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INTRODUCTION
In medical education, sensitivity and specificity are often 
emphasized as essential criteria for evaluating the efficacy of 
diagnostic tests.1 While these measures are pivotal, their applica-
tion in isolation, as posited by the Spin and Snout  mnemonics2, 
is not without limitations in the clinical environment. The article 
unfolds the shortcomings of this reliance, highlighting their post 
hoc nature and the disconnect this creates in the context of pre 
hoc, or forward-looking, clinical diagnostics.

Subsequently, we will delve into the subject through hypo-
thetical illustrative scenarios, postulating that likelihood 
ratios (LRs) present compelling alternatives. We will exam-
ine how, cognitively, LRs necessitate probabilistic thinking 
from clinicians by their very definition—a critical aspect 
often underappreciated in medical diagnostics.

THE POST HOC NATURE OF SENSITIVITY AND 
SPECIFICITY

Sensitivity and specificity are metrics calculated from studies 
where participants’ health status is already known. In con-
trast, clinical practice often requires “pre hoc” or “forward-
looking” diagnostic tests to determine an unknown health 
outcome.3 This creates a significant disconnect between the 
retrospective nature of these metrics and the prospective 
needs of clinical practice.4

Sensitivity measures how well a test identifies true posi-
tives among those with the disease. Specificity gauges the 
test’s ability to correctly identify true negatives among 
healthy individuals. Mathematically:

As an example, suppose a doctor prescribes a diagnostic 
test that possesses a sensitivity and specificity of precisely 
90% in order to identify a specific disease. It is tempting to 
assume that the patient has the disease with a 90% prob-
ability when the test is positive. This reasoning is fallacious. 
Sensitivity and specificity are not derived from the uncer-
tain clinical scenarios to which these tests are frequently 
applied, but rather from populations with known disease sta-
tus. Indeed, the doctor is employing the exam specifically to 
ascertain the patient’s unidentified health condition.

THE PROPOSED ALTERNATIVE: ADVOCATING FOR 
A WIDER USE OF LIKELIHOOD RATIOS IN CLINICAL 

DECISION‑MAKING
In contrast to sensitivity and specificity, likelihood ratios 
are more naturally applied in a “pre hoc” manner, allowing 
clinicians to update their diagnostic probabilities based on 
new evidence. Mathematically, the LR + and the LR − are 
defined as follows:

It is crucial to acknowledge that likelihood ratios are 
derived from sensitivity and specificity. However, its appli-
cation offers distinct advantages. The perspective provided 
by likelihood ratios is advantageous because it advocates for 
a different view than usual: given that a test result is positive, 
by how many times does the chance of the patient having the 
disease increase? And if it is negative, by how many times 
will this chance decrease?

Notice that this perspective, in terms of probability, requires 
the physician to take a step back and think about the chance 
(or probability) of the patient having the disease in question. 
This insight is not provided by sensitivity and specificity alone.

To provide an illustration, consider a test characterized by a 
sensitivity of 20% and a specificity of 90%. A physician might 
be tempted to conclude, based solely on this information, that 
a positive test result signifies a 90% chance that the patient has 
the disease; however, this is not the case. Conversely, by focus-
ing on likelihood ratios, they will ascertain that the LR + is 2.0, 
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signifying that a positive test result will result in a doubling of 
the patient’s probability of contracting the disease.

But double from what to what? If the disease probability is 
5%, it will be 10% after the test, not 90% as determined by the 
specificity. This is where the use of likelihood ratios “forces” 
probabilistic thinking. They compel physicians to consider the 
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pre-test probability or the baseline rate of a disease in a given 
population, a step often overlooked when relying solely on 
sensitivity and specificity.5,6

BAYESIAN REASONING IN CLINICAL PRACTICE: A 
DYNAMIC APPROACH TO DIAGNOSING

In medicine, the probabilistic nature of diagnosis is often 
overlooked, leading to a cognitive bias known as base-rate 
neglect.7 Clinicians may focus too intently on the sensitiv-
ity and specificity of a test, neglecting the initial likelihood 
or actual prevalence of a disease in the population. This 
oversight can distort the application of Bayesian reasoning, 

Figure 1  The calculation of the post-test probability for an acute myocardial infarction in an asymptomatic patient exhibiting ST-segment 
elevation is illustrated using Fagan’s nomogram. The derived post-test probability is 6.5%, which is obtained by intersecting a pre-test 
probability of 1% with an LR + value of 6.83. The visual depiction underscores the importance of integrating likelihood ratios when 

enhancing diagnostic probabilities.
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resulting in flawed clinical decisions. Bayesian reasoning 
represents a dynamic framework in medical decision-mak-
ing. This approach integrates prior probabilities and incor-
porates the diagnostic performance of a test. The strength of 
Bayesian reasoning lies in its ability to constantly update and 
adapt to new information, thereby offering a more nuanced 
and patient-centered diagnostic process.8

To illuminate the application of Bayesian reasoning, let 
us contemplate an alternative scenario. Consider a patient 
who exhibits ST-segment elevation during an electrocardio-
gram (ECG) for screening purposes. Nevertheless, the patient 
exhibits no clinical symptoms or symptoms consistent with 
acute coronary syndrome (ACS). An accuracy study reported 
a sensitivity of 41% and a specificity of 94% for ST-segment 
elevation when diagnosing occlusion myocardial infarction.9 
At first glance, this finding might be interpreted as suggesting 
a 94% probability of the patient having the disease when ST-
segment elevation is present. Using standard formulas, we find:

Given the patient’s asymptomatic status, the clinician 
estimates the pre-test probability of occlusion myocardial 
infarction to be about 1%. Using the Fagan  nomogram10 
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and applying the LR + of 6.83 to this pre-test probability, 
the post-test probability is calculated to be around 6.5%. 
This means that despite the ST-segment elevation, there is 
approximately 93.5% chance that the patient is not experi-
encing an acute coronary occlusion (Fig. 1).

Alternatively, this post-test probability can be calculated 
through the following steps:

1. Convert pre-test probability to odds:

2. Multiply by LR:

3. Convert post-test odds to probability:

NATURAL FREQUENCIES: ANOTHER WAY TO USE 
BAYESIAN REASONING

Another pertinent approach within Bayesian reasoning is the 
use of natural frequencies, a method that involves construct-
ing a decision tree to visually represent how diagnostic tests 

Odds (Pre − test) =
Probability

1 − Probability

Odds (Post − test) = Odds(Pre − test) × LR

Probability (Post − test) =
Odds (Post − test)
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Figure 2  By employing natural frequencies and starting with the base rate, a physician can more accurately determine the post-test 
probability of a positive test result being true. In this model, we consider a hypothetical cohort of 100 individuals who closely resemble the 
patient under investigation in terms of age, comorbidities, and symptoms. Based on the physician’s estimated pre-test probability of 1%, 1 
individual in this cohort is assumed to have the disease. In a population consisting of 1 diseased and 99 healthy individuals, it becomes evi-
dent that the proportion of true positives among all positive test results is 6.4%. This value represents the post-test probability and signifies 

the likelihood that a positive test result is indeed accurate.
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interact with pre-existing probabilities, thereby enhancing our 
understanding of a patient’s health status.11,12 The approach 
begins with the pre-test probability, which is derived from epi-
demiological data or the clinician’s evaluation of the likelihood 
of the disease prior to conducting the test. A decision tree then 
divides into “Diseased” and “Healthy” branches, which further 
subdivide True Positives, False Negatives, True Negatives, and 
False Positives in accordance with test outcomes (Fig. 2).

While natural frequencies can intuitively convey the prob-
abilistic nature of test interpretations, their integration into 
clinical practice is not straightforward. Often, this method-
ology does not align with the typical cognitive framework 
of practitioners, leading to underutilization in actual patient 
care. Despite their potential to demystify complex statisti-
cal concepts, natural frequencies remain an underemployed 
strategy in the diagnostic process.

The Case of Tests with 
Sensitivity + Specificity = 1
When the sum of sensitivity and specificity equals 1.0, an 
intriguing instance of curiosity arises. Consider, for example, 

a test whose sensitivity is 5% and its specificity is 95%. Upon 
initial examination, the test’s high specificity may indicate its 
efficacy in definitively diagnosing the disease. But this could 
not be further from the truth. The mathematical expressions 
for calculating the LR + and LR − are as follows:

A value of 1.0 is produced by both LR + and LR − , signi-
fying that the test has no effect on the pre-test probability of 
the disease. Alternatively stated, a patient’s post-test prob-
ability would remain at 10% regardless of the outcome of 
the test, whether it be positive or negative, if their pre-test 
probability is 10%. Notwithstanding its notable specificity, 
the test is fundamentally ineffective in either validating or 
excluding the disease.

This phenomenon occurs when a test has no actual diag-
nostic power for the disease in question. Since the disease 
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Figure 3  The concept of natural frequencies exemplifies the utilization of a diagnostic test whose prevalence is equivalent between healthy 
and diseased individuals, thereby making it useless in clinical settings to ascertain the presence or absence of disease. The issue of sensitiv-
ity and specificity adding up to 1.0 becomes apparent in such circumstances. Notwithstanding the test’s apparent high specificity (99%), its 
clinical utility is rendered futile on account of its likelihood ratio of 1.0. This means that upon receiving a positive test result, the probabil-

ity of disease presence is effectively multiplied by 1.0, while the post-test probability remains unchanged from the pre-test probability.
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has no correlation with the test, both groups—those labeled 
as diseased and those labeled as healthy—are essentially 
composed of the same individuals and will test positive or 
negative merely by chance. Consequently, the prevalence of 
the disease will naturally be similar in both groups.

Interestingly, the rarer the disease under study (which, 
again, has no actual correlation with the test), the more 
inflated the specificity will appear. This is because there will 
be more true negatives in the sample defined as healthy, arti-
ficially boosting the specificity (Fig. 3).

It is important to clarify that while likelihood ratios (LRs) 
are derived from sensitivity and specificity, they reframe this 
information in a manner that is more directly applicable to 
clinical decision-making. Emphasizing this point, it becomes 
evident that knowing the exact values of sensitivity and spec-
ificity is less critical than understanding how LRs should be 
interpreted. A value of 1.0 for an LR means multiplying the 
chance by 1, essentially keeping it the same. In contrast, a 
specificity of 90% might seem appealing based on the “Spin 
and Snout” mnemonic, but if the sensitivity is only 10%, the 
test will not be useful. This conclusion is not obvious when 
analyzing sensitivity and specificity in isolation.

CONCLUSION
In synthesizing our findings, this article reaffirms the value of 
likelihood ratios (LR +) and (LR −) in clinical practice, not sim-
ply as substitutes for traditional sensitivity and specificity, but 
as cognitively superior tools for diagnostic reasoning within a 
Bayesian framework. This assertion rests on the premise that 
while LRs are indeed derived from sensitivity and specificity, 
their utilization promotes a probabilistic mode of thinking that 
is not inherently elicited by sensitivity and specificity alone.

The central argument of this paper is that LRs facilitate 
a cognitive shift towards probabilistic reasoning, thereby 
enhancing the physician’s ability to calibrate diagnostic 
hypotheses more effectively. This shift is critical, as it 
moves beyond the raw metrics of test accuracy to encom-
pass the nuances of clinical context and patient-specific 
probabilities. The definition of LRs themselves—quantify-
ing how much a positive or negative test result shifts the 
odds of having a disease—inherently guides clinicians to 
consider the magnitude of change in disease probability, 
a conceptual leap that is less apparent when considering 
sensitivity and specificity in isolation.

Furthermore, while the construction of natural frequen-
cies offers an alternative Bayesian approach, it is not as 
intuitively accessible as the straightforward calculation 
and interpretation of LRs. Therefore, we argue for the 

broader adoption of LRs as an essential component of a 
comprehensive diagnostic strategy, one that better navi-
gates the complexities and uncertainties of medical prac-
tice. Through this lens, LRs are not merely mathematical 
derivatives but pivotal instruments that prompt clinicians 
to engage more deeply with the probabilistic nature of 
diagnosis and treatment decisions.
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