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Abstract: This paper is concerned with the stochastic stability and passivity analysis for a class of Lur′e singular systems with
time-varying delay and Markovian switching. By using the free-weighting matrices approach, a delay-dependent stability criterion,
which guarantees that the system is stochastically stable and robustly passive, is derived in terms of linear matrix inequality (LMI).
Two numerical examples are provided to illustrate the effectiveness of the proposed method.
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1 Introduction

The problem of stability analysis for Lur′e control sys-
tems has been a topic of recurring interest over the past
decades due to the fact that a large class of nonlinear
systems in engineering can be modeled as this class of
systems. A great number of results related to such sys-
tems have been reported in the literatures [1–3]. Recently,
much attention has been paid to the study of Lur′e sin-
gular systems. The control problem for singular systems
of such class is more complicated than for regular ones,
because the singular systems usually have three types of
mode, namely, finite-dynamic mode, impulse mode and
non-dynamic mode, while the latter two do not appear
in state space. The results related to Lur′e singular sys-
tems can be classified into two types: delay-independent
cases[4, 5] and delay-dependent cases[6−10]. It should be
pointed out that the delay-dependent results are less conser-
vative than the delay-independent ones, especially when the
time delays are small. Till now, some results have been re-
ported related to singular/regular systems with Markovian
switching[11−15]. However, to the best of our knowledge,
the delay-dependent stability analysis for Lur′e singular sys-
tems with Markovian switching has not been investigated.

On the other hand, the notion of passivity has played
an important role in analysis and control design of linear
and nonlinear systems. Passivity is part of a broader and
more general theory of dissipativity, and it can maintain the
internal stability of the system[16, 17]. So it is necessary to
investigate the passivity of systems. However, the passivity
analysis for Lur′e systems has been paid little attention.

Motivated by the aforementioned factors, the problem
of delay-dependent stability and passivity for Lur′e singu-
lar systems with Markovian switching is considered in this
paper. The free-weighting matrices approach is employed
to derive the delay-dependent criterion, which guarantees
that the system is regular, impulse free, stochastically sta-
ble, and robustly passive. Two numerical examples are pro-
vided to illustrate the effectiveness of the proposed method.
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2 Problem formulation

Consider a class of Lur′e singular systems with Marko-
vian switching and time-varying delay described as





Eẋ(t) = A(rt)x(t) + Ad(rt)x(t− d(t))+

D(rt)f(σ(rt), rt) + B(rt)w(t)

z(t)=Cz(rt)x(t)+Cdz(rt)x (t−d(t))+Bz(rt)w(t)

σ(rt) = C(rt)x(t)

x(t)=φ(t), ∀t ∈ [−d̄, 0
]

(1)

where x(t) ∈ Rn is the state vector, z(t) ∈ Rs is the con-
trolled output, w(t) ∈ Rp is the disturbance input which
belongs to L2 [0,∞), E ∈ Rn×n may be singular, which is
assumed that rank (E) = r 6 n, φ(t) ∈ Cn,d̄ is a compat-
ible vector valued initial function, A (rt), Ad (rt), B (rt),
D (rt), Cz (rt), Cdz (rt), B (rt), Bz (rt) and C (rt) are real
constant matrices of appropriate dimensions, and {rt} is
a continuous-time Markov process with a right continuous
trajectory taking values finite set S = {1, 2, · · · , N} with
transition probabilities as

PPP [rt+∆t = j|rt = i] =

{
πij∆ + o (∆) , if j 6= i

1 + πij∆ + o (∆) , if j = i

where lim∆→0
o(∆)
∆

= 0, πij > 0, j 6= i and πii =

−∑
j 6=i πij for each i ∈ S, σ(rt) = (σrt1, σrt2, · · · , σrtq)

T,

frt(σi) = (frt1(σi1), frt2(σi2), · · · , frtq(σiq))
T. The time

delay d(t) is a time-varying continuous function that satis-
fies

0 6 d(t) 6 d̄, 0 6 ḋ(t) 6 µ 6 1, ∀i ∈ S (2)

where d̄ and µ are constants.
For notational simplicity, in the sequel, for each possible

rt ∈ i, i ∈ S, a matrix M(rt) will be denoted by Mi. For
example, A (rt) is denoted by Ai, Ad (rt) is denoted by Adi,
etc.

The nonlinear feedback path is formulated as

fi(σi) = (fi1(σi1), fi2(σi2), · · · , fim(σim))T

σi = (σi1, σi2, · · · , σim)T



80 International Journal of Automation and Computing 10(1), February 2013

with each fij(·) satisfying the finite sector condition:

fij(·) ∈ Kj [0, kj ] =
{
fij(·)|fij(0) = 0, 0 < σijfij(σij) 6 kjσ

2
ij , σij 6= 0

}

j = 1, 2, · · · , m, ∀i ∈ S. (3)

The nominal unforced system of (1) can be written as

Eẋ(t) = Aix(t) + Adix (t− d(t)) . (4)

Throughout this paper, we shall use the following con-
cepts and introduce the following useful lemmas.

Definition 1.
1) System (4) is said to be regular and impulse free for

any time delay d(t) satisfying (2), if the pairs (E, Ai) and
(E, Ai + Adi) are regular and impulse free for every i ∈ S.

2) System (4) is said to be stochastically stable for any
fij(·) (j = 1, 2, · · · , q) satisfying (3), if there exists a con-
stant T (r0, φ(·)) such that

E

[∫ ∞

0

‖x(t)‖2 dt|r0, x(s)=φ(s), s∈[−d̄, 0
]]

6T (r0, φ(·)) .

3) System (4) is said to be stochastically admissible, if it
is regular, impulse free and stochastically stable.

Definition 2. The Lur′e singular system (1) is said to
be robustly passive, if there exists a scalar γ > 0 such that

E

{
2

∫ t∗

0

wT(s)z(s)ds

}
> −γ

∫ t∗

0

wT(s)w(s)ds (5)

for all t∗ > 0 under zero initial conditions, w(t) ∈ L2 [0,∞).
Lemma 1 (S-procedure)[18]. Let Fi ∈ Rn×n, i =

0, 1, 2, · · · , p, the following statement is true: ζTF0ζ > 0
for any ζ ∈ Rn satisfying ζTFiζ > 0, if there exist real
scalars τi > 0, i = 0, 1, 2, · · · , p, such that

F0 −
p∑

i=1

τiFi > 0.

For p = 1, these two statements are equivalent.

3 Main results

In this section, we shall focus on the delay-dependent
stability and passivity for system (1).

Theorem 1. For given scalars d̄, γ > 0 and 0 6 µ 6 1,
then, for any delay d(t) satisfying (2), system (1) is stochas-
tically stable and robustly passive, if there exist symmetric
positive-definite matrices Q, Z, Λi, a scalar εi and matrices
Pi, Y1i, Y2i, Y3i, Y4i, V1i, V2i and V3i such that for each
i ∈ S,

ETPi = PT
i E > 0 (6a)

Θi =


Ξi11 Ξi12 Ξi13 d̄Y1i Ξi15 V T
1i Bi − CT

zi

∗ Ξi22 Ξi23 d̄Y2i V T
2i Di − V3i V T

2i Bi

∗ ∗ Ξi33 d̄Y3i Ξi35 −CT
dzi

∗ ∗ ∗ −d̄Z d̄Y T
4i 0

∗ ∗ ∗ ∗ Ξi55 ΛiCiBi + V T
3i Bi

∗ ∗ ∗ ∗ ∗ −γI −BT
zi −Bzi




< 0

(6b)

where

Ξi11 =

N∑
j=1

πijE
TPj + V T

1i Ai + AT
i V1i + Y1iE + ETY T

1i + Q

Ξi12 = PT
i − V T

1i + AT
i V2i + ETY T

2i

Ξi13 = −Y1iE + V T
1i Adi + ETY T

3i

Ξi15 = AT
i CT

i Λi + ETY T
4i + V T

1i Di + AT
i V3i + εiC

T
i KT

i

Ξi22 = −V2i − V T
2i + d̄Z

Ξi23 = −Y2iE + V T
2i Adi

Ξi33 = −(1− µ)Q− Y3iE − ETY T
3i

Ξi35 = AT
diC

T
i Λi − ETY T

4i + AT
diV3i

Ξi55 = ΛiCiDi + DT
i CT

i Λi + V T
3i Di + DT

i V3i − 2εiI.

Proof. First, we shall show system (1) is regular and
impulse free.

Define

Ē =

[
E 0

0 0

]
, Āi =

[
0 I

Ai −I

]
,

Ādi =

[
0 0

Adi 0

]
, P̄i =

[
Pi 0

V1i V2i

]

Ȳ1i =

[
Y1i 0

Y2i 0

]
Ȳ3i =

[
Y3i 0

0 0

]
,

Q̄1 =

[
Q 0

0 d̄Z

]
, Q̄2 =

[
(1− µ)Q 0

0 d̄Z

]
.

From (6), it is easy to see that

ĒTP̄i = P̄T
i Ē > 0 (7a)

πiiĒ
TP̄i + ĀT

i P̄i + P̄T
i Āi + Ȳ1iĒ + ĒTȲ T

1i < 0 (7b)
[

Ξ̄ P̄T
i Ādi − Ȳ1iĒ + ĒTȲ T

3i

∗ −Q̄2 − ĒTȲ T
3i − Ȳ3iĒ

]
< 0 (7c)

where

Ξ̄ = πiiĒ
TP̄i + ĀT

i P̄i + P̄T
i Āi + Q̄1 + Ȳ1iĒ + ĒTȲ T

1i .

Since rank(E) = r 6 n, there exist nonsingular matrices

G and H, such that GEH =

[
Ir 0

0 0

]
.

Denote

GĀiH =

[
Ai11 Ai12

Ai21 Ai22

]

G−TP̄iH =

[
Pi11 Pi12

Pi21 Pi22

]

HTȲ1iG
−1 =

[
Yi11 Yi12

Yi21 Yi22

]

for every i ∈ S. From (7a), we can deduce that Pi22 = 0
for each i ∈ S. Pre-multiplying and post-multiplying (7b)
by HT and H, respectively, we have

AT
i22Pi22 + PT

i22Ai22 < 0. (8)
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According to the proof of Theorem 1 in [7], we have from
(8) that the pair (E, Ai) is regular and impulse free for each
i ∈ S. Pre-multiplying and post-multiplying (7c) by [I I]
and [I I]T, respectively, we get

πiiĒ
TP̄i +

(
Āi + Ādi

)T
P̄i + P̄T

i

(
Āi + Ādi

)
< 0. (9)

Using the above approach, from (7a) and (9), we can get
that the pair (E, Ai + Adi) is regular and impulse free for
each i ∈ S. From Definition 1, system (1) with u(t) = 0 is
regular and impulse free for any delay d(t) satisfying (2).

Next, we shall prove the stochastic stability of the system
(1) with w(t) = 0. Define a new process {(xt, rt), t > 0} by
xt(s) = x(t + s), −2d̄ 6 s 6 0, then {(xt, rt), t > 0} is a
Markov process with initial state (φ(·), r0). Now, for t > d̄,
choose a stochastic Lyapunov functional candidate as

V (xt, rt, t) = xT(t)ETP (rt)Ex(t)+
∫ t

t−d(t)

xT(α)Qx(α)dα+

∫ 0

−d̄

∫ t

t+β

ẋT(α)ETZEẋ(α)dαdβ+

2

m∑
j=1

λij

∫ σij

0

fij(σij)dσij . (10)

Let LLL be the weak infinitesimal generator of the random
process{xt, rt}. Then, for each i ∈ S, we have

LLLV (xt, i, t) 6 2xT(t)ETPiẋ(t) + xT(t)

(
N∑

j=1

πijE
TPj

)
x(t)+

xT(t)Qx(t)− (1− µ)xT (t− d(t)) Qx (t− d(t))+

d̄ẋT(t)ETZEẋ(t)−
∫ t

t−d(t)

ẋT(α)ETZEẋ(α)dα+

2fT
i (σi)ΛiCi [Aix(t) + Adi (t− d(t)) + Difi(σi)]+

2
[
xT(t)Y1i+(Eẋ(t))T Y2i+xT (t−d(t)) Y3i+fT

i (σi)Y4i

]
×

[
Ex(t)− Ex (t− d(t))−

∫ t

t−d(t)

Eẋ(α)dα

]
+

2
[
xT(t)V T

1i + (Eẋ(t))T V T
2i + fT

i (σi)V
T
3i

]
×

[−Eẋ(t) + Aix(t) + Adi (t− d(t)) + Difi(σi)] .

It follows from Jensen integral inequality[19] that

−
∫ t

t−d(t)

ẋT(α)ETZEẋ(α)dα 6 ζT(t)(−d̄Z)ζ(t) (11)

where ζ(t) = − ∫ t

t−d(t)
1
d
Eẋ(α)dα.

From (11), we have that, for each i ∈ S

LLLV (xt, i, t) 6 XXXTΦi0XXX (12)

where

XXX =
[
xT(t) ẋTET xT (t− d(t)) ζT(t) fT

i (σi)
]T

Φi0 =




Ξi11 Ξi12 Ξi13 d̄Y1i Ξi15 − εiC
T
i KT

i

∗ Ξi22 Ξi23 d̄Y2i V T
2i Di − V3i

∗ ∗ Ξi33 d̄Y3i AT
diC

T
i Λi − ETY T

4i + AT
diV3i

∗ ∗ ∗ −d̄Z d̄Y T
4i

∗ ∗ ∗ ∗ Ξi55 + 2εiI




.

In addition, from (3), we have

fT
i (σi) [KiCix(t)− fi(σi)] > 0. (13)

By applying S-procedure[18], we can see that
LLLV (xt, i, t) < 0 for XXX 6= 0 is implied by the existence
of a scalar εi for each i ∈ S such that

XXXTΦi0XXX + 2εif
T
i (σi) [KiCix(t)− fi(σi)] < 0, ∀XXX 6= 0.

That is

LLLV (xt, i, t) 6 XXXTΦi1XXX < 0, ∀XXX 6= 0 (14)

where

Φi1 = Φi0 +




0 0 0 0 εiC
T
i KT

i

∗ 0 0 0 0

∗ ∗ 0 0 0

∗ ∗ ∗ 0 0

∗ ∗ ∗ ∗ −2εI




.

From (14), there exists a small scalar ρ > 0 such that for
each i ∈ S, LLLV (xt, i, t) 6 −ρ ‖x(t)‖2.

Therefore, for any t > d̄, by Dynkin′s formula, we obtain

EEEV (xt, i, t)−EEEV (xd̄, rd̄, d̄) 6 −ρEEE

∫ t

d̄

‖x(s)‖2 ds

which yields

EEE

∫ t

d̄

‖x(s)‖2 ds 6 ρ−1EEEV (xd̄, rd̄, d̄). (15)

From [18], the regularity and the absence of impulses of
pair (E, Ai) for each i ∈ S implies there exist two invertible
matrices Mi and Ni such that

MiENi =

[
Ir 0

0 0

]

MiAiNi =

[
Ai1 0

0 In−r

]

MiAdiNi =

[
Aid1 Aid2

Aid3 Aid4

]

MiDi =

[
Di1

Di2

]

C̄i = CiN
−1
i .

Then, for each i ∈ S, system (1) is decomposed as

ξ̇1(t) = Ai1ξ1(t) + Aid1ξ1 (t− d(t)) +

Aid2ξ2 (t− d(t)) + Di1fi(ηi)

−ξ2(t) = Aid3ξ1 (t− d(t)) + Aid4ξ2 (t− d(t)) + Di2fi(ηi)

ξ(t) = ψ(t) = N−1
i φ(t), t ∈ [−d̄, 0

]
(16)

where ηi = C̄iξ(t), ξ(t) =

[
ξ1(t)

ξ2(t)

]
= N−1

i x(t).

Expression (3) can be equivalently described as

σijfij(σij)
(
σijfij(σij)− kjσ

2
ij

)
6 0 (j = 1, 2, · · · , m) ⇒

f2
ij(σij) 6 k2

j σ2
ij ⇒ ‖fi(σi)‖2 6 ‖KiCix(t)‖2 . (17)
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Therefore,

fT
i fi 6 ξT(t)C̄T

i KT
i KiC̄iξ(t). (18)

From (17), we can deduce that

‖Di1fi(ηi)‖2 6
∥∥Di1KiC̄iξ(t)

∥∥2 ⇒
‖Di1fi(ηi)‖ 6

√
k1 (ξ1(t) + ξ2(t))

‖Di1fi(ηi)‖2 6
∥∥Di2KiC̄iξ(t)

∥∥2 ⇒
‖Di2fi(ηi)‖ 6

√
k2 (ξ1(t) + ξ2(t)) .

where

k1 = λmax,i∈S

[
C̄T

i KT
i DT

i1Di1KiC̄i

]
> 0

k2 = λmax,i∈S

[
C̄T

i KT
i DT

i2Di2KiC̄i

]
> 0.

For any 0 6 t 6 d̄, it follows from (16) that

‖ξ1(t)‖ 6 ‖ξ1(0)‖+ k3

∫ t

0

[‖ξ1(s)‖+ ‖ξ1(s− d(t))‖+

‖ξ2(s)‖+ ‖ξ2(s− d(t))‖]ds 6

(2k3d̄ + 1)‖ψ‖d̄ + k3

∫ t

0

‖ξ1(s)‖ds

where k3 = maxi∈S

{‖Ai1‖+
√

k1, ‖Aid1‖, ‖Aid2‖
}

> 0.
By applying the Gronwall-Bellman Lemma, we obtain

from (18) that for any 0 6 t 6 d̄,

sup
06t6d̄

‖ξ1(t)‖ 6 (2k3d̄ + 1)‖ψ‖d̄ek3d̄. (19)

Consider (16) and (19), it can be deduced that
sup06t6d̄ ‖ξ2(t)‖ is bounded. We assume 0 6

√
k2 < 1,

then for any 0 6 t 6 d̄, we have

sup
06t6d̄

‖ξ2(t)‖2 6
(
1−√k2

)−2

k2
4

(
(2k3d̄ + 1)ek3d̄ + 2

)2

‖ψ‖d̄

where k4 = maxi∈S

{‖Aid3‖ , ‖Aid4‖ ,
√

k2

}
. Hence,

sup
06t6d̄

‖ξ(t)‖2 6 sup
06t6d̄

‖ξ1(t)‖2 + sup
06t6d̄

‖ξ2(t)‖2 6 k5 ‖ψ‖2d̄

where

k5 = (2k3d̄ + 1)2e2k3d̄ +
(
1−√k2

)−2

k2
4×

(
(2k3d̄ + 1)ek3d̄ + 2

)2

.

Therefore,

sup
06t6d̄

‖x(t)‖2 6 k5 ‖Ni‖2
∥∥N−1

i

∥∥2 ‖φ‖2d̄ . (20)

Expressions (15) and (20) imply the existence of a scalar
k6 > 0 such that

EEE

∫ t

0

‖x(s)‖2 ds =

EEE

∫ d̄

0

‖x(s)‖2 ds + EEE

∫ t

d̄

‖x(s)‖2 ds 6 k6EEE ‖φ‖2d̄ .

From Definition 1, we get that system (1) with w(t) = 0
is stochastically stable.

Now we shall show the passivity property of system (1)
for each i ∈ S.

Under zero initial condition, it is easy to see that

LLLV (xt, i, t)− 2wT(t)z(t)− γwT(t)w(t) =

LLLV (xt, i, t)− γwT(t)w(t)−
2wT(t) [Cz(rt)x(t) + Cdz(rt)x (t− d(t)) + Bz(rt)w(t)] 6

X̄̄X̄X
T
(s)ΘiX̄̄X̄X(s)

where

X̄XX =
[
xT(t)ẋTETxT (t− d(t)) ζT(t) fT

i (σi) wT(t)
]T

.

From (6b), we get

LLLV (xt, i, t)− 2wT(t)z(t)− γwT(t)w(t) < 0. (21)

Integrating both sides of (21) with respect to t over the
time period [0, t∗] gives rise to

V (xt∗ , i, t
∗)− V (x0, i, 0)−EEE

{
2

∫ t∗

0

wT(s)z(s)ds

}
−

γ

∫ t∗

0

wT(s)w(s)ds 6 0.

Then, from Definition 2, system (1) is robustly passive. ¤
Remark 1. Theorem 1 gives a delay-dependent suffi-

cient condition of the stochastic stability with passivity for
Lur′e singular system with Markovian switching (1). In
the derivation of the delay-dependent result in Theorem
1, no model transformation is performed onto system (1).
Moreover, we have introduced some free-weighting matri-
ces, (this approach is also known as the slack matrix ap-
proach), which may help to reduce conservatism.

4 Numerical examples

In this section, two numerical examples are presented to
illustrate the effectiveness of the proposed method.

Example 1. Consider system (1) with one mode and
the system parameters are described as

A1 =

[
−0.5 0

0 − 1

]
, Ad1 =

[
−1.1 1

0 0.5

]
,

D1 =

[
0.2

0.1

]
, B1 =

[
0.1

0.2

]
,

C1 = [0.6 0.8] , Cdz1 = [0.6 0.8] ,

Cdz1 = [0.1 0.1] , Bz1 = 0.3,

K1 = 0.4.

When w(t) is not considered, the maximum allowable
delay bound d̄ for different µ is shown in Table 1. For com-
parison, the upper bounds obtained for the criteria in [9]
are also listed in Table 1. It can be seen that our method
is less conservative than those in [9].

Table 1. Maximum allowable time delay d̄ for different µ

µ 0 0.3 0.6 0.7 1.0

d̄ ([9]) 1.07 1.02 0.93 0.86 0.80

d̄ (This paper) 2.09 1.71 1.36 1.24 0.91
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Taking disturbance w(t) into account, Table 2 provides
the maximum allowed time-delay d̄ for different γ > 0 when
µ = 0.5 according to Theorem 1.

Table 2. Maximum allowable time delay d̄ for different γ

γ 0 0.2 0.5 0.8 1 1.2

d̄ 4.12 3.92 2.86 2.85 1.74 1.18

Example 2. Consider the system (1) with two modes,
i.e., N = 2, the system parameters are described as

A1 =

[
−0.3 0.1

0.1 − 1

]
, A2 =

[
0.4 0.2

0 − 0.9

]
,

Ad1 =

[
−1.4 0.5

0.1 0.7

]
, Ad2 =

[
−1.3 0.6

0.0 0.9

]
,

B1 =

[
0.01

0.02

]
, B2 =

[
0.01

0.02

]
,

D1 = D2 = 0.

The rate matrix Π and singular matrix E is chosen as
follows:

Π =

[
−0.5 0.5

0.3 − 0.3

]

E =

[
1 0

0 0

]
.

The comparison of maximum time delay upper bound d̄
via different method is recorded in Table 3.

Table 3. Maximum allowable time delay d̄ for different µ

µ 0 0.4 0.7 1

d̄ ([13]) 1.34 0.79 0.27 Infeasible

d̄ (This paper) 1.95 1.23 0.86 0.31

It can be seen from Table 3 that our results have less
conservatism than the recent results for time-delay singular
Markovian jump systems in [13].

5 Conclusions

The problem of stochastic stability and passivity for a
class of Lur′e singular systems with time-varying delay and
Markovian switching has been investigated. The delay-
dependent condition has been derived in terms of LMI, in
which some free-weighting matrices have been employed to
express the relationship between the terms in the Leibniz-
Newton formula. Finally, numerical examples have been
presented to show the effectiveness and superiority of the
proposed method.
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