3(x).

Furthermore, a nonlinear-state feedback decoupling the
control inputs is employed.

Construct the new control inputs as û = LgLfhu.
Then, system (5) becomes

(
ż1

ż2

)
=

(
z2

Lf2h(x)

)
+

(
0
1

)
û. (4)

3 Nonlinear sliding mode control

The sliding mode controller design usually consists of two
stages. The first stage is to define a sliding surface and the
second stage is to develop a controller that satisfies the slid-
ing condition, which dictates that the states remain on the
sliding surface. On the sliding surface, the states converge
to the desired equilibrium state.

Since (4) is a nonlinear system, the dynamics are hard
to regulate by a constant-state feedback gain. So, a model-
following nonlinear sliding mode controller is proposed for
the dynamic system (4) to track a desired reference model.

From (4), the reference model is introduced as

Ż = AZ + Bur (5)
(

ż1

ż2

)
=

(
0 1
−a1 −a2

) (
z1

z2

)
+

(
0
a2

)
θ

where a1 and a2 are the positive constants, and θ is the
reference trajectory angle.

Furthermore, we define the tracking errors as ez =
[∆z1, ∆z2]

T = [ez1, ez2]
T. Using (4) and (5), the system

error dynamics is obtained as

ėz = A(x) + B(x)ū (6)

where A(x) =

(
ez2

Lf2h(x)

)
, B(x) =

(
0
1

)
, ū = û +

a1z1 + a2z2 − a2θ.
According to the system shown in (6), the sliding switch-

ing surfaces are chosen as

sez = Cez(x) (7)

where C ∈ R1×2 is a constant linear matrix, and the inverse
of CB(x) must exist for all x, i.e., det(CB(x)) 6= 0 for all
x. Combining (6) and (7) gives

ṡez = Cėz(x) = CA(x) + CB(x)ū = −Qsgn(s)−Ks (8)

where

Q =

[
q1 0
0 q2

]
, K =

[
k1 0
0 k2

]
, qi, ki > 0, i = 1, 2

and

sgn(s) =

{
1, s > 0

−1, s < 0.

From (8), and based on Lyapunov theory, the sliding
mode controller is obtained as

ū = −(CB(x))−1(CA(x) + Qsgn(s) + Ks). (9)

Using the control law of (9), the reachability of sliding
mode control for system (6) is guaranteed.

Theorem 1. With the developed nonlinear sliding mode
controller (9) and a stable sliding surface (7), the reaching
condition sTṡ < 0 is satisfied, and the controlled system (6)
will be stabilized.
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Remark 1. Using the model following nonlinear slid-
ing mode control via state-coordinate transformation for
a catastrophic course, the transient of pitch angle can be
regulated through a linear reference model. In practice, the
dynamic model and identification hydrodynamic parameter
uncertainties ∆kij,i = 3, j = 1, · · · , 5 vary in the state or
external environment. Therefore, a nonlinear sliding mode
controller that makes the course stable and robust against
the parameters variations is proposed in the next section.

4 Adaptive sliding mode control

When the high-speed underwater vehicle′s motion state
varies or it is influenced by the disturbing sea flow, the
parameters of model (1) will give a big change and dis-
turbance. In order to avoid the instability of the control
system, the most commonly used method of predicting the
motion test data is to extrapolate the trends of identifi-
cation of hydrodynamic parameters. This gives a basis for
boundary prediction of the uncertain moving body and pro-
vides seaworthiness conditions to achieve the precision of
striking.

Due to the error between the practical measurements and
observation data, there exist uncertainties in the hydrody-
namic model coefficient. Adaptive backstepping control has
a feature which has more than one estimation of each un-
known parameter. Due to the advantages of applying the
adaptive backstepping control to an unknown uncertainty
system, the following design of new control laws is used.

When the system parameters deviate from the nominal
value, the tracking error model (6) is re-written in the fol-
lowing form:

ėz1 = ez2 + φ1d1(x)

ėz2 = Lf2h(x) + ū + φ2d2(x)

ėz = [A(x) + ∆A(x)] + B(x)ū

(10)

where φi, i = 1, 2, and ∆A(x) denotes the practical uncer-

tainties defined by [φ1d1(x), φ2d2(x)]T = ∆A(x).
Therefore,

L∆fh(x) =
∂h

∂x
∆f(x) = ∆f4(x) = 0

L∆fLfh(x) =
∂Lfh(x)

∂x
∆f(x) = ∆f3(x)

∆f3(x) = ∆k31vωz cos α−∆k32v
2α−∆k33vωz+

∆k34 sin θ + ∆k35 cos θ.

Assume that |φi| , i = 1, 2 is the unknown and bounded
constant. For the first two equations of (10), the derivation
of the system errors ez with respect to time t yields

ėz1 = ez2 + φ̂1d1(x)− (φ̂1 − φ1)d1(x)

ėz2 = Lf2h(x) + ū + φ̂2d2(x)− (φ̂2 − φ2)d2(x)
(11)

where φ̂i, i = 1, 2 is the estimate of φi.
It is obvious that the controllers are decoupling with re-

spect to two dynamic models [ez1, ez2]. The switch function
ez2 is chosen as ėz2 = kez2+ρ·sgn(ez2), where k is a positive
constant feedback gain.

From (11), the sliding mode control is designed as

ū = −Lf2h(x)− ϕ̂2d2(x)− kez2 − ρ · sgn(ez2) (12)

where ρ is chosen as
∣∣∣(φ̂2 − φ2)

∣∣∣ × d2(x) 6 ρ × d2(x). The

adaptation law of φ̂2 is given by

˙̂
φ2 = γez2d2(x) (13)

where γ is the adaptation gain, ε and k are the constants
that are greater than 0, and the sgn(x) is the sign function.

Theorem 2. Using the controller described by (12)
and (13), the system is stable and robust subject to the
parameters′ unknown uncertainties.

Proof. Define the following Lyapunov function

V1 =
1

2
[e2

z1 + e2
z2 +

1

γ
(φ̂2

2 − φ2
2)]. (14)

Using (11), the derivative of (14) with respect to time t
is given by

V̇1 = ez1[φ̂1d1(x)− (φ̂1 − φ1)d1(x)]+

ez2[Lf2h(x) + ū + φ̂2d2(x)− (φ̂2 − φ2)d2(x)]+

1

γ2
(φ̂2 − φ2)

˙̂
φ2. (15)

Applying (12) and (13) to (14) one reduces the equation

to V̇1 = −k1e
2
z1 − k2e

2
z2 6 0. Define the following equa-

tions L(t) = k1e
2
z1 + k2e

2
z2 > 0 and V1(t)=V1(e(0), φ̂(0))+∫ t

0
V̇1(τ)dτ=V1(e(0), φ̂(0))−∫ t

0
L(τ)dτ , where e = [ez1, ez2]

T

and φ̂ = [φ̂1, φ̂2]
T. From the definition of the Lyapunov

function V1 > 0 and the above equation, the following re-
sult can be deduced to

lim
t→∞

∫ t

0

L(τ)dτ 6 V1(e(0), φ̂(0)) < ∞.

One can deduce that L(t) → 0 as t → ∞, i.e., ez1 and
ez2 will converge to zero as t →∞. ¤

Therefore, the proposed controller is stable and robust,
even if the parameters′ uncertainties exist.

The sliding mode techniques may generate undesirable
chattering, and then a method that makes the function
smooth will replace the discontinuous part of the control
action[17]. Thus, sgn(si) becomes

l(si) =
si

|si|+ δi
δi > 0. (16)

The system structural diagram is shown in Fig. 1.

5 Simulation results

A high-speed underwater vehicle launched underwater
has vertical orientation or curve attack for the water sur-
face or water-up target under the pitch angle tracking com-
mand and adaptive control. The predicted trajectory is
programmed in a relatively short period. The pitch angle
tracking instructions can be predicted and calculated by the
reference model and make a good dynamic performance in
the course of an out-of-the-water attack.

After some experiment, good performance was achieved
with the following parameters: t = 10 s, the adaptation
gain γ in (13) is chosen as 20, ρ = 0.01, δ = 0.05, c = 5,
and k = 8. The initial state vector is x(0) = [20m/s
0◦ 0 rad/s 0◦], and propulsion force T = 3t. When
v = 20 m/s, the high-speed underwater vehicle launches
out of the water to attack an air target. In the process of
mission, its nonlinear model changes simultaneously. But
the controller remains the one used before which is designed
for the former model.
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Fig. 1 Block diagram of the control system structure

In order to show the high-performance tracking of the
proposed attitude control, we choose a1 = −1, a2 =
−0.3 in model (10) to meet the sine reference input θ =
A sin(2πFt), and parameter uncertainty φ2 = 2 sin t. To
verify the robustness of the controller, simulation was done
with nominal value ∆f3(x) = 0, ∆g3(x) = 0 and parame-
ter uncertainty ∆f3(x) = 3.5, ∆g3(x) = 3.5. The simulated
results are shown in Figs. 2 and 3.

As is evident from the simulation results and experimen-
tal analysis, the gentle transition process out of the water at
t = 5 s ensures the stability of the catastrophic process and
tracking accuracy. The integrated errors with constant or
parameters of gradual change can be reduced by adapting
the controller parameters. Moreover, the system is robust
against the uncertainty of model parameters and external
interference.
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Fig. 2 The response of system with reference normal model with
∆f3(x) = 0, ∆g3(x) = 0
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Fig. 3 The response of system with parameter uncertainties and
disturbances with ∆f3(x) = 3.5, ∆g3(x) = 3.5

6 Conclusions

It has been shown that the adaptive sliding mode con-
trol is simple, and it can guarantee the robustness of the
controlled attitude against the parametric uncertainties by
using the adaptive backstepping sliding mode control. Fur-
ther, it can greatly improve the steady-state precision to ob-
tain the transient dynamics of attitude. Since the tracking
errors between the state-transformed and reference model
converge to 0 asymptotically, the trajectory can be precisely
regulated by the linear reference model. Using one nonlin-
ear controller to ensure the process of out-of-the-water se-
curity, the variation of motion velocity is round 30 m/s in
transition time, and the transition process is smooth and
gentle.
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