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Abstract Hydraulic fracturing is an effective technology 
for hydrocarbon extraction from unconventional shale and 
tight gas reservoirs. A potential risk of hydraulic fractur-
ing is the upward migration of stray gas from the deep sub-
surface to shallow aquifers. The stray gas can dissolve in 
groundwater leading to chemical and biological reactions, 
which could negatively affect groundwater quality and con-
tribute to atmospheric emissions. The knowledge of light 
hydrocarbon solubility in the aqueous environment is essen-
tial for the numerical modelling of flow and transport in the 
subsurface. Herein, we compiled a database containing 2129 
experimental data of methane, ethane, and propane solu-
bility in pure water and various electrolyte solutions over 
wide ranges of operating temperature and pressure. Two 
machine learning algorithms, namely regression tree (RT) 
and boosted regression tree (BRT) tuned with a Bayesian 
optimization algorithm (BO) were employed to determine 
the solubility of gases. The predictions were compared with 
the experimental data as well as four well-established ther-
modynamic models. Our analysis shows that the BRT-BO 
is sufficiently accurate, and the predicted values agree well 
with those obtained from the thermodynamic models. The 

coefficient of determination  (R2) between experimental and 
predicted values is 0.99 and the mean squared error (MSE) 
is 9.97 ×  10−8. The leverage statistical approach further con-
firmed the validity of the model developed.

Keywords Gas solubility · Hydraulic fracturing · 
Thermodynamic models · Regression tree · Boosted 
regression tree · Groundwater contamination

1 Introduction

Hydrocarbon production from unconventional resources has 
become the focus of attention in the oil and gas industry in 
the last decades. Due to the exponential growth of energy 
demand, advances in horizontal drilling technologies, and 
multi-stage hydraulic fracturing operations, developing 
unconventional reservoirs has become highly attractive 
(Taherdangkoo et al. 2019). Shale gas and tight gas reser-
voirs as the main unconventional resources have extremely 
low matrix permeability and even the existence of natural 
fracture networks could not provide flow paths from forma-
tion to the wells (King 2012; Kissinger et al. 2013). Res-
ervoir stimulation techniques such as hydraulic fracturing 
could effectively increase the ability of natural gas recovery 
from such reservoirs. Hydraulic fracturing improves access 
to the larger part of the reservoir by creating artificial frac-
ture networks which increase the reservoir permeability and 
the contact areas over which fluids flow from the matrix to 
the fractures (Tatomir et al. 2018; Rice et al. 2018).

Shale gas is typically dry gas composed primarily of 
methane with traces of ethane and propane (King 2012). 
The gas is stored in three ways including absorbed in the 
limited pore spaces of these rocks, adsorbed on the surface 
of organic material, or confined in the natural fractures and 
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fissures. Therefore, gas production from shale gas reservoirs 
is more complex in comparison to conventional gas reser-
voirs (King 2012; Siegel et al. 2015). Several environmental 
concerns have emerged surrounding shale gas development, 
such as groundwater contamination, induced seismicity, 
climate impact from leaked stray gas into the atmosphere, 
etc. The main risk difference in comparison with other 
technologies in the subsurface is that hydraulic fracturing 
is remunerative, thus it is necessary to distinguish between 
economic and environmental issues (Cahill et al. 2017; Rice 
et al. 2018; Taherdangkoo et al. 2020b).

The occurrence of light hydrocarbons in groundwater 
in the vicinity of oil and gas operations is most commonly 
associated with leakage from hydrocarbon wells (Jackson 
et al. 2013; Nowamooz et al. 2015; Taherdangkoo et al. 
2020a). Natural and anthropogenic permeable pathways such 
as leaky oil and gas abandoned wells, fault zones and exten-
sive fracture systems could facilitate stray gas migration and 
an early gas manifestation in groundwater wells (Cahill et al. 
2017; Rice et al. 2018; Tatomir et al. 2018). The presence of 
low-permeability layers leads to gas migration along higher 
permeability sediments, either up-dip or in the direction of 
groundwater flow, delaying the breakthrough to the shallow 
aquifer system (Taherdangkoo et al. 2020a).

Numerical modelling of subsurface flow and transport 
of stray gas plays an essential role in better evaluating the 
relationship between groundwater quality and hydrocarbon 
development. Modelling of stray gas migration requires 
phase equilibrium calculations to obtain the concentration 
of each component in liquid and gas phases. The calculation 
of gas solubility is usually performed by solving thermo-
dynamic equations, which contributes a significant portion 
of the overall computational cost because compositions of 
liquid and gas phases must be calculated at each iteration. 
Therefore, due to the high computational time, an efficient 
application of complex thermodynamic models in numerical 
simulation of coupled multi-physics processes in the sub-
surface is laborious (Grunwald et al. Grunwald et al. 2020).

As an alternative to complex thermodynamic models, 
machine learning (ML) can be employed to describe the 
phase behaviour of gas-water-salt systems (Mohammadi 
et al. 2022; Taherdangkoo et al. 2021a). ML models can 
handle complex nonlinear relationships between inputs and 
outputs and can perform high precision interpolations (Qiao 
et al. 2020). Optimization algorithms can also be employed 
to tune hyper-parameters of ML algorithms and thus improve 
their overall performance (Taherdangkoo et al. 2023). Equa-
tions of state and predictive ML models estimate maximum 
gas solubility assuming perfect mixing and mass transfer 
between gas and aqueous phases. The stray gas migrating in 
the subsurface typically does not result in maximum solubil-
ity manifesting as the mass transfer from gas to the aqueous 
phase is limited in porous media (Cahill et al. 2018).

The primary goal of this study is to develop a robust ML 
model able to determine the solubility of light hydrocar-
bons  (C1–C3) in aqueous solutions for further application in 
higher level numerical modelling. We used regression tree 
and boosted regression tree tuned with a Bayesian optimiza-
tion algorithm to perform the regression task. The ML mod-
els were developed using a dataset containing 2129 experi-
mental data of methane, ethane, and propane solubilities in 
pure water and aqueous and electrolyte systems. A compari-
son analysis was designed to evaluate the performance of the 
most accurate ML model with experimental data as well as 
Spivey et al. (2004), Duan and Mao (2006), Chapoy et al. 
(2004), and Pereda et al. (2009) thermodynamic models.

2  Data

We reviewed publicly available experimental data of light 
hydrocarbons  (C1–C3) solubility in aqueous solutions to 
build a dataset to develop a robust machine learning model 
able to determine the gas solubility under a wide range of 
field conditions. The compiled dataset includes experimen-
tal gas solubility data measured between 1855 and 2007. 
There are instances in which experimental solubility data are 
incorrect or inconsistent with other gas solubility measure-
ments. Following Duan et al. (1992), the inconsistent solu-
bility data, e.g., methane solubility in pure water reported by 
Michels et al. (1936), were not considered in the dataset. The 
gas solubility has been reported in different units. Most of 
the experimental data in our dataset were originally reported 
in mole fraction, i.e., the mole fraction of the gas component 
in the liquid phase, and thus the remaining solubility values 
were converted to mole fraction using appropriate conver-
sion functions. Where feasible, to avoid a conversion, the 
solubility data were taken from Clever and Young (1987), 
Hayduk (1982, 1986).

The solubility of methane in pure water and brine has 
been reported over a broad range of pressure, temperature, 
and NaCl concentrations (Clever and Young 1987), but lim-
ited measurements are available for saline solutions contain-
ing other salts. The dataset contains a total of 1912 methane 
solubility experimental data (Amirijafari et al. 1972; Ben-
Naim et al. 1973; Blanco et al. 1978; Blount 1982; Bunsen 
1855; Byrne and Stoessell 1982; Chapoy et al. 2004; Claus-
sen and Polglase 1952; Cosgrove and Walkley 1981; Cramer 
1984; Crovetto et al. 1982; Culberson et al. 1951; Dhima 
et al. 1998; Duffy et al. 1961; Eucken and Hertzberg 1950; 
Kiepe et al. 2003; Krader and Franck 1987; Lannung et al. 
1960; Lekvam and Bishnoi 1997; Michels et al. 1936; Mish-
nina et al. 1962; Morrison and Billett 1952; Moudgil et al. 
1974; Muccitelli and Wen 1980; Namiot 1961; O’Sullivan 
and Smith 1970; Rettich et al. 1981; Stoessell and Byrne 
1982; Wang et al. 2003; Wen and Hung 1970; Wetlaufer 
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et al. 1964; Winkler 1901; Yamamoto et al. 1976; Yano et al. 
1974; Yarym-Agaev et al. 1985). Temperatures are in the 
range of 273.15 and 799 K, and pressure ranges from 1 to 
2630 bar. The methane solubility in the aqueous phase is 
a function of pressure and temperature and concentrations 
of dissociated ions of NaCl, KCl,  CaCl2,  MgCl2,  K2SO4, 
 MgSO4,  Na2SO4,  K2SO4,  Na2CO3,  K2CO3 in aqueous 

solutions. The statistical analysis of parameter values is 
summarized in Table 1, and their distributions in terms of 
histogram plots are presented in Fig. 1.

The solubility of ethane and propane in aqueous systems 
has not been widely examined, and the majority of experi-
ments were conducted before 1980 (Hayduk 1982, 1986). 
Additionally, only some authors measured the gas solubility 
under intermediate to high pressure and temperature condi-
tions. The compiled dataset contains 235 ethane solubility 
in pure water (Anthony and McKetta 1967; Chapoy et al. 
2004; Claussen and Polglase 1952; Culberson et al. 1950; 
Mohammadi et al. 2004; Morrison and Billett 1952; Ret-
tich et al. 1981; Wang et al. 2003; Wen and Hung 1970; 
Wetlaufer et al. 1964; Winkler 1901; Ben-Naim et al. 1973). 
Temperatures are in the range of 273.51 and 444.26 K, and 
pressure ranges from 1 to 685 bar. The statistical analysis 
of ethane solubility data is presented in Table 2 and Fig. 2.

Table 1  Range of parameter values in methane solubility dataset

Parameter Minimum Maximum Standard deviation Mean

P (Bar) 1+ 2630 533.17 485.23
T (K) 273.15 799 112.82 398.85
Solubility 

(mole frac-
tion)

3.53 ×  10–6 0.0185 0.002 0.002

NaCl (m) 0 5.4 1.71 1.38
KCl (m) 0 4 0.66 0.15
CaCl2 (m) 0 7.35 0.47 0.07
MgCl2 (m) 0 2.16 0.11 0.009
K2SO4 (m) 0 0.25 0.006 0.0002
MgSO4 (m) 0 1.5 0.08 0.006
Na2SO4 (m) 0 1 0.057 0.004
K2SO4 (m) 0 0.5 0.024 0.001
Na2CO3 (m) 0 1.5 0.084 0.064
K2CO3 (m) 0 2 0.1 0.007

Fig. 1  Distribution of param-
eter values in methane solubility 
dataset

Table 2  Range of parameter values in ethane solubility dataset

Parameter Minimum Maximum Standard 
deviation

Mean

P (Bar) 1 685 158.09 83.07
T (K) 273.51 444.26 49.2 327.83
Solubility 

(mole frac-
tion)

1.47 ×  10−5 0.0041 6.712 ×  10−4 5.211 ×  10−4
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The compiled dataset contains 259 propane solubility 
data in pure water (Azarnoosh and McKetta 1958; Cha-
poy et al. 2004; Claussen and Polglase 1952; Gaudette and 
Servio 2007; Kobayashi and Katz 1953; Kresheck et al. 
1965; Mokraoui et al. 2007; Morrison and Billett 1952; 
Umano and Nakano 1958; Wehe and McKetta 1961; Wen 
and Hung 1970; Wetlaufer et al. 1964; Wishnia 1963). Tem-
peratures are in the range of 273.2 and 422 K, and pressure 
ranges from 0.103 to 42.69 bar. The statistical analysis of 
propane solubility data is provided in Table 3 and Fig. 3.

3  Methodology

3.1  Machine learning

A brief description of regression tree and boosted regres-
sion tree algorithms is presented. Detailed explanations 
of mathematical backgrounds and computational proce-
dures can be found in the cited literature. The models were 
developed using MATLAB 2021b software.

3.1.1  Regression tree

Regression tree (RT) is a supervised technique that uses 
one or more input (predictor) variables to predict a single 
output (response) variable. An RT is built through a binary 
recursive partitioning process, in which the data are split 
data into partitions or branches, and then splitting of each 
branch continues further (Leblanc 2006; Loh 2011). All 
the data in the training set are initially in the same group 
(root), and then are allocated into two branches (child nodes) 
using a splitting rule that maximizes homogeneity in the 
child nodes. The splitting process continues until each node 
reaches a user-specified minimum node size and becomes a 
terminal node. The splitting rules are in the internal nodes 
and the responses are in the leaf nodes (Cichsz 2015; Saha 
et al. 2015).

The advantage of tree-based models is that they are scal-
able to large problems and can handle smaller datasets than 
neural networks (Cichsz 2015; Shehab et al. 2024). RT is 
flexible and has the ability to adjust in time, can easily han-
dle outliers, has an easy implementation on different types 
of data structures, and is computationally cheap. As with 
any model, regression tree has its own weaknesses; a single 
tree model tends to be unstable, which can negatively influ-
ence the accuracy of the response variable (Breiman 1996; 
Loh 2011).

3.1.2  Boosted regression tree

Boosted regression tree (BRT) is an ensemble of boosting 
and regression tree algorithms. In boosting, multiple trees are 
fitted to the training data, and are then sequentially combined 

Fig. 2  Distribution of param-
eter values in ethane solubility 
dataset

Table 3  Range of parameter values in propane solubility dataset

Parameter Minimum Maximum Standard 
deviation

Mean

P (Bar) 0.103 42.69 9.8 9.58
T (K) 273.2 422 37.74 322.51
Solubility 

(mole 
fraction)

1.309 ×  10−6 3.66 ×  10−3 8.33 ×  10−5 1.26 ×  10−4

Fig. 3  Distribution of param-
eter values in propane solubility 
dataset
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to improve the predictive performance that can be obtained 
from a single tree (Elith et al. 2008; Taherdangkoo et al. 
2022). Boosting emphasizes poorly modeled observations, 
i.e. observations with high deviations from the mean, in the 
existing trees to produce a strong prediction and improve 
the model accuracy. The predictive performance of RTs has 
been improved by the boosting algorithm (Buhlmann and 
Hothorn 2007; Saha et al. 2015).

BRT uses a stepwise forward procedure, which means that 
the existing trees remain unchanged. A new tree is trained at 
each iteration using the original features and is added to the 
current tree sequence. Then, residuals of each observation 
are updated to represent the contribution of the new tree. 
Once the process is complete, the final predictions are deter-
mined by the weighted sum of the predictions of individual 
trees (Elith et al. 2008; Saha et al. 2015). To minimize the 
loss function, Friedman (2001) introduced gradient boost-
ing by applying the steepest descent method to the stepwise 
forward estimate. Later, the gradient boosting method was 
modified by using a random subsampling of the training data 
to improve the predictive performance and reduce over-fitting 
potential and the computation time (Friedman 2002).

3.1.3  Bayesian optimization

The performance of a tree model is dependent on the choice 
of its hyper-parameters values (Bergstra et al. 2011). We 
employed a Bayesian optimization algorithm to tune hyper-
parameters of the RT and BRT models. Bayesian optimiza-
tion is suitable for optimizing computationally expensive 
objective functions, and tolerates stochastic noise in function 
evaluations. This method is characterized by two features (i) 
a surrogate model of an objective function, and (ii) an acqui-
sition function computed from the surrogate model, which 
is used to define the next evaluation point. We employed the 

was used to obtain the total effectiveness of the ML models. 
Herein, a fivefold cross-validation (k = 5) was used.

There are various statistical approaches to assess 
the accuracy of ML models. We used the coefficient of 
determination  (R2), the mean squared error (MSE), and the 
median absolute deviation (MAD) metrics. We also used the 
absolute residual distribution plot to evaluate the model’s 
accuracy and check possible residual trends. Additionally, 
we employed a leverage statistical approach and sketched 
William’s plot (Narmandakh et al. 2023) to detect outliers.

3.2  Thermodynamic models

The performance of the most accurate ML model was compared 
with four thermodynamic models as they can effectively 
describe the phase behavior of the system when conditions fall 
within their applicability domain. We used Spivey and McCain 
(2004) to calculate methane solubility, Mao et al. (2005) to 
calculate ethane solubility, and Chapoy et al. (2004) and Pereda 
et al. (2009) to calculate propane solubility. Herein, we present 
each thermodynamic model in its original form.

(1) Spivey model
Spivey and McCain (2004) developed an empirical 

correlation to calculate methane  (CH4) solubility in pure 
water, and used a modification of Duan et al. (1992) method to 
account for salinity. Spivey and McCain (2004) model, simply 
referred to as “Spivey model”, is valid for temperatures from 
293.15 to 633.15 K, pressures from 9 to 2000 bar, and NaCl 
concentrations of up to 6 m. The solubility of methane in pure 
water and NaCl solutions can be calculated as follows:

(1)

CmCH4,H2O
= exp

(

A(T)
[

ln
(

P − Pv

)]2
+ B(T)ln

(

P − Pv

)

+ C(T)

)

expected improvement acquisition function, which was used 
to construct a utility function from the model posterior to 
direct sampling to areas where improvement over the cur-
rent optimum can be expected (Bergstra et al. 2011; Hutter 
et al. 2019).

3.1.4  Accuracy assessment

We partitioned the data into k randomly groups (or folds) 
of roughly equal size using k-fold cross-validation. Models 
were trained using k-1 groups of the dataset and validated 
on the remaining group. The average error over all k groups 

(2)CmCH4,brine
= CmCH4,H2O

exp
[

−2�CH4,Na
(T ,P)CmNaCl − �CH4,NaCl

(T ,P)C2

mNaCl

]

where CmCH4H2O
 and CmCH4,brine

 [mol  kg−1] are the solubility 
of methane in pure water and brine solutions, respectively. 
T [K] is temperature, P [MPa] is pressure, and Pv [MPa] 
is vapor pressure of pure water. A(T), B(T), and C(T) are 
temperature-dependent functions. CmNaCl [mol  kg−1] is the 
NaCl concentration, and �CH4,Na

(T ,P) and �CH4,NaCl
(T ,P) are 

coefficients.
(2) Mao model

Mao et al. (2005) developed a thermodynamic model based 
on an equation of state and the theory of Pitzer (Pitzer 1973) 
to calculate ethane  (C2H6) in pure water and aqueous NaCl 
solutions. Mao model is valid within the range of temperature 
273 to 444 K, and pressure of 0 to 1000 bar. The solubility of 
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methane in pure water can be calculated using the following 
equation:

where mC2H6
 [mol  kg−1] is the solubility of  C2H6 in pure 

water, yi is the mole fraction of  C2H6 in the gas phase, P 
[bar]  i s  pressure ,  T [K] is  temperature ,  R 
[bar  cm3  mol−1  K−1] equal to 83.14467 is the universal gas 
constant, �l(0)

C2H6

 is the chemical potential of  C2H6 in the liquid 
phase, and �C2H6

 is the fugacity coefficient.
(3) Chapoy model
Chapoy et al. (2004) developed a thermodynamic model 

based on uniformity of the fugacity of each component in 
all phases to calculate propane  (C3H8) solubility in the liq-
uid phase. The Valderrama modification of the Patel–Teja 
equation of state (VPT-EoS) with non-density dependent 
(NDD) mixing rules was used to calculate fugacities in the 
fluid phases. They acquired experimental propane solubil-
ity data to adjust the binary interaction parameters between 
propane and water. Henry’s constants for propane in water 
can be calculated as:

where Hiw [KPa] is Henry’s constant and T  [K] is 
temperature.

(4) Pereda model
Pereda et al. (2009) used a group contribution plus asso-

ciation equation of state (GCA-EoS) to describe the phase 
behavior of water + hydrocarbon  (C2 to n-C6, cy–C6, i–C4 
and i–C8) system. They acquired experimental solubility 
data on the solubility of n-hexane, cyclo-hexane and iso-
octane in pure water to adjust the parameters of GCA-EoS. 
The following equation was presented for the hard sphere 
diameter of water to take into account the temperature 
dependency of the hydrocarbon solubility in water and the 
vapor pressure of water.

(3)
ln
yC2H6

P

mC2H6

=

�
l(0)

C2H6
(T ,P) − �

v(0)

C2H6
(T)

RT

− ln�C2H6
(T ,P, y) + ln�C2H6

(T ,P,m)

(4)
ln
(

Hiw

)

= 552.64799 + 0.078453T −
21334.4

T
− 85.89736lnT

(5)

dW = dCW{0.554

[

exp

[

−2TCW

3T

]]2

− 0.543exp

[

−2TCW

3T

]

+ 1.097}

where dW [cm  mol−1] is the hard sphere diameter of water, 
dCW [cm  mol−1] is the hard sphere diameter of water at the 
critical temperature, T [K] is temperature, and TCW [K] is the 
critical temperature of water.

4  Results

4.1  Model performance evaluation

We employed a Bayesian optimization algorithm with an 
expected improvement acquisition function to optimize 
the hyper-parameters of the RT and BRT algorithms. The 
iteration number for running each algorithm was set to 300. 
Table 4 summarizes the optimum hyper-parameter values of 
the models obtained after the optimization process.

The input parameters of the RT-BO and BRT-BO models 
are pressure [bar], temperature [K], and concentration [m] of 
NaCl, KCl,  CaCl2,  MgCl2,  K2SO4,  MgSO4,  Na2SO4,  K2SO4, 
 Na2CO3,  K2CO3, and the corresponding gas solubility (mole 
fraction) is the output parameter. In the case of gas solubil-
ity in pure water, the salt concentrations are set to zero. The 
regression plots (Fig. 4) of predicted gas solubility values 
from the RT-BO and BRT-BO versus experimental ones, 
show accumulation of data points close to the 45-degree 
reference line. The deviations from the reference line are 
more evident in RT-BO model, indicating its lower accuracy.

The statistical indices  (R2, MSE, and MAD) indicate 
the superior performance of the BRT-BO model (Table 5). 
In this case, the MSE equals 9.97 ×  10–8 and the MAD is 
1.72 ×  10–4. The RT-BO model also has a relatively high 
predictive capability; MSE and MAD equal 2.15 ×  10–7 and 
2.33 ×  10–4, respectively.

The predictive capabilities of the models are further illus-
trated in Fig. 5. The experimental and predicted solubility 
values of the BRT-BO model mostly cover each other, indi-
cating its good performance. The results show that the model 
is slightly less accurate in determining high gas solubility 
values, especially where the solubility in the aqueous phase 
is higher than 0.01 mol fraction because most of the data 
points have lower solubility values (see Sect. 2). The maxi-
mum and mean values for methane solubility are 0.0185, 
and 0.0024. These values for ethane are 0.0041 and 0.00052, 
respectively, and for propane are 0.00366 and 0.00012. The 

Table 4  Optimal hyper-
parameter values of the ML 
models and their range of 
variations

Model Hyper-parameter Range of variation Optimum value

RT-BO Minimum leaf size 1–1064 1
BRT-BO Minimum leaf size 1–1064 22

Number of learners 10–500 492
Learning rate 0.001–1 0.19136
Number of predictors to sample 1–15 15
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statistical analysis shows that the BRT-BO model’s devia-
tions from the experimental data are minor, except for some 
data points.

We conducted more analysis to evaluate the performance 
of the BRT-BO model since it is more accurate than the 
RT-BO. The empirical cumulative distribution function 
(eCDF) of the BRT-BO (Fig. 6) indicates the high accu-
racy of the model because the curve is close to the Y-axis; 
the residuals are mostly distributed near zero. Furthermore, 
70 % of the precipitated gas solubility values have an abso-
lute error of lower than 1.5 ×  10–4, and 90 % of the predicted 
values have an error of lower than 3.9 ×  10–4.

We calculated the partial dependence between the pre-
dictor variables and gas solubility in aqueous phase using 
the BRT-BO model. Figure 7 displays the two-variable par-
tial dependence of gas solubility on joint values of pres-
sure and temperature. The solubility of light hydrocarbons 
has a strong partial dependence on pressure; gas solubility 
increases with increasing of pressure. The strong partial 

dependence of the gas solubility on the temperature is evi-
dent. These outcomes confirm that the developed model is 
reliable following the gas solubility behavior observed dur-
ing the laboratory testing.

We sketched the Williams plot (Taherdangkoo et  al. 
2021b) on the basis of the standardized residuals and 
Hat values (diagonal elements of the Hat matrix) for the 

Fig. 4  Regression plots of the 
RT-BO and BRT-BO mod-
els, showing predicted versus 
experimental solubility values 
of methane, ethane, and propane 
gases. x

gas
 is the gas solubility 

in mole fraction

Table 5  Summary of statistical indices for the ML model’s perfor-
mance

Model R2 MSE MAD

BRT-BO 0.99 9.97 ×  10−8 1.72 ×  10−4

RT-BO 0.97 2.15 ×  10−7 2.33 ×  10−4

Fig. 5  Comparing the RT-BO 
and BRT-BO calculated light 
hydrocarbon solubility values 
with experimental values versus 
corresponding data index

Fig. 6  Cumulative frequency of absolute residuals obtained from the 
BRT-BO model
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BRT-BO model to detect suspected experimental data and 
high leverage points, which are outliers falling outside of 
the applicability domain of the model. The analysis (Fig. 8) 
shows that bulk of the gas solubility data falls in the valid 
domain, 0 ≤ Hat ≤ 0.0019 and -3 ≤ standardized residuals ≤ 3, 
indicating the reliability of the compiled dataset and the sta-
tistical validity of the model.

The quantitative analysis shows that the standardized 
residuals of 36 data points (1.69% of the compiled data) 
are outside the range of − 3 to 3, which are considered as 
suspected data. Additionally, 112 data points (5.26%) have 
high leverage (Hat value ≥ 0.0019). However, the BRT-BO 
model’s performance analysis (Fig. 8) shows that the pre-
dicted gas solubility residuals are in an acceptable range.

4.2  Comparison analysis

In Fig. 9, the predictive ability of the BRT-BO model to 
calculate methane solubility in pure water was compared 

with experimental data and Spivey model in the tem-
perature range between 298.2 and 344.3 K and pressure 
between 22.8 and 680 bar. The BRT-BO and Spivey mod-
els capture the solubility trend observed in the experimen-
tal data; increase of the methane solubility in liquid phase 
with increasing of pressure. The BRT-BO model can accu-
rately determine methane solubility values at low pres-
sure and temperature conditions. Furthermore, the com-
parison analysis with O’Sullivan (1970), and Culberson 
et al. (1951) shows the efficiency of the model in determin-
ing the solubility values at high pressures. The modeling 
deviations, i.e. the difference between experimental and 
predicted values, are minor showing the potential of the 
BRT-BO for future applications.

Methane solubility in NaCl solutions was compared 
at temperatures ranging from 324 to 378 K, and NaCl 
concentration between 0.88 and 2.5 m. The gas solubil-
ity in liquid phase decreases with the increase in salinity, 
which was effectively modeled (Fig. 10). The BRT-BO is 
highly accurate in predicting the experimental data at wide 
ranges of pressure (41.8–1339 bar) demonstrated by the 
comparison analysis. The overall performance of the BRT-
BO model is slightly better than Spivey. The comparison 
analysis shows that the methane solubility predictions are 
accurate in the  CH4–H2O–NaCl and  CH4–H2O systems. 
The analysis shows that the BRT-BO can be employed for 
modeling of two-phase flow and transport of methane in 
shallow and deep subsurface, e.g. freshwater and saline 
water aquifers, with an accuracy needed for hydrogeologi-
cal applications.

The BRT-BO model was compared with Mao’s model 
to calculate ethane solubility in pure water. The predictive 
ability of both models is satisfactory, showing only minor 
deviations from the experimental data in some conditions 
(Fig. 11). For instance, Mao model is slightly more accu-
rate than the BRT-BO to determine experimental ethane 
solubility values taken from Mohammadi et al. (2004) at 
temperature of 298.3 K, while the BRT-BO model per-
forms better at 313 K. The BRT-BO model provides better 
predictions on Wang et al. (2003) dataset. The BRT-BO 
model demonstrates a good covering of experimental data 
points and can be applied for ethane solubility prediction 
in aqueous phase at pressures ranging from 4.39 to 573.6 
bar.

The BRT-BO and Chapoy model’s calculations regarding 
the propane solubility in pure water are close to experimen-
tal values taken from Chapoy et al. (2004) (Fig. 12). Similar 
to previous cases, the BRT-BO predictions follow the gas 
solubility behavior observed in experimental data. Chapoy 
model is the most accurate model in predicting propane 
solubility followed by the BRT-BO and Pereda models. The 
BRT-BO is slightly more accurate than the Pereda model 
under the conditions studied.

Fig. 7  Partial dependence of the gas solubility in aqueous phase 
obtained from the BRT-BO on pressure and temperature

Fig. 8  Williams plot of gas solubility dataset for the BRT-BO model
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5  Discussion

The results showed that the BRT-BO model is able to deter-
mine solubility of methane, ethane, and propane gases in 
pure water and electrolyte solutions with sufficient accuracy, 

highlighting its potential for wide-ranging geological and 
hydrogeological applications. In general, the model provides 
accurate outcomes compared to established thermodynamic 
models such as those by Spivey, Mao, Chapoy, and Pereda 
models. The BRT-BO model serves as a viable alternative 

Fig. 9  Comparison of experi-
mentally determined solubility 
of methane in  H2O at 298.2 K 
(Culberson et al. 1951), 303.2 
K (Wang et al. 2003), 324.65 K 
(O’Sullivan 1970), and 344.3 K 
(Culberson et al. 1951) with the 
calculated values from the BRT-
BO and Spivey models

Fig. 10  Comparison of 
experimentally determined 
solubility of methane in the 
system  H2O-NaCl at 324.65 K 
(O’Sullivan 1970), 298.15 K 
(Michels et al. 1936), 373 K 
(Blount et al. 1982), and 348.15 
K (Michels et al. 1936) with the 
calculated values from the BRT-
BO model and Spivey model
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for predicting light hydrocarbon solubility in aquatic systems 
under diverse conditions.

One of the main advantages of the BRT-BO is its 
applicability to calculate the solubility of  C1–C3 gases 
in a wide range of conditions. Although thermodynamic 
approaches are highly efficient, they are usually complex and 
have a limited application domain. For example, the Mao 
model, which requires many empirical parameters, is limited 

to the solubility calculations of ethane in aqueous systems. 
Numerical modeling of the transport of light hydrocarbons 
between deep gas reservoirs and shallow groundwater aquifers 
is complex as it involves multi-phase, multi-component 
flow through different media such as fault zones, fracture 
networks, and low permeability layers. The BRT-BO model 
can serve as an alternative to thermodynamic models needed 
to calculate the phase behavior of various gas components 

Fig. 11  Comparison of experi-
mentally determined solubility 
of ethane in  H2O at 298.3 K 
(Mohammadi et al. 2004), 303.2 
K (Wang et al. 2003), 313.19 
K (Mohammadi et al. 2004), 
and 444.26 K (Culberson et al. 
1951) with the calculated values 
from the BRT-BO model and 
Mao model

Fig. 12  Comparison of experi-
mentally determined solubility 
of propane in  H2O at 298.12, 
338.15, and 353.18 K (Cha-
poy et al. 2004), and various 
temperatures (Mokraoui et al. 
2007) with the calculated values 
from the BRT-BO, Chapoy, and 
Pereda models
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during the transport. This would reduce the complexity of 
numerical models making groundwater contamination models 
more efficient. Therefore, the BRT-BO model can be further 
implemented in numerical modeling frameworks to address 
issues in the field of science and engineering.

Future studies might explore incorporating the impact of 
ionic strength and specific ion effects on gas solubility directly 
within the machine learning algorithm, aiming to further refine 
its predictive accuracy. Additionally, the application of alter-
native optimization algorithms could offer improvements 
in the performance of machine learning models. While the 
dataset used for model development was adequately exten-
sive, expanding this dataset could further improve the model’s 
accuracy and its ability to generalize across a broader range 
of conditions.

6  Conclusions

We employed regression tree (RT) and boosted regression tree 
(BRT) algorithms optimized with a Bayesian optimization 
algorithm to build a model able to calculate solubility of 
methane, ethane, and propane in aquatic systems over a wide 
range of pressure, temperature, and salt concentrations. The 
RT-BO and BRT-BO are able to determine the solubility 
of light hydrocarbons in aquatic systems. The BRT-BO 
is more accurate, evidenced by the MSE value close to 
zero (MSE = 9.97 ×  10–8) and an  R2 value of 0.99. The 
predictions of the BRT-BO are in good agreement with the 
experimental hydrocarbon solubility dataset, which contains 
2129 experimental data of methane, ethane, and propane 
solubility in pure water and various electrolyte solutions. The 
comparison analysis of the BRT-BO model’s predictions with 
four well-established thermodynamic models confirms the 
high prediction capability of the ML model. The application 
of the leverage approach showed that the majority of data 
points (5.26% outliers) fall in the valid domain, verifying 
the statistical validity of the model. We conclude that the 
BRT-BO model is a well-suited and robust tool which can 
be regarded as an alternative to more classical approaches 
for light hydrocarbon solubility calculations needed for 
various scientific and engineering applications such as 
numerical modeling of stray gas migration in the subsurface 
environment, development of effective environmental risk 
management strategies, optimization of gas extraction and 
processing operations, and development of strategies aimed 
at mitigating atmospheric emissions of methane and other light 
hydrocarbons.
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