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Abstract: This paper presents an observer based dynamic fuzzy logic system (DFLS) scheme for a class of unknown single-input
single-output (SISO) nonlinear dynamic systems with external disturbances. The proposed approach does not need the availability
of the state variables. Within this scheme, the DFLS is employed to identify the unknown nonlinear dynamic system. The control
law and parameter adaptation laws of the DFLS are derived based on Lyapunov synthesis approach. The control law is robustfied in
H∞ sense to attenuate external disturbance, model uncertainties, and fuzzy approximation errors. It is shown that under appropriate
assumptions, it guarantees the boundedness of all the signals in the closed-loop system and the asymptotic convergence to zero of
tracking errors. The proposed method is applied to an inverted pendulum system to verify the effectiveness of the proposed algorithms.
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1 Introduction

In many practical control problems, the physical state
variables of systems are partially or fully unavailable for
measurement, since the state variables are not accessible by
sensing devices and transducers are not available or very
expensive. In such cases, observer based control schemes
should be developed to estimate the state. Therefore, ob-
server design has been a very active field during the last
decade and has turned out to be much more challenging
than control problems[1]. Adaptive control techniques have
received considerable attention over the past decades due
to its power to successfully control uncertain systems[2−5].
However, conventional adaptive control theory can only
handle the systems with known dynamic structure and un-
known parameters (i.e., constant or slowly-varying). In
addition, conventional adaptive control techniques cannot
make use of human operators′ knowledge on process control,
which usually contributes to the rough tuning of system dy-
namics.

The introduction of fuzzy systems led to a great suc-
cess and provided effective approaches to handle nonlin-
ear systems especially complex and illdefined dynamic sys-
tems. Being one of the efficient intelligent techniques, fuzzy
systems have been applied to the modeling and control
of uncertain nonlinear systems. Several stable adaptive
fuzzy control schemes based on the universal approximation
theorem[6] have been developed for unknown SISO nonlin-
ear systems[7−9], multi-input multi-output (MIMO) nonlin-
ear systems[10−12], and large-scale interconnected nonlinear
systems[13−15]. These schemes provided an effective frame-
work for incorporating the expert knowledge systematically
and achieve stable performance criterion. The stability
analysis in such schemes is performed by using the Lya-
punov synthesis approach. However, these adaptive fuzzy
control schemes are static in nature. The fact that most
of physical systems are generally dynamic, suggests that
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one may introduce some sort of dynamics to these static
fuzzy models in order to cope with the dynamic nature
of the physical systems. This would provide a new tool
in the control of dynamic systems. Hence, the dynamic
fuzzy logic system (DFLS) was first introduced by Lee and
Vukovich[16, 17]. They have successfully applied this concept
to the identification of single-link robotic manipulator[16].
Stable identification and adaptive control based on DFLS
were performed in [17]. This work was extended to design
a DFLS based stable indirect adaptive control scheme for
a class of SISO nonlinear systems[18] and a class of MIMO
nonlinear systems[19].

However, the previous work on DFLS is limited to only
systems with measurable states both for SISO and MIMO
nonlinear systems[16−19]. Based on the initial results of
SISO nonlinear systems[16−18], we intend to develop an
observer based adaptive dynamic fuzzy control for SISO
nonlinear systems. Furthermore, the proposed scheme is
constructed by integrating the feature of H∞ tracking per-
formance which can greatly attenuate disturbances, model
uncertainties, and fuzzy approximation errors.

The paper is organized as follows. A class of SISO nonlin-
ear systems and control objectives are described in Section
2. Section 3 presents a brief description of static fuzzy sys-
tems and DFLS. The observer based DFLS control design
is presented in Section 4. In Section 5, the proposed control
algorithm is used to control an inverted pendulum. Section
6 concludes this paper.

2 System description

In this paper, we consider a class of SISO n-th order non-
linear systems represented by the following set of differential
equations:

x(n) = f(x, ẋ, · · · , x(n−1)) + g(x, ẋ, · · · , x(n−1))u + d(t)

y = x (1)

where f(·) and g(·) are smooth unknown nonlinear functi-
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ons, x = (x, ẋ, · · · , x(n−1)) ∈ Rn is the state vector which
is assumed to be not available for measurements, u ∈ R
and y ∈ R are the control input and the output of the
system, respectively, and d denotes the unknown external
disturbance. It is assumed that the desired output trajec-
tory and its derivatives Yd = [yd, ẏd, · · · , y

(n−1)
d ]T are mea-

surable and bounded, where y
(n−1)
d denotes the (n − 1)-th

derivative of yd with respect to time.
Let x1 = x, x2 = ẋ, · · · so that x = (x1, x2, · · · , xn)T and

(1) can be rewritten in the state space representation as

ẋ1 = x2

...

ẋn−1 = xn

ẋn = f(x) + g(x)u + d. (2)

Let x̂ = [x̂1, x̂2, · · · , x̂n]T ∈ Rn be the estination of system
state vector. Define the error vector e, estimation error
vector ê, and observation error ẽ, respectively, as

e = x− Yd = [e1, e2, · · · ., en]T (3)

ê = x̂− Yd = [ê1, ê2, · · · , ên]T (4)

ẽ = e− ê = [ẽ1, ẽ2, · · · , ẽn]T. (5)

Control objectives. Develop a feedback control law
u(t) (based on DFLS) which ensures the boundness of both
variables in the closed-loop systems and the parameters
of the DFLS, and guarantees output tracking of a speci-
fied desired trajectory ȳd = [Y T

d , y
(n)
d ]T. In addition, for

a given disturbance attenuation level ρ > 0, the following
H∞ tracking performance index is achieved.

1

2

∫ T

0

eTQedt 6 1

2
eT(0)Pe(0) +

1

2
hiẽ

Tẽ(0)+

1

2
∆T(0)∆(0) +

1

2
ρ2

∫ T

0

δTδdt (6)

where e is the error vector, δ ∈ L2 [0, T ] is the combined
disturbance and approximation error for T ∈ [0,∞] , Q and
P are positive matrices of proper dimensions, and ∆ is pa-
rameter approximation error vector.

Throughout this paper, the following assumptions are
considered on system (1).

Assumption 1. For 1 6 i 6 n, the signs of g(x̂) are
known, and there exist unknown positive constants b and c
such that 0 < b 6 |g(x̂)| 6 c < ∞, ∀x ∈ Ri. Without losing
generality, it is assumed that g(x̂) > b > 0.

Remark 1. It should be emphasized that the bounds
b and c are only required for analytical purpose, their true
values are not necessarily required to be known since they
are not used for controller design.

Assumption 2. The reference trajectories Yd is a known
bounded function of time with bounded known derivatives,
and it is assumed to be ri-times differentiable.

3 Description of DFLS

The DFLS is composed of an ordinary fuzzy logic system
(also referred to static fuzzy logic system) and a dynamic
element[16, 17]. The basic structure of the fuzzy logic sys-
tem considered in this paper which has been widely used in

identification and control of nonlinear systems is shown in
Fig. 1. It is composed of four major components, namely, a
fuzzification interface, a fuzzy rule base, a fuzzy inference
engine, and a defuzzification interface.

Fig. 1 The basic configuration of a fuzzy logic system

For fuzzy logic systems, the fuzzy rule base is made up
of the following inference rule:

Rl : If x1 is F l
1 and x2 is F l

2 and · · · xn is F l
n

Then y is Gl (7)

where F l
1 and Gl

1 are fuzzy sets in R, l = 1, 2, · · · , N , i =
1, 2, · · · , n, j = 1, 2, · · · , p.

Through center-average defuzzifier, product inference,
and singleton fuzzifier[6], the output of the fuzzy logic sys-
tem can be expressed as

y(x) =

N∑
l=1

ȳ l(
n∏
i

µF l
i
(xi))

N∑
l=1

(
n∏
i

µF l
i
(xi))

(8)

where ȳ l is the center of the fuzzy set Gl at which µl
G

achieves its maximum value, and we assume that µl
G(ȳl) =

1. Equality (3) can be written as

y(x) = Ȳ Tφ(x), j = 1, 2, · · · , p (9)

where Ȳ T = [ȳ1, · · · , ȳN ]T is a vector of adjustable param-
eters, and φ(x) = [φ1, · · · , φN ]T is a regression vector with
each φl defined as a fuzzy basis function (FBF)[6] as

φl =

n∏
i

µF l
i
(xi)

N∑
l=1

(
n∏
i

µF l
i
(xi))

. (10)

The DFLS shown in Fig. 2 can now be described by the
following differential equations:

˙̂y = −αŷ + Ȳ Tφ(x). (11)

The DFLS described by (3) was shown to possess univer-
sal approximating capabilities to a large class of nonlinear
dynamic systems[17].

Our objective now is to develop an appropriate control
law for input u in (1) and an adaptation law for the pa-
rameter matrix Ȳ of the DFLS (5), such that the closed
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loop system is stable in the sense that the tracking error
e = yd − y is uniformly bounded, and the identification er-
rors and identifier parameters are also uniformly bounded.

Fig. 2 Dynamic fuzzy logic system

4 Observer based DFLS control

In this section, we develop an observer-based indirect
adaptive fuzzy controller and its stability scheme for sys-
tem (1) based on DFLS.

To begin with, take x̂ = (x̂1, x̂2, · · · , x̂n)T as the inputs
of DFLS, and fuzzy rule base is

Rl: If x̂1 is F l
1 and x̂2 is F l

2 and x̂n is F l
n,

Then y is Gl. (12)

The expression for ẋn in (2) can be written as

˙̂xn = −αx̂ + Ȳ φ(x̂, u)− r(x̂, u, φ, Ȳ ) (13)

where ri(x, u, φ, Ȳi) represents the static modeling error of
the DFLS identifier and can be expressed as

r(x̂, u, φ, Ȳ ) = −αx̂ + Ȳ φ(x̂, u)− f(x̂)− g(x̂)u− d. (14)

By Lemma 1 in [17], there exists an optimal parameter vec-
tor

Ȳ ∗ = min
‖Ȳ ‖

{Ȳ :
∥∥Ȳ

∥∥ 6 MȲ } (15)

which minimizes the static modeling error r, such that

sup
(x,u)∈Ω

∣∣r(x̂, u, φ, Ȳ ∗)
∣∣ 6 Mr (16)

where MȲ and Mr are positive design constants. In the
following, we develop an adaptive law for Ȳ . Replacing Ȳ
by Ȳ ∗ in (8) results in

˙̂xn = −αx̂ + Ȳ ∗φ(x̂, u)− r(x̂, u, φ, Ȳ ∗). (17)

Subtracting (17) from (2) yields

˙̃x = −αx̃ + ∆φ(x̂, u) + r(x̂, u, φ, Ȳ ∗) (18)

where ∆ = Ȳ − Ȳ ∗ is the parameter estimation error.
In this situation, we propose the following control law

which is based on DFLS:

u =
1

ĝ(x̂ |θg)
[αx̂− Ȳ Tφ(x̂, 0) + y

(n)
d + ur + us] (19)

where ĝ(x̂ |θg) is a static fuzzy logic estimation of function
ĝ(x̂), it is also a nonlinear function of the state vector x and
it can be approximated by a fuzzy logic system (4) as

ĝ(x̂|θg) = φT(x̂)θg. (20)

The adaptive law for the parameter θg, ur, and us will
be defined later. And φ(x, 0) = φ(x, u) |u=0 .

Substituting (19) into (2), after straight forward manip-
ulations, it can be easily obtained as

ė = Ae−BKT
c ê + Bur + B((f̂(x̂ |θf )− f(x))+

(ĝ(x̂ |θg )− g(x))u + αx− Ȳ φ(x, 0) + Bd

e = CTe
¯

(21)

where

A =




0 1 0 · · · 0

0 0 1 · · · 0
...

...
...

. . .
...

−kn −k(n−1) −k(n−2) · · · −k1




,

B =




0

0
...

1




, C =




1

0
...

0




.

Using (21) with u = 0, we can write

ė = Ae−BKT
c ê + Bur + Bus + B (−∆φ(x, 0) +

(ĝ(x̂ |θg )− g(x))u− ri(x, u, 0, Ȳ ∗
i )

)
. (22)

The control gain functions g(x) can be approximated by a
static fuzzy logic system (4). It follows that

g(x) = ĝ(x̂ |θg ) + κ = φ(x)θg + κ (23)

where θg is an adjustable parameter vector, φ(x) is a fuzzy
basis function, and κ is the fuzzy approximation error. De-
fine an optimal parameter estimate θ

∗
g such that it mini-

mizes the approximation error. Therefore, we can write

g(x) = φ(x)θ∗g + κ∗ (24)

where κ∗ is the minimum approximation error.
Design the error observer as

˙̂ei = Aê−BKT
c ê + K0(e− ê) (25)

where KT
0 = [k0

1, k0
2, · · · , k0

n] is the observer gain vector,
which is selected to make sure that the characteristic poly-
nomial of A−K0C

T is Hurwitz.
Subtracting (15) from (12) yields

˙̃ei = (A−K0C
T)ẽ + Bur + Bus + B[−∆φ(x̂, 0)−

∆gφ(x̂u] + Bw

ẽ = CT ẽ (26)

where ∆g = θg − θ∗g and w = κ∗ + r(x̂, u, 0, Ȳ ∗). We define
the robust compensator control terms ur and us as

ur =
1

λ
BTP ẽ (27)

us = −KT
0 P ê (28)

where λ and P are the solutions of the following Riccati-like
equation:

ATP + PA−Q−
(

2

λ
− 1

ρ2

)
PBBTP = 0. (29)
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It is noticed that Riccati equation (29) has a solution
P = PT > 0 if and only if 2ρ2 > λi.

The adaptive laws are chosen as

˙̄Y = −η1hẽφ(x̂, u) + η1φ(x̂, 0)BTP ẽ (30)

and

θ̇g = −η2ẽ
TPBφ(x̂)u. (31)

Theorem 1. Consider system (1) that identifies by the
DFLS (11) with its observer (25), and its controller (19),
(27) and (28). Let the parameter vectors Ȳ and θg be ad-
justed by the update law (30) and (31), respectively. Then,
the closed loop system has the following properties:

1) All signals in the closed loop system are uniformly
bounded.

2) For a given disturbance attenuation level, the proposed
tracking performance index (6) is achieved.

Proof. Choose a Lyapunov function as

V =
1

2
êTP ê +

1

2
hẽ2 +

1

2η1
∆T∆ +

1

2η1
∆T

g ∆g. (32)

Differentiating V and using (18) and (21), we obtain

V̇ =
1

2
˙̂e
T
P ê+

1

2
êTPi

˙̂e+hẽ ˙̃e +
1

η1
∆̇T∆ +

1

η2
∆̇T

g ∆g =

êT

(
ATP + PA− 2

λ
êTPBBTê

)
ê− αhẽ2+

1

η1

(
˙̄Y T + η1hẽφT(x̂, u)− ηφ(x̂, 0)BTP ê

)
∆+

1

η2

(
θ̇T

g + η2ê
TPBφT(x̂)u

)
∆g+

hẽr(x̂, u, φ, Ȳ ∗) +
1

2

(
wBTP ê + êTPBw

)
=

1

2

[
êTATP ê− 1

λ
êTPBBTê− φ(x̂, 0)T∆BTP ê −

1

λ
êTPBBTê− êTPB∆Tφ(x̂, 0)− êTPB∆T

g φ(x̂)u−
φ(x̂)∆gBTêiu + wBTP ê + êTPAê + êTPBw+

1

η1

˙̄Y T∆ +
1

η2
θ̇T

g ∆g

]
+

hẽ
[
−αẽ + ∆Tφ(x̂, u) + r(x̂, u, φ, Ȳ ∗

i )
]
. (33)

Using the adaptive laws (30) and (31), (33) can be sim-
plified into

V̇ 6 êT

(
ATP + PA− 2

λ
êTPBBTê

)
ê− αhẽ2−

hẽr(x̂, u, φ, Ȳ ∗)− 1

2

(
wBTPe + eTPBw

)
. (34)

By the triangular inequality, we have

hẽr(x̂, u, φ, Ȳ ∗) 6 h2ẽ2

2ρ2
+

ρ2

2
r2

i (x̂, u, φ, Ȳ ∗
i ). (35)

Substituting (35) and using Riccati-like equation (29),
(34) becomes

V̇ 6 −êTQe− 1

2ρ2
eTPBBTe− αhẽ2

i +
h2ẽ2

i

2ρ2
+

ρ2

2
r2(x̂, u, φ, Ȳ ∗) +

1

2

(
wBTPe + eTPBw

)
. (36)

Note that the third and fourth terms are negative in (36).
So (36) can be rewritten as

V̇i 6 −êTQê− 1

2ρ2
êTPBBTê−

(
αh− h2

2ρ2

)
ẽ2

i +

ρ2

2
r2(x̂, u, φ, Ȳ ∗) +

1

2

(
wBTP ê + êTPBw

)
. (37)

The third term in (37) can be made negative by choosing
h 6 2αρ2. So, (37) can be rewritten as

V̇ 6 −êTQê− 1

2

(
1

ρ
êTPB − ρw

)2

+

ρ2

2

(
r2(x̂, u, φ, Ȳ ∗) + w2) . (38)

Since
1

2

(
1

ρ
êTPB − ρw

)2

> 0, from (38), we obtain

V̇ 6 −eTQe +
1

2
ρ2δ2 (39)

where δ2 = r2(x̂, u, φ, Ȳ ∗)+w2. After some straightforward
manipulations, we can deduce

V̇ 6 −cV + µ (40)

where c = min
{

λ, 1
η1

, 1
η2

}
with λ = inf λmin(Q)

subλmax(Q)
and µ =

1
2ρ2

∑p
i=1 δ2.

From (40) and (33), we can obtain

V̇ 6 −cV + µ (41)

where c =
∑p

i=1 ci and µ =
∑p

i=1 µi.
This implies that all signals in the closed loop system are

bounded. Thus, the control objective 1) in Theorem 1 is
realized.

Integrating (41) from t = 0 to t = T , we have

1

2

∫ T

0

êTQêdt 6 V (0)− V (T ) +
1

2
ρ2

∫ T

0

δ2dt. (42)

Since V (T ) > 0, we can write (42) as

1

2

∫ T

0

êTQêdt 6

V (0) +
1

2
ρ2

∫ T

0

δ2dt =

1

2
eT(0)P ê(0) +

1

2
hẽ2(0) +

1

2η1
∆T(0)∆(0)+

1

2η2
∆T

g (0)∆g(0) +
1

2
ρ2

∫ T

0

δ2dt. (43)

Then, from (43), we obtain

1

2

∫ T

0

eTQedt 6

1

2
eT(0)Pe(0) +

1

2
hz̃Tz̃(0)+

1

2
∆T(0)∆(0) +

1

2
ρ2

∫ T

0

δTδdt. (44)

Thus, the control objective 2) in Theorem 1 is achieved. ¤
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For the sake of clarity of presentation, the overall design
procedure of observer based DFLS scheme is summarized
in the following steps:

Step 1. Select feedback gain and observer gain vectors
Ki and Ko such that the matrices A−BKT

i and A−KoC
T

are Hurwitz stable and meet the required transient response
of tracking error dynamics.

Step 2. Specify a positive-definite matrix Q, desired at-
tenuation level ρ, and the weighting factor λ such that
2ρ2 > λ.

Step 3. Solve the Riccati equality (29) to obtain positive
definite matrix P .

Step 4. Select membership functions µFi(·), and incor-
porate expert knowledge to the rule base if available to com-
pute the fuzzy basis vectors φ(x̂) and φ(x̂, u).

Step 5. Apply the control law (19) with adaptive laws
(30) and (31).

5 Simulation results

Consider the inverted pendulum system in Fig. 3. Let
x1 = θ and x2 = θ̇. The dynamic equations of the inverted
pendulum system are

ẋ1 = x2

ẋ2 =
g sin x1−mlx2

2 cos x1 sin x1

mc + m

l

(
4

3
− m cos2 x1

mc + m

) +

cos x1

mc + m

l

(
4

3
− m cos2 x1

mc + m

)u

y = x1 (45)

where g = 9.8m/s2 is the acceleration due to gravity, mc

is the mass of the cart, m is the mass of the pole, l is the
half-length of the pole, and u is the applied force (control).
The reference signal is assumed as yd = π

30(sin(t))
. Also we

choose mc = 10, m = 1, and l = 3.

Fig. 3 The inverted pendulum system

The DFLS based control scheme design procedure for
the inverted pendulum is described in some details in the
following steps:

Step 1. Set k1 = 4, k2 = 10, k01 = 40, and k2 = 200.
Step 2. Perform simulation with two different values of

attenuation levels, ρ = 0.1. Select positive definite Q1 =
Q2 = diag{10, 10}. Select λ = 0.01 such that 2ρ2 > λ.

Step 3. Solve Riccati equation for both values of atten-
uation level as

P =

[
11.75 −5

−5 2.22

]
.

Step 4. In this simulation study, assuming that there are
no linguistic rules, we choose M1 = M2 = 5. Since |xi| 6 π

6

for i = 1, 2, we choose

µF 1
i (x̂i) = exp

[
−

(
x̂i + π

6
π
24

)2
]

,

µF2
i
(x̂i) = exp

[
−

(
x̂i + π

12
π
24

)2
]

,

µF3
i
(x̂i) = exp

[
−

(
x̂i
π
24

)2
]

,

µF4
i
(x̂i) = exp

[
−

(
x̂i − π

12
π
24

)2
]

,

µF5
i
(x̂i) = exp

[
−

(
x̂i − π

6
π
24

)2
]

.

Assuming that there is no available expert knowledge, we
are going to consider the following fuzzy rules of inference.

Rl : If x1 is F l
1 and x2 is F l

2,
Then y is Gl.

Now, we can construct the fuzzy basis vectors φ(x) and
φ(x, u) as follows

φl(x) =
µF1

1
(x1)µF1

2
(x2)

7∑
l=1

µF1
1
(x1)µF1

2
(x2)

(46)

φl(x, u) =
µF1

1
(x1)µF1

2
(x2)µF1

5
(u)

7∑
l=1

µF1
1
(x1)µF1

2
(x2)µF1

5
(u)

(47)

φ(x) = [φ1(x), φ2(x), · · · , φ5(x)]T

φ(x, u) = [φ1(x, u), φ2(x, u), · · · , φ5(x, u)]T.

Step 5. Using all the data from the previous steps, we
can construct the control law (19) with adaptive laws (30)
and (31). The parameters of the control and adaptive laws
are selected as

α1 = 9, α2 = 5, h1 = 100, h2 = 50, η1 = η2 = 1.

Choose initial condition as x1(0) = 0.5, x̂2(0) = 0, and
initial conditions for the adaptive parameters are chosen to
be zero. Simulation results are shown in Figs. 4−6, respec-
tively. Fig. 4 shows the state estimation errors ê1 and ê2,
Fig. 5 shows the system output y and the reference signal
yd. From Fig. 5, we can see that a good tracking perfor-
mance has been achieved. Fig. 6 displays the control input
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signal u. From the simulation results, it can be seen that the
proposed controller guarantees the boundedness of all the
signals in the closed-loop system, and also achieves a good
tracking performance. The comparison results between the
proposed method and that in [20] show that there is lesser
maximum overshoot response, and low control energy cost
as compared to the method given in [20].

Fig. 4 The state estimation errors

Fig. 5 The system output y

Fig. 6 Control input u

6 Conclusions

In this paper, an observer based DFLS scheme is devel-
oped for a class of uncertain nonlinear SISO systems. Since
the state variables of SISO nonlinear systems are assumed
to be unknown, the state observer is first designed to esti-
mate state variables, via which adaptive fuzzy controller is
developed. The fuzzy control law is robustified by an H∞
compensator to attenuate the effect of disturbances, model
uncertainties, and fuzzy approximation errors. The design
of the control scheme is developed by Lyapunov synthesize
approach to guarantee the stability of the overall closed-
loop system. The proposed approach guarantees that all
signals in the closed loop system are uniformly bounded
and tracking errors fall to a small neighborhood of the ori-
gin. Application of the proposed approach to an inverted

pendulum system has a good performance. Simulation re-
sults show the effectiveness of the proposed scheme.
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