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Abstract
Diabetic kidney disease (DKD) has become the most common cause of chronic kidney disease. Proteinuria is generally consid-
ered one of the clinical indicators of renal damage, and it is also closely related to the progression of DKD. Accumulating
evidence indicates that proteinuria induces an upregulation of the expression levels of inflammatory cytokines and fibrosis
markers in renal tubular epithelial cells, but the mechanism remains unclear. Previously, we showed that early growth response
1 (Egr1) played a key role in renal tubular injury. However, the upstream mechanism of Egr1 in the development of DKD is
poorly understood. In this study, we found that albumin stimulation significantly increased the expression levels of Egr1,
interleukin 6 (IL-6), tumor necrosis factor-α (TNF-α), and fibronectin (FN) in HK-2 cells but decreased miR-23a-3p levels.
We then identified that miR-23a-3p targeted the 3′ untranslated region (UTR) of Egr1 and directly suppressed the expression of
Egr1. Moreover, we found that overexpression and inhibition of miR-23a-3p in HK-2 cells attenuated and promoted the
expression of IL-6, TNF-α, and FN, respectively. Additionally, Egr1 silencing reversed the inflammation and fibrosis caused
by the miR-23a-3p inhibitor. Thus, we conclude that miR-23a-3p attenuates the development of DKD through Egr1, suggesting
that targeting miR-23a-3p may be a novel therapeutic approach for DKD.
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Introduction

Diabetes is an important chronic disease worldwide (Liu et al.
2019). According to the International Diabetes Federation
(IDF), as of 2019, there were 463 million diabetic patients
worldwide (International Diabetes Federation 2019).
Diabetic kidney disease (DKD) is one of the most serious
complications of diabetes. In China, DKD has surpassed
chronic glomerulonephritis to become the most common
cause of chronic kidney disease (CKD) (Zhang et al. 2016).
Proteinuria is an important marker of the occurrence and de-
velopment of DKD and is also used to evaluate the efficacy of
treatment for DKD. Increasing evidence has shown that pro-
teinuria may serve as an alternative endpoint for the study of

CKD (Heerspink et al. 2019). However, the specific mecha-
nism by which proteinuria contributes to DKD progression
remains unclear. Renal fibrosis is considered a vital pathogen-
ic feature of DKD and is characterized by excessive produc-
tion of extracellular matrix (ECM) proteins, including fibro-
nectin (FN) and collagen. Moreover, an increasing number of
studies have confirmed that renal tubules play a key role in
DKD (Zeni et al. 2017). Tubulointerstitial fibrosis (TIF) and
tubular atrophy contribute greatly to DKD (Slyne et al. 2015).
Studies by our team over the past years have shown that tu-
bular epithelial-to-mesenchymal transition (EMT) plays a sig-
nificant role in promoting the progression of TIF during DKD
(Jia et al. 2019; Yang et al. 2020). Several studies have shown
that the inflammatory response is a key factor in the develop-
ment of DKD (Eller et al. 2011; Sakai and Wada 2015).
Inflammatory cytokines such as interleukin 6 (IL-6) and tumor
necrosis factor-α (TNF-α) have been shown to be involved in
the progression of DKD (Sun and Kanwar 2015; Hameed
et al. 2018). Inflammatory cells activate proximal renal tubu-
lar epithelial cells (PTECs) by releasing cytokines and other
mediators, resulting in excessive production of ECM, which
leads to renal fibrosis (Wong et al. 2018). Therefore,
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elucidation of the pathophysiological mechanisms of PTECs
during the development of DKD is important.

Recently, early growth response 1 (Egr1) was shown to be
involved in the progression of fibrosis via a transforming growth
factor β (TGF-β)/Smad-dependent signaling pathway
(Bhattacharyya et al. 2008). Furthermore, Egr1 was activated in
a renal failure model, which impairs TGF-β-dependent renal in-
flammation and fibrosis (Chen et al. 2006). We have also previ-
ously reported that Egr1 plays an important role in renal fibrosis in
DKD (Wang et al. 2015; Yang et al. 2019). In addition, Egr1 was
found to be strongly associated with the inflammatory response
(Peng et al. 2019). However, the upstream regulatory mechanism
of Egr1 in the development of DKD is poorly understood.

microRNAs (miRNAs) are a group of small, highly con-
served noncoding RNAs. The length of miRNAs is approxi-
mately 20–25 nucleotides (Bartel 2018). miRNAs are post-
transcriptional regulators. miRNAs bind to the 3′ untranslated
region (UTR) of target gene messenger RNAs (mRNAs),
leading to rapid degradation of the target gene or inhibition
of translation (Mohajeri et al. 2018).Moreover, miRNAs have
been reported to bind to other regions of target mRNAs, in-
cluding the 5′ UTR, coding sequence, and gene promoter. In
addition, some studies have demonstrated that miRNAs can
activate target gene expression under certain conditions
(Broughton et al. 2016). miRNAs are regarded as important
regulatory factors in the development of DKD (Jia et al. 2018;
Jia et al. 2019; Zha et al. 2019). miR-23a-3p is a member of
the miR-23 family. Recent studies have shown that the miR-
23 family plays a key role in the inflammatory response and
the development of diabetes (Zhu et al. 2012; Hu et al. 2017).
A previous study reported that nine miRNAs, including miR-
23a, were significantly decreased in a miRNA microarray
analysis of TNF-α-treated endothelial cells (Ruan et al.
2012). However, the role of miR-23a-3p in DKD is unknown.

The purpose of this study was to determine the relationship
between miR-23a-3p and Egr1 in the inflammatory response
and fibrotic progression of PTECs to further elucidate the
occurrence and development of DKD.

Materials and methods

Animal studies Mouse models that were successfully con-
structed previously by our research team were used in this
study. Detailed methods of animal model construction were
described in previously published literature (Hu et al. 2018).
The renal tissues of these animals were frozen intact in liquid
nitrogen. Briefly, 3- to 4-wk-old male C57BL/6J mice
(Guangdong Medical Laboratory Animal Center) were ran-
domly divided into 2 groups. The mice in the control group
(n=6) were fed a normal diet, while the mice in the DKD
group (n=6) were fed a high-fat diet (HFD, protein 26.2%,
fat 34.9%, and carbohydrate 26.3%) for 4 wk. Next, the mice

in the DKD group received intraperitoneal injection of
streptozotocin (STZ, 120 mg/kg in citrate buffer, pH=4.5,
MP Biomedicals, Solon, Ohio), while the control group re-
ceived equal volumes of sodium citrate. The mice in the con-
trol and DKD groups were sacrificed 12 wk after modeling.
The blood glucose of the mice in the DKD group was signif-
icantly higher than that of the mice in the control group (22.38
mmol/L vs. 5.65 mmol/L). All of the experiments were ap-
proved by the Institutional Animal Care and Use Committee
of Nanfang Hospital, Southern Medical University,
Guangzhou, China.

Cell cultures and transfection The human proximal tubule cell
line (HK-2) and the human embryonic kidney 293T cell line
(293T) were purchased from the China Center for Type
Culture Collection (Wuhan University, Wuhan, China). HK-
2 cells were obtained from the Cell Bank within 6 mo. 293T
cells were authenticated on November 16, 2020, in Shanghai
Biowing Applied Biotechnology Co. Ltd. (Shanghai, China).
DNA was extracted with Axygen’s Genome Extraction Kit,
amplified according to a 21-STR amplification protocol, and
tested for the STR locus and the sex gene amelogenin on an
ABI Model 3730XL Genetic Analyzer. We confirm that all
experiments were performed with mycoplasma-free cells.
HK-2 cells were cultured in 5.5 mmol/L Dulbecco’s modified
Eagle’s medium (DMEM; Gibco, Carlsbad, CA) containing
10% fetal bovine serum (FBS; Gibco, Melbourne, Australia).
293T cells were cultured in 25 mmol/L DMEM (Gibco,
Carlsbad, CA) with 10% FBS. All cells were grown at 37°C
in a humidified atmosphere containing 5% CO2. Cells were
seeded at 60–70% confluence. Culture medium containing
2% FBS was used to synchronize cells before experiments.
HK-2 cells were stimulated with bovine serum albumin (BSA,
10 mg/mL) for 1 and 48 h. Small interfering RNA targeting
Egr1 (si-Egr1; RiboBio, Guangzhou, China) was used to
knockdown Egr1 in HK-2 cells, while the pENTER-Egr1
plasmid (Vigene Biosciences, Shandong, China) was used to
overexpress Egr1 in HK-2 cells. In addition, a miR-23a-3p
mimic and a miR-23a-3p inhibitor purchased from RiboBio
(Guangzhou, China) were used to knockdown and overex-
press miR-23a-3p, respectively. All transfections were per-
formed by using Lipofectamine® 3000 (Invitrogen,
Shanghai, China).

RNA isolation and quantitative real-time polymerase chain
reaction (qRT-PCR) TRIzol (TaKaRa, Dalian, China) was used
to isolate total RNA from renal tissues and HK-2 cells. The
detection of RNA concentration and purity was carried out with
a NanoDrop ND-1000 spectrophotometer (Thermo Fisher
Scientific, Franklin, MA). mRNA reverse transcription was per-
formed using a Takara PrimeScript RT Reagent Kit (Takara).
miRNA reverse transcription was carried out using a miRcute
miRNA cDNA First Strand Synthesis Kit (Tiangen, Beijing,
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China). A SYBR Green qPCR Kit (TaKaRa) and miRcute
miRNA qPCR Detection Kit (Tiangen, Beijing, China) were
used to determine the mRNA and miRNA expression levels in
a Roche LightCycler 480II system (Roche, Basle, Switzerland).
β-Actin and U6 were used as internal controls to calculate the
relative expression using the 2−ΔΔCt method. The primers used
are listed in Table 1.

Western blot analysis Total protein was extracted from HK-2
cells with cold RIPA lysis buffer (KeyGEN Biotech, Nanjing,
China). All processes were performed on ice to avoid degra-
dation of the protein samples. Proteins (30 μg) were separated
by 10% sodium dodecyl sulfate polyacrylamide gel electro-
phoresis (SDS-PAGE; Bio-Rad, Hercules, CA) and then
transferred to polyvinylidene fluoride (PVDF) membranes
(MerckMillipore, MA). The PVDF membranes were blocked
in 5% skimmilk for 1 h. Then, the membranes were incubated
with primary antibodies against Egr1 (1:1000, 55117-1-AP,
anti-rabbit; ProteinTech, Wuhan, China), IL-6 (1:1000,
66146-1-Ig, anti-mouse; ProteinTech), TNF-α (1:1000,
60291-1-Ig, anti-mouse; ProteinTech), FN (1:500, 15613-1-
AP, anti-rabbit; ProteinTech), and β-actin (1:1000, 60008-1-
Ig, anti-mouse; ProteinTech) at 4°C overnight. Then, the
membranes were incubated with secondary antibodies (goat
anti-mouse, SA00001-1, and goat anti-rabbit, SA00001-2,
1:15,000; ProteinTech) at room temperature for 1 h. A chemi-
luminescence kit (Merck Millipore, Darmstadt, Germany)
was used to detect the bands of the membranes in a chemilu-
minescence imaging analysis system (Tanon, Shanghai,
China). The images were semiquantified using ImageJ
software.

Luciferase activity assay The Egr1 wild-type luciferase report-
er plasmid and mutant-type luciferase reporter plasmid were

purchased from Kidan Biosciences (Guangzhou, China). One
hundred nanograms of luciferase reporter plasmid and 50 nmol
of miR-23a-3p mimic were mixed to transfect 293T cells,
which were seeded in a 96-well plate. Luciferase activity
was measured with a Dual-Lumi™ Luciferase Reporter
Gene Assay Kit (Beyotime, Shanghai, China).

Cell viability assays (CCK8 assay) The Cell Counting Kit-8
(CCK-8) was purchased from Dojindo Molecular
Technologies (Kumamoto, Japan). HK-2 cells were seeded
in 96-well plates and stimulated with BSA for 48 h. After
the stimulation, 10 μL CCK-8 solution was added to each
well. The optical density at 450 nm (OD450 nm) was measured
after the 96-well plates were incubated for 4 h.

Relative cell viability = ([ODBSA – ODblank]/[ODcontrol –
ODblank]) × 100%.

Statistical analysisAll data are presented as the means ± SEM.
SPSS 25.0 software was used to analyze data. Student’s t-test
was used to compare statistical significance between two in-
dependent groups. One-way ANOVA was used to determine
statistical significance in three or more independent groups.
Differences with P < 0.05 were considered statistically
significant.

Results

The expression of Egr1, IL-6, TNF-α, and FN is increased in
DKD To explore the relationship between Egr1 and renal in-
flammation and fibrosis in DKD, we first detected the expres-
sion of Egr1, inflammatory cytokines, and the fibrotic marker
in renal tissues of DKDmice. ThemRNA levels of Egr1, IL-6,
TNF-α, and FN were significantly increased as shown by

Table 1. Sequences of the
primers used for qRT-PCR in this
study

Genes Sequences

Egr1 Sense 5′-CTGACCGCAGAGTCTTTTCCTG-3′

Antisense 5′-TGGGTGCCGCTGAGTAAATG-3′

IL-6 Sense 5′-CAATAACCACCCCTGACC-3′

Antisense 5′-GCGCAGAATGAGATGAGTT-3′

TNF-α Sense 5′-GGAAAGGACACCATGAGC-3′

Antisense 5′-CCACGATCAGGAAGGAGA-3′

FN Sense 5′-TGGAGAGACAGGAGGAAATAGC-3′

Antisense 5′-CAGTGACAGCATACAGGGTGAT-3′

β-Actin Sense 5′-CCCTGGACTTCGAGCAAGAGAT-3′

Antisense 5′-GTTTTCTGCGCAAGTTAGG-3′

miR-23a-3p Sense 5′-ATCACATTGCCAGGGATTTCC-3′

Antisense Universal reverse primer (Tiangen, Beijing, China)

U6 Sense 5′-CTCGCTTCGGCAGCACA-3′

Antisense Universal reverse primer (Tiangen, Beijing, China)
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qRT-PCR (Fig. 1A). And theWestern blot results showed that
the protein levels of Egr1, TNF-α, and FN significantly in-
creased in the renal cortex of mice in the DKD group com-
pared to the control group (Supplementary Fig. 1). In addition,
immunohistochemistry analyses revealed that Egr1, IL-6,
TNF-α, and FN were significantly increased in the renal tis-
sues in the DKDmice in our previous studies (Xue et al. 2018;
Yang et al. 2019; Li et al. 2020). In our previous work, we

found that stimulation of PTECs with 10 mg/mL of BSA for
48 h induced a fibrotic phenotype which was manifested by
increased expression levels of the fibrosis markers TGF-β1,
wave proteins, and α-SMA (Yang et al. 2020). Therefore, we
used 10 mg/mL BSA to stimulate cells to establish an in vitro
model of DKD. Our previous work showed that Egr1 in-
creased most significantly after HK-2 cells were stimulated
for 1 h (Xu et al. 2017). Similar to the results of our previous

Fig. 1. Elevated expression levels of Egr1, inflammatory cytokines, and
fibrosis-related genes in HFD- and STZ-induced DKD mice and BSA-
induced HK-2 cells. A The levels of Egr1, IL-6, TNF-α, and FN in HFD-
and STZ-induced DKD mice were quantified by qRT-PCR. B–D Egr1
expression in HK-2 cells cultured in 10 mg/mL BSA for 1 h was

measured by qRT-PCR (B) and Western blot analysis (C and D). E–G
The levels of IL-6, TNF-α, and FN in BSA-induced HK-2 cells were
detected by qRT-PCR (E) and Western blot analysis (F and G).
Student’s t-test was used to analyze the statistical significance. Data are
reported as the mean ± SEM. *P < 0.05, **P < 0.01, and ***P < 0.001.
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work, we observed a significant increase in Egr1 at the mRNA
and protein levels (Fig. 1B–D) in the group treated with BSA
for 1 h. The qRT-PCR results also showed that BSA could
significantly increase the expression of IL-6, TNF-α, and FN
(Fig. 1E). Western blot analysis revealed that the expression
of IL-6, TNF-α, and FN increased in the BSA-treated group
(Fig. 1F andG). Moreover, we found a significant decrease in
cell viability of HK-2 cells after exposure to BSA for 48 h
(Supplementary Fig. 2). Thus, we found that the expression
levels of Egr1, inflammatory factors, and the fibrotic marker
significantly increased both in vivo and in vitro during DKD.

Egr1 promotes the expression of IL-6, TNF-α, and FN in BSA-
induced HK-2 cells Increased inflammation is a vital mecha-
nism in the progression of DKD. We measured IL-6, TNF-α,
and FN after HK-2 cells were transiently transfected with si-
Egr1. Egr1 expression was successfully suppressed (Fig. 2A).
Egr1 silencing downregulated the expression of IL-6, TNF-α,
and FN (Fig. 2B). We found that there were consistent trends
in protein expression levels and mRNA expression levels
(Fig. 2C and D). Similarly, after transfection with the
pENTER-Egr1 plasmid, we found that Egr1 overexpression
significantly increased the expression levels of IL-6, TNF-α,
and FN (Fig. 2E–H). These findings suggest that Egr1 can
promote the expression levels of inflammatory factors and
the fibrotic marker in HK-2 cells.

miR-23a-3p directly targets Egr1 To further explore the pos-
sible mechanism by which Egr1 regulates renal inflammation
and fibrosis, we used a publicly available algorithm
(TargetScan, Cambridge, MA www.targetscan.org/) to
identify which miRNAs could target the Egr1 3′ UTR. miR-
23a-3p has been reported to play a vital role in inflammation.
miRNA microarray analysis showed that the expression of
miR-23a was significantly reduced in endothelial cells treated
with TNF-α (Ruan et al. 2012). Another study demonstrated
that miR-23a-3p directly inhibits the expression of Bcl-2 fam-
ily molecules to mitigate neuronal cell death (Sabirzhanov
et al. 2020). Therefore, miR-23a-3p, which has a potential
target in the 3′ UTR of Egr1, was selected as a candidate.
Then, we studied the role of miR-23a-3p in DKD. First, we
detected the expression level of miR-23a-3p in the kidneys of
DKD mice. Compared with that in the control group, miR-
23a-3p in the kidneys of the mice with DKDwas significantly
downregulated (Fig. 3A). Similarly, after BSA stimulation,
qRT-PCR showed that the expression of miR-23a-3p was
significantly decreased in HK-2 cells (Fig. 3B). The expres-
sion levels of miR-23a-3p and Egr1 showed the opposite trend
both in vivo and in vitro. Next, we determined whether over-
expression and silencing of miR-23a-3p could impact Egr1
expression. We used a miR-23a-3p mimic and a miR-23a-3p
inhibitor to transfect HK-2 cells. The results showed that the
expression of miR-23a-3p was significantly upregulated in

HK-2 cells transfected with the mimic (Fig. 3C) and that the
expression of miR-23a-3p in HK-2 cells transfected with the
inhibitor was significantly decreased (Fig. 3G). qRT-PCR and
Western blot results revealed that the miR-23a-3p mimic sig-
nificantly reduced Egr1 expression and that the miR-23a-3p
inhibitor increased Egr1 expression, respectively (Fig. 3D–F
and H–J).

Next, to investigate the direct regulation of Egr1 by miR-
23a-3p, we constructed luciferase plasmids. One plasmid
contained the sequence of the Egr1 3′ UTR. The other
contained the mutant sequence of the Egr1 3′ UTR (Fig.
3K). We cotransfected BSA-treated 293T cells with the
miR-23a-3p mimic and luciferase plasmids. A dual luciferase
reporter assay showed that the luciferase activity in the Egr1
wild-type (WT) plasmid group was inhibited by the miR-23a-
3p mimic, while there was no significant change in the lucif-
erase activity in the Egr1 mutant (MUT) plasmid group (Fig.
3L). In summary, these data suggest that miR-23a-3p directly
targets the 3′ UTR of Egr1.

Role of miR-23a-3p in regulating the expression of IL-6, TNF-
α, and FN in BSA-treated HK-2 cells To clarify the effect of
miR-23a-3p on the inflammatory cytokines IL-6 and
TNF-α, as well as the fibrotic indicator FN in DKD, we
transfected HK-2 cells with the miR-23a-3p mimic and the
miR-23a-3p inhibitor and evaluated the effect by qRT-
PCR and Western blot analysis. The results showed that
the mRNA and protein levels of IL-6, TNF-α, and FN were
significantly downregulated in the HK-2 cells transfected
with the mimic (Fig. 4A–C). In contrast, the mRNA and
protein levels of IL-6, TNF-α, and FN were markedly in-
creased in the HK-2 cells transfected with the inhibitor
(Fig. 4D–F). These results indicate that miR-23a-3p can
ameliorate the expression of inflammatory cytokines and
fibrotic markers in BSA-stimulated HK-2 cells.

miR-23a-3p alleviates the expression of inflammatory cyto-
kines and fibrotic markers in HK-2 cells via Egr1 To demon-
strate whether miR-23a-3p regulates renal inflammation and
fibrosis through Egr1, we cotransfected BSA-treated HK-2
cells with a miR-23a-3p inhibitor and si-Egr1. qRT-PCR
andWestern blot analysis revealed that the miR-23a-3p inhib-
itor induced upregulation of IL-6, TNF-α, and FN. These
effects were restored by si-Egr1 transfection (Fig. 5A–C).
These data demonstrate that miR-23a-3p regulates the expres-
sion of inflammatory cytokines and fibrotic indicators in HK-
2 cells through Egr1.

Discussion

In our study, we demonstrated an important role of the miR-
23a-3p/Egr1 pathway in DKD. Our evidence showed that the
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expression of miR-23a-3pwas decreased in DKD. In addition,
we found that miR-23a-3p can alleviate the inflammatory re-
sponse and the expression of fibrotic markers in HK-2 cells by
inhibiting Egr1 expression.

Proteinuria is generally considered one of the bio-
markers of early kidney damage and an independent pre-
dictor of progressive kidney damage (Slyne et al. 2015;
Liew et al. 2020). Several studies have shown that

Fig. 2. Egr1 increased the expression levels of inflammatory cytokines
and fibrosis-related genes in BSA-induced HK-2 cells. (A) The efficiency
of si-Egr1 was determined by qRT-PCR. (B–D) The mRNA and protein
expression levels of IL-6, TNF-α, and FN were detected in BSA-induced
HK-2 cells transfected with si-Egr1 for 48 h. (E) The efficiency of
pENTER-Egr1 was determined by qRT-PCR. (F–H) The mRNA and

protein expression levels of IL-6, TNF-α, and FN were detected in
BSA-induced HK-2 cells transfected with pENTER-Egr1 for 48 h.
Student’s t-test was used to analyze the statistical significance. Data are
reported as the mean ± SEM. *P < 0.05, **P < 0.01, ***P < 0.001, and
****P < 0.0001.
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increased proteinuria is associated with the progression of
CKD and poor outcomes (Waijer et al. 2020). Previous
studies have suggested that the exposure of PTECs to ex-
cess proteins induces activation of the inflammatory

response and EMT (Tang et al. 2003; Wu et al. 2014).
Therefore, it is valuable to explore the specific mecha-
nisms of renal tubular damage caused by proteinuria. In
our study, we found that BSA can lead to an upregulation

Fig. 3. The Egr1 3′ UTR was regulated by miR-23a-3p. (A, B) miR-23a-
3p expression was measured by qRT-PCR in DKD mice and BSA-
induced HK-2 cells. (C) The efficiency of the miR-23a-3p mimic was
determined by qRT-PCR. (D–F) The mRNA and protein expression
levels of Egr1 were detected in BSA-induced HK-2 cells transfected with
the miR-23a-3p mimic for 48 h. (G) The efficiency of the miR-23a-3p
inhibitor was determined by qRT-PCR. (H–J) The mRNA and protein
expression levels of Egr1 were detected in BSA-induced HK-2 cells

transfected with the miR-23a-3p inhibitor for 48 h. (K) Putative binding
sequence of miR-23a-3p in the 3′ UTR of Egr1. The putative binding
sequence was eliminated in mutant-type Egr1 3′ UTR luciferase reporter
plasmids. (L) Luciferase assays of 293T cells cotransfected with the miR-
23a-3p mimic combined with wild- or mutant-type Egr1 3′ UTR lucifer-
ase reporter plasmids. Student’s t-test was used to analyze the statistical
significance. Data are reported as the mean ± SEM. *P < 0.05 and **P <
0.01.
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of the expression levels of inflammatory cytokines and
fibrosis markers in HK-2 cells.

miRNAs are a group of small noncoding RNAs that are
involved in many pathophysiological processes (Bartel 2018).
miRNAs have been found to regulate diabetes-related metab-
olism (Grieco et al. 2017; Lozano-Bartolomé et al. 2018;
Chang et al. 2020; Garavelli et al. 2020), and growing evi-
dence has demonstrated the critical role of miRNAs in DKD,
highlighting their potential as targets for the treatment of dia-
betes and its complications. For example, it has been reported

that miR-4756 aggravates EMT and endoplasmic reticulum
stress in DKD via Sestrin2 (Jia et al. 2019). Previous studies
have reported that miR-26a andmiR-30c play a protective role
in DKD through connective tissue growth factor (Zheng et al.
2016). Other miRNAs involved in DKD include miR-192,
miR-215, miR-21, miR-29a, miR-181a, and miR-1207-5p
(Yarahmadi et al. 2020). Increasing evidence suggests that
inflammation and fibrosis are the main features associated
with the progression of DKD (Wada and Makino 2016).
Recent studies have reported the active involvement of the

Fig. 4. miR-23a-3p regulated the expression levels of inflammatory
cytokines and fibrosis-related genes in BSA-induced HK-2 cells. (A–C)
The mRNA and protein expression levels of IL-6, TNF-α, and FN were
detected in BSA-induced HK-2 cells transfected with the miR-23a-3p
mimic for 48 h. (D–F) The mRNA and protein expression levels of IL-

6, TNF-α, and FN were detected in BSA-induced HK-2 cells transfected
with the miR-23a-3p inhibitor for 48 h. Student’s t-test was used to ana-
lyze the statistical significance. Data are reported as the mean ± SEM. *P
< 0.05, **P < 0.01, and ***P < 0.001.
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miR-23a family in regulating the inflammatory response. For
example, a study reported that the downregulation of miR-23a
was the most significant among a group of miRNAs that were
consistently downregulated following LPS stimulation by
clustering analysis on the GEO dataset (Si et al. 2018). miR-
23a was found to play an important role in the development of
type 2 diabetes (T2DM) (de Candia et al. 2017). It has been
reported that miR-23a-3p is associated with TNF-α-induced
insulin resistance (Lozano-Bartolomé et al. 2018).
Additionally, a previous study showed that serum miR-23a
levels were reduced in patients with T2DM (Yang et al.

2014). Moreover, miR-23a-3p was shown to inhibit monocyte
function and phagocytosis by targeting IRF1/SP1 followed by
the TLR4/TNF-α/TGF-β1/IL-10 signaling pathway in pa-
tients with active tuberculosis (Chen et al. 2020). However,
the specific mechanisms of miR-23a-3p in the pathogenesis of
DKD have not yet been reported. Therefore, we explored the
role of miR-23a-3p in DKD. In this study, miR-23a-3p was
significantly decreased in the kidneys of DKD mice. In vitro,
miR-23a-3p was decreased in the BSA-treated HK-2 cells.
Our results also indicated that inhibition of miR-23a-3p sig-
nificantly accelerated the expression of inflammatory

FIG. 5. miR-23a-3p regulated
BSA-induced HK-2 cell injury
through Egr1. HK-2 cells were
transfected with the miR-23a-3p
inhibitor and si-Egr1 for 48 h. (A)
The mRNA levels of IL-6, TNF-
α, and FN were detected by qRT-
PCR. (B, C) The protein levels of
IL-6, TNF-α, and FN were de-
tected by Western blot analysis.
One-way ANOVA was used to
compare three or more indepen-
dent groups, the Bonferroni test
was used for homogeneous vari-
ances, and Dunnett’s T3-test was
used for heterogeneous variances.
Data are reported as the mean ±
SEM. *P <0.05 and **P <0.01 vs
BSA + inhibitor NC + si-NC
group; #P <0.05, ##P <0.01,
###P <0.001, and ####P <0.0001
vs BSA + miR-23a-3p inhibitor +
si-NC group.
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cytokines and fibrotic indicators in HK-2 cells. These findings
indicated that miR-23a-3p may be one of the crucial miRNAs
involved in the progression of DKD.

Egr1 plays a profibrotic role in DKD. One previous study
published by our research team showed that miR-181a-5p
could decrease the expression of profibrotic genes by sup-
pressing Egr1 (Xu et al. 2017). Furthermore, we found that
Egr1 exacerbated the progression of DKD by promoting ECM
production, which depended on the long noncoding RNA
Arid2-IR (Yang et al. 2019). The potential mechanism by
which Egr1 affects renal tubular injury still needs to be inves-
tigated. As a proinflammatory transcription factor, Egr1 has
also been widely studied in a variety of disease models. Egr1
can directly target TGF-β to regulate downstream inflamma-
tion (Havis and Duprez 2020). On the other hand, Egr1 can
also directly act on the promoter of proinflammatory cyto-
kines (such as TNF-α) to regulate their expression
(Bhattacharyya et al. 2011). In another study, Egr1 also regu-
lated endotoxin-triggered NF-κB signaling by inducing
PPARγ (Do et al. 2012). In this study, we also found that
Egr1 silencing significantly improved the expression of in-
flammatory factors and fibrotic indicators in BSA-treated
HK-2 cells. Conversely, Egr1 overexpression exacerbated
the development of DKD. Our results confirmed the impor-
tance of Egr1 in the progression of DKD.

Besides, it is necessary to explore the role of miR-23a-3p
in vivo by establishing mouse models with DKD treated with
miR-23a-3p agomir or antagomir for further studies. And we
need to avoid off-target effect via structural motifs, sequence
selection, and chemical formulation of RNA interference trig-
gers when applying synthetic agomirs or antagomirs in vivo
(Sarvestani et al. 2015; Bartoszewski and Sikorski 2019;
Setten et al. 2019).

Conclusion

Together, we demonstrated a protective role of miR-23a-3p in
albumin-induced HK-2 cells. miR-23a-3p attenuates the in-
flammatory response and fibrosis by inhibiting the expression
of Egr1 in DKD, suggesting that miR-23a-3p may be a new
target for the treatment of DKD. The significance and appli-
cation of miR-23a-3p in the diagnosis and treatment of this
disease deserve further exploration.
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