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BACKGROUND: Insurance status may influence quality
of opioid analgesic (OA) prescribing among patients seen
by the same clinician.
OBJECTIVE: To explore how high-risk OA prescribing
varies by payer type among patients seeing the same pre-
scriber and identify clinician characteristics associated
with variable prescribing
DESIGN: Retrospective cohort study using the 2016–
2018 IQVIA Real World Data – Longitudinal Prescription
PARTICIPANTS: New OA treatment episodes for
individuals≥ 12 years, categorized by payer and prescrib-
er. We created three dyads: prescribers with ≥ 10 com-
mercial insurance episodes and ≥ 10 Medicaid episodes;
≥ 10 commercial insurance episodes and ≥ 10 self-pay
episodes; and ≥ 10 Medicaid episodes and ≥ 10 self-pay
episodes.
MAINOUTCOME(S) ANDMEASURE(S):Rates of high-risk
episodes (initial opioid episodes with > 7-days’ supply or
prescriptions with a morphine milliequivalent daily dose
>90) and odds of being an unbalanced prescriber
(prescribers with significantly higher percentage of high-
risk episodes paid by one payer vs. the other payer)

KEY RESULTS: There were 88,352 prescribers in the
Medicaid/self-pay dyad, 172,392 in the Medicaid/
commercial dyad, and 122,748 in the self-pay/commercial
dyad. In theMedicaid/self-pay and the commercial-self-pay
dyads, self-pay episodes had higher high-risk episode rates
thanMedicaid (16.1%and 18.4%) or commercial (22.7% vs.
22.4%). In the Medicaid/commercial dyad, Medicaid had
higher high-risk episode rates (21.1% vs. 20.4%). The pro-
portion of unbalanced prescribers was 11–12% across
dyads. In adjusted analyses, surgeons and pain specialists
were more likely to be unbalanced prescribers than adult
primary care physicians (PCPs) in the Medicaid/self-
paydyad (aOR 1.2, 95% CI 1.16–1.34 and aOR 1.2,
95% CI 1.03–1.34). For Medicaid/commercial and self-
pay/commercial dyads, surgeons had lower odds of being
unbalanced compared to PCPs (aOR 0.6, 95%CI 0.57–0.66
and aOR 0.6, 95% CI 0.61–0.68).
CONCLUSIONS: Clinicians prescribe high-risk OAs dif-
ferently based on insurance type. The relationship be-
tween insurance and opioid prescribing quality goes
beyond where patients receive care.
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INTRODUCTION

Patients with different insurance types often receive care of
different quality.1–9 Variation in quality often stems from
differences in where patients receive care.10–12 For example,
hospitals with a high proportion of Medicaid patients have
lower adherence to quality measures than hospitals with fewer
Medicaid patients.13 However, variability in care quality does
not stem solely from differences between providers. Indeed, it
varies among patients treated in the same hospital system2 or
by the same clinician.14

Recent studies suggest that quality of opioid analgesic (OA)
prescribing may also vary by insurance type. Patterns of OA
prescribing such as high-risk or potentially inappropriate pre-
scribing and rapid discontinuation are considered potential
indicators of poor quality, given their association with harms
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Lay Summary
Insurance status may influence the quality of opioid prescribing even

among patients seen by the same clinician. High-risk opioid prescriptions,
such as initial prescriptions >7 days or >90 morphine milligram
equivalents, are associated with harms and may be markers of low-
quality opioid prescribing. We used national pharmacy data to ask if
patients seeing the same clinician were more or less likely to receive
prescriptions for high-risk opioids based on their insurance type. We found
this was more likely in self-pay patients than either Medicaid or
commercial pay patients even when seeing the same clinician. We found
that over 1 in 10 clinicians prescribed in a significantly different way to
patients with different insurance types. Pain specialists were the most
likely to prescribe differently based on insurance type. The relationship
between insurance status and quality of prescribing to individuals
receiving opioids goes beyond where patients receive care.
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including an increased risk of overdose, development of
opioid use disorder, poorer health outcomes, and a greater
likelihood of remaining out of the workforce.15–21 High-risk
OA prescribing, such as initial prescriptions >7 days or >90
morphine milligram equivalents (MME), varies by insurance
status: compared to the commercially insured, Medicaid and
self-pay patients experience high-risk prescribing at higher
rates.22 Compared to commercially insured patients, Medicaid
enrollees and self-pay patients receiving long-term opioids are
more likely to have episodes rapidly discontinued.23 Self-pay
patients on long-term opioids are also less likely to receive
naltrexone co-prescriptions compared to those with insurance.24

Some variability in opioid prescribing patterns likely reflects
differences inwhere patients receive care—e.g., in health systems
or from prescribers more likely to provide lower quality opioid
care.25 For example, approximately 1%of prescribers account for
49%of all opioid doses prescribed in theUS, and they commonly
prescribe higher opioid doses than recommended by the Centers
for Disease Control and Prevention (CDC).26 Some clinicians are
alsomore likely to prescribe high-risk opioids than others,27 even
when working in the same health system.28

However, OA prescribing quality may vary because
prescribers treat patients with different insurance statuses dif-
ferently. A study of access to medication treatment for opioid
use disorder for pregnant individuals found significant variation
within the same practice based on insurance status.29 However,
we are unaware of studies examining to what extent insurance
status may influence the quality of OA prescribing by the same
clinician or what the characteristics are of clinicians more likely
to prescribe differently based on insurance status.
To address this gap in the literature, we used national

pharmacy claims from approximately 90% of US retail phar-
macies to conduct an exploratory analysis identifying
prescribers treating at least twenty individuals with OA
prescriptions during the period January 2017 through Decem-
ber 2018. We examined to what extent prescribers may have
different rates of high-risk OA prescribing to patient
populations with different insurance statuses. We also exam-
ined provider specialty and its association with high-risk pre-
scribing to patients with different insurance statuses. State,
federal, and local stakeholders seeking to decrease high-risk
OA prescribing30,31 need to know if prescribers prescribe
differently based on a patient’s insurance status. Policy
interventions beyond those commonly implemented would
be essential if certain patient populations are more likely to
receive high-risk opioid prescriptions, even when treated by
the same clinician.

METHODS

Analytic Dataset

We used de-identified pharmacy claims fromOctober 1, 2016,
through December 31, 2018, from the IQVIA Real World
Data – Longitudinal Prescription32 to identify new opioid

treatment episodes initiated between January 1, 2017, and
October 1, 2018, for individuals aged 12 years and older.
IQVIA data have been used in multiple studies of opi-
oid analgesic prescribing,22–24,33–35 and capture an esti-
mated 90% of all prescriptions dispensed at retail phar-
macies in all 50 states and the District of Columbia.
The data include information on the prescription, payer,
some patient demographics, prescriber specialty and lo-
cation, each dispensed prescription’s natural drug code,
dosage, quantity, and days’ supply. Patients have unique
identifiers enabling researchers to identify prescriptions
dispensed to that individual across pharmacies. We ex-
cluded buprenorphine formulations (e.g., suboxone) pri-
marily used to treat opioid use disorder.
We defined new treatment episodes as the first observed

date of a dispensed opioid prescription following a period of at
least 60 days after the days’ supply of any prior dispensed
opioid prescription had run out. An episode lasted through the
last day of the supply for the last dispensed opioid prescrip-
tion, with no more than a 60-day gap between the last day
supply of one prescription and the subsequent prescription
being dispensed (Fig. 1). We limited our sample to episodes
from prescribers who wrote OA prescriptions for at least
twenty individuals during the 2 years. We categorized each
episode by payer and prescriber of the first prescription and
identified three groups of prescribers: prescribers with (1) ≥ 10
commercial insurance episodes and ≥ 10 Medicaid episodes;
(2) ≥ 10 commercial insurance episodes and ≥ 10 self-pay
episodes; and (3) ≥ 10 Medicaid episodes and ≥ 10 self-pay
episodes. We label these provider groups respectively as (1)
Medicaid/commercial, (2) commercial/self-pay, and (3) Med-
icaid/self-pay. A prescriber could be in more than one payer
dyad.

Measures

High-Risk Prescribing. Focusing on an episode’s first
prescription, we identified high-risk prescribing practices
associated with poor clinical outcomes such as increased
risk of chronic opioid use, overdose, and opioid-related
mortality.36–39 Specifically, we identified initial opioid
prescriptions with (1) greater than a 7-day supply, or (2)
high-dose prescriptions with a MME daily dose >90, using
the CDC MME conversion factor.40

Prescriber Specialty and Provider Types. We categorized
prescribers into six specialty/provider type groups: adult
primary care physicians (including general internists and
family practice physicians); advance practice prescribers
(nurse practitioners and physician assistants, APP);
surgeons; emergency physicians; anesthesiologists, pain
specialists, and neurologists (hereafter pain specialists);
and other specialties (including pediatricians, internal med-
icine subspecialists).
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County Characteristics. We controlled for county
characteristics suggested in prior research as potentially
influencing opioid prescribing22,23,41 as well as for the total
amount of opioid per capita dispensed in the county. We used
a 5-digit FIPS code to determine the county in which a
prescriber practiced. We included community characteristics
including the non-White percent of population from the US
Census Bureau;42 “urban” (RUCC 1, 2, or 3) or “rural”
(RUCC 4 and greater) urbanicity based on Rural-Urban Con-
tinuum Codes (RUCC);43 county overdose rates per capita
using CDC data;44 and total opioid per capita as a
population-weighted measure, calculated using days’ supply
and total daily opioid dose from all opioid prescriptions filled
in a county, and categorized into terciles based on annual
distribution.

Analytic Approach

We developed four mutually exclusive and exhaustive
prescriber groups of prescribers based on the overall rate
of high-risk prescribing (pooled across arms of the dyad)
for each prescriber and a test statistic of the null hypoth-
esis that the difference between rates of high-risk prescrib-
ing across arms was 0. We defined the provider groups as
(1) balanced prescribers—those with low overall rates of
high-risk prescribing (lower than the overall mean of
high-risk prescribing across all prescribers in the dyad
and small differences in the rates of high-risk prescribing
across arms of the dyad, difference statistic within the
20% confidence interval around 0 [p-value >0.80]);
(2) moderate prescribers—those with low overall rates
of high-risk prescribing and moderate differences in rates
of high-risk prescribing across arms of the dyad (differ-
ence statistic outside of the 20% confidence interval
around 0 but also not within a rejection region defined by
alpha=0.10 [p-value <0.80 and p-value >0.10]); (3) unbal-
anced prescribers—those who had significant differences in
rates of prescribing across dyad arms (difference statistic fell
within the 10% rejection region [p-value <0.10]); and (4)
consistent high-risk prescribers—those who had high overall
rates of high-risk prescribing and no more than moderate
differences between rates of high-risk prescribing between
dyad arms (difference statistic outside of the rejection region
[p-value >0.10]).

For each payer group, we performed bivariate analyses to
identify associations between prescriber status (balanced,
moderate, unbalanced, high-risk) and prescriber and county
characteristics. To identify factors associated with being an
unbalanced prescriber, we used multivariable regression to
compare unbalanced prescribers to all other prescribers, by
specialty and controlling for county urbanicity, opioid per
capita dispensed, fatal overdose rate, and percent of non-
White residents. We controlled for minimum log-
transformed volume of patients of each prescriber receiving
opioids to correct uncertainty in the unbalanced group that
could be introduced by disproportionately high-volume
prescribers. We included state fixed effects and robust stan-
dard errors clustered at the county level to account for unob-
served correlation structures across observations within a
county.45,46 We performed bivariate analyses of patient
characteristics by episode overall and by prescriber status for
each dyad, and conducted sensitivity analyses where high-
dose prescriptions were defined as MME daily dose >90.
The study was approved with a waiver of consent by the
corresponding author’s IRB.

RESULTS

Our analyses included 157,548,144 prescriptions accounting
for 80.1%OAprescriptions dispensed during the study period.
The 88,352 clinicians in the Medicaid/self-pay dyad were
responsible for 8,078,116 episodes; the 172,392 clinicians in
the Medicaid/commercial dyad were responsible for
20,148,616 episodes; the 122,748 clinicians in the self-pay/
commercial dyad were responsible for 16,676,807 episodes
(Table 1).
Among the Medicaid/self-pay dyad, 18.4% of self-pay

episodes involved high-risk prescriptions compared to 16.1%
of Medicaid episodes. Almost half (49.8%) prescribers wrote
high-risk prescriptions at higher rates to self-pay patients than
Medicaid patients, 29.4% wrote at higher rates to Medicaid
patients than self-pay patients, and 20.8%wrote at comparable
rates between the two groups. In the self-pay/commercial
dyad, 22.7% of self-pay episodes and 22.4% of commercial
episodes involved high-risk prescriptions. Of prescribers in
this dyad, 55.3% wrote at higher rates of high-risk
prescriptions to self-pay patients than commercial patients,
30.5% wrote at higher rates to commercial patients than self-

Figure 1 Illustration of creation of opioid episodes.
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pay patients, and 14.2%wrote at comparable rates between the
two groups. In the Medicaid/commercial dyad, 21.1% of
Medicaid episodes and 20.4% of commercial episodes in-
volved high-risk prescriptions. Of prescribers in the dyad,
42.0% wrote at higher rates of high-risk prescriptions to Med-
icaid patients than commercial patients, 43.4%wrote at higher
rates to commercial patients than Medicaid patients, and
14.6% had comparable rates between the two groups
(Table 1).
Of clinicians in the Medicaid/self-pay dyad, 33.6% were

balanced prescribers, 54.5% were moderate prescribers,
11.8% were unbalanced prescribers, and 0.04% were

consistently high-risk prescribers. Distributions in the
Medicaid/commercial and self-pay/commercial dyads were
similar: balanced (28.7% and 29.0%); moderate (60.1% and
59.2%); unbalanced (11.1% and 11.8%); and high-risk (0.1%
and 0.1%, respectively) (Table 1).
PCPs (25.5%), APPs (24.7%), and emergency physicians

(24.8%) comprised the majority of clinicians in the Medicaid/
self-pay dyad; only 2.4% were pain physicians. The majority
of unbalanced prescribers in this dyad were PCPs and
surgeons (34.7% and 32.2%, respectively). A large proportion
of unbalanced prescribers were located in counties with a high
proportion of minority populations (49.2%); few were in
counties with the lowest overdose rates (6.6% in first quartile
overdose rate per capita). Unbalanced prescribers were pre-
dominantly in urban settings (82.5%) and in regions with high
opioids per capita (58.0% in third tercile of opioids per capita)
(Table 2).
Results were similar for the Medicaid/commercial dyad,

except the most common unbalanced prescribers in this dyad
were PCPs and APPs (39.8% and 26.8%, respectively). In the
self-pay/commercial dyad, the most common prescribers were
PCPs and surgeons (27.6% and 22.9%), and the most common
unbalanced prescribers in this dyad were PCPs and APPs
(38.4% and 22.1%) (Table 2). Characteristics of balanced,
moderate, and high-risk prescribers were similar across dyads
(Appendix 1).
In the multivariable analyses, we examined factors asso-

ciated with being an unbalanced prescriber. In the Medicaid/
self-pay dyad, we found that compared to adult PCPs, pain
physicians and surgeons were significantly more likely to be
unbalanced prescribers (aOR 1.2, 95% CI 1.03–1.34 and
aOR 1.2, 95% CI 1.16–1.34). Emergency physicians, other
specialties, and APPs had lower odds of being unbalanced
prescribers (aOR 0.2, 95%CI 0.18–0.23; aOR 0.9, 95% CI
0.77–0.98; aOR 0.6, 95%CI 0.59–0.68). Results were sim-
ilar for the Medicaid/commercial and self-pay/commercial
dyads, except that surgeons had a lower odds of being
unbalanced compared to PCPs (aOR 0.6, 95%CI 0.57–
0.66; aOR 0.6, 95%CI 0.61–0.68) and other specialties had
higher odds (aOR 1.2, 95%CI 1.08–1.28; aOR 1.2, 95% CI
1.10, 1.29) (Table 3). None of the dyads showed clear
patterns between county characteristics and unbalanced pre-
scribing. Patient characteristics within dyads were similar
across prescriber groups (Appendix 2). Sensitivity analyses
with high-risk OA prescriptions limited to those with >90
MME yielded similar results (Appendix 3).

DISCUSSION

More than 10% of clinicians in our sample were significantly
more likely to write high-risk prescriptions (more than 7-day
supply or more than 90 MME) to patients of one insurance
type compared to their patients of another insurance type.
Such high-risk prescribing was more common for self-pay

Table 1 High-Risk* Prescribing Episode Rates, by Dyad

Prescriber dyad: Medicaid and self-pay (n=73,283)†

High-risk prescribing rates in episodes treated* %
Medicaid (n=5,028,557 episodes) 16.1
Self-pay (n=3,049,559 episodes) 18.4
Fraction of prescribers in prescriber dyad %
Self-pay rate > Medicaid rate 49.8
Self-pay rate = Medicaid rate 20.8
Self-pay rate < Medicaid rate 29.4
Distribution of prescribers in each prescribing category
Balanced‡ 33.6
Moderate§ 54.5
Unbalanced‖ 11.8
High-risk ¶ 0.04
Prescriber dyad: Medicaid and commercial (n=138,783) †

High-risk prescribing rates in episodes treated* %
Medicaid (n=13,021,015 episodes) 21.1
Commercial (n= 7,127,601 episodes) 20.4
Fraction of prescribers in prescriber dyad %
Medicaid rate > commercial rate 42.0
Medicaid rate = commercial rate 14.6
Medicaid rate < commercial rate 43.4
Distribution of prescribers in each prescribing category %
Balanced‡ 28.7
Moderate§ 60.1
Unbalanced‖ 11.1
High-risk¶ 0.1
Prescriber dyad: commercial and self-pay (n=105,192)†
High-risk prescribing rates in episodes treated* %
Self-pay (n=3,741,807 episodes) 22.7
Commercial (n=12,935,000 episodes) 22.4
Fraction of prescribers in prescriber dyad %
Self-pay rate > commercial rate 55.3
Self-pay rate = commercial rate 14.2
Self-pay rate < commercial rate 30.5
Distribution of prescribers in each prescribing category %
Balanced‡ 29.0
Moderate§ 59.2
Unbalanced‖ 11.8
High-risk¶ ¶ 0.1

*High-risk prescribing is either initial prescription > 7 days or
prescription for greater than 90 milliequivalents of morphine
†n is number of providers in dyad
‡Balanced prescribers: clinicians whose overall high-risk prescribing
was less than the mean pooled rate among all in the dyad and for whom
the probability that the rates of high risk and difference between the
rates of high-risk prescribing across payers are within a 20%
confidence interval around zero
§Moderate prescribers: clinicians for whom the rate difference in high-
risk prescribing between payers fell between 0 and the top 5th or 0 and
the bottom 5th percentile of the distribution
‖Unbalanced: clinicians whose prescribing rate difference in prescrib-
ing between insurances was either in the top or bottom 5th percentile
¶High-risk prescribers: clinicians whose overall high-risk prescribing
was higher than mean pooled rate among all in the dyad
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patients than for commercially insured and Medicaid-enrolled
patients among clinicians treating both patient populations,
suggesting that the relationship between insurance status and
quality of prescribing OAs goes beyondwhere patients receive
care. This differential prescribing may stem from factors such
as patient education or patient demographics not captured in
the data. Nonetheless, our study suggests that insurance type
itself is a marker for risk of lower quality opioid care. Prior
studies have shown that access to health insurance improves
opioid-related health outcomes, probably reflecting access to
opioid use disorder treatment.47 We found that access to
insurance—either Medicaid or commercial—is associated
with safer initial prescribing of OAs.
We found that self-pay patients had more high-risk opioid

episodes than Medicaid or commercial patients but can only
hypothesize about the reason. Clinicians may alter their
practices due to clinical differences among populations, im-
plicit or explicit bias, or misaligned financial incentives.48 For
example, commercially insured patients may have fewer high-
risk opioid episodes because they are receiving other
treatments, such as surgery or physical therapy. These patients
may be more likely than Medicaid patients to receive such
interventions because of higher reimbursement48 or because
such procedures may be prohibitively expensive for self-pay
patients. Patients who cannot afford alternative treatments

may be more reliant on opioids, and it may be more cost-
effective for such patients to receive a shorter course of higher
dose opioids than a longer course of lower dose opioids.
Clinicians may be responding to these realities.
Unbalanced prescribing may reflect prescribing restrictions

for patients with commercial and Medicaid insurance but not
for self-pay. Alternatively, because many commercial insurers
andMedicaid programsmonitor and track opioid prescriptions
using pharmacy claims,49 some individuals who self-pay for
opioids may be seeking to evade or circumvent such
efforts.50,51 It is also possible that self-pay patients who re-
ceived an initial episode >7 days were in fact on long-term
opioids but had gaps in prescriptions because they were unable
to pay for medications. Finally, prescribers themselves may
also suggest self-payment to evade the need for prior authori-
zation or prescription monitoring.
Studies show that high-risk prescribing varies by clinician

type and characteristics.52 However, results are mixed regard-
ing which prescriber specialties are more likely to write high-
risk prescriptions. Fink and colleagues found patients of nurse
practitioners (NP) or naturopathicmedicine clinicians received
more high risk opioids prescriptions than patients seen by
other clinician types. However, these high-risk prescriptions
were actually written by prescribers in different disciplines
(i.e., not their NP or naturopathic medicine clinician). These

Table 2 Characteristics of Prescribers, Overall and Unbalanced, by Dyad

Prescriber dyad: Medicaid
and self-pay*

Prescriber dyad: Medicaid
and commercial*

Prescriber dyad: self-pay
and commercial*

Prescriber characteristics Overall dyad†

n=88,352
Unbalanced
n=10,447

Overall dyad†

n=172,391
Unbalanced
n=19207

Overall dyad†

n=122,748
Unbalanced
n=14,521

% % % % % %

Specialty/Provider type
Primary Care Physician 25.5 34.7 32.5 39.8 27.6 38.4
Emergency Physician 24.8 5.1 15.8 3.4 19.6 8.2
Other specialty 3.7 4.0 4.4 7.1 4.2 6.1
Physician Assistant/Nurse Practi-
tioner

24.7 20.3 24.8 26.8 22.7 22.1

Pain Physician 2.4 3.8 2.6 4.0 3.1 4.0
Surgeon 19.0 32.2 19.9 18.9 22.9 21.2
Quartile non-White or Hispanic
First (most White) 5.1 5.5 6.0 7.0 4.4 5.3
Second 12.7 13.3 14.0 13.2 11.6 11.2
Third 30.7 32.1 32.2 31.0 30.3 28.9
Fourth (most minority) 51.5 49.2 47.8 48.8 53.7 54.6
Overdose rate (quartile)
First (lowest rate) 7.4 6.6 6.1 5.4 7.9 8.6
Second 29.9 26.5 25.1 23.1 32.5 32.2
Third 33.1 37.6 31.3 32.8 32.2 31.9
Fourth (highest rate) 29.6 29.2 37.5 38.6 27.4 27.3
Urbanicity
Urban 82.9 82.5 84.6 84.2 84.0 80.9
Rural 17.1 17.5 15.4 15.8 16.0 19.1
Total Opioid per capita (tercile)
First (lowest) 9.0 7.7 9.4 9.8 8.8 10.2
Second 37.8 34.3 39.5 38.3 38.5 37.0
Third 53.3 58.0 51.1 51.9 52.7 52.8

*We excluded a few providers whose rurality status cannot be determined due to lack of data for analytic purposes
†Chi-square tests comparing characteristics of unbalanced, balanced, moderate, and high-risk prescribers were performed for each dyad. All p-values
were <.0001. p-value < .05 is statistically significant
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patients were just more likely to have multiple prescribers, and
the authors concluded that variability was due to patient rather
than prescriber characteristics.53 A study of post-surgical opi-
oid prescribing found APPs were more likely to prescribe
opioids >30 days than physicians across all surgical special-
ties.54 By contrast, studies in the emergency department found
that APPs were less likely to prescribe high-risk opioids.55

Another study found PCPs were more likely to prescribe
opioids than specialists, but surgeons and hospital-based
specialists prescribed higher doses than PCPs.52 However,
no prior work has examined the extent to which individual
clinicians prescribe differently to different patients.
We found that pain physicians had greater odds of being

unbalanced prescribers than PCPs. Patients seeking care with
pain specialists may have chronic, more complex pain than
patients seeing other prescribers. However, it is possible that
self-pay patients who obtain care from pain specialists differ
clinically from commercially insured or Medicaid-enrolled
individuals receiving such care. For example, self-pay patients
may present to pain care clinicians later in the course of their
illness, potentially contributing to higher rates of high-dose
opioids or longer prescriptions observed in self-pay individuals.

Limitations

Our study has several limitations. We have no clinical infor-
mation about individuals filling opioid prescriptions. Without
clinical information, we do not know to what extent the high-

risk prescribing is appropriate (e.g., palliative treatment), or
whether clinical differences are driving variation between
populations. We have no information about opioids dispensed
from pharmacies not included in the IQVIA data, or informa-
tion about other services received by individuals filling opioid
prescriptions, including non-pharmacologic interventions for
pain management. We have no information about the clinical
settings in which prescribers practice. Many clinicians work in
multiple settings, potentially treating individuals with different
insurance in different settings, thereby influencing opioid pre-
scribing. Finally, although we have developed a concrete,
robust, and reproducible method for classifying providers as
unbalanced, the approach is novel, and we therefore cannot
compare our characterizations with those used elsewhere.
Future research examining such characterizations is needed.

CONCLUSION

Our study enhances understanding of potentially high-risk pre-
scribing of OAs. The same clinicians prescribed OAs different-
ly to different populations of patients. Over 1 in 10 prescribers
in each of the dyads exhibited unbalanced prescribing patterns
based on insurance type, and self-pay patients were particularly
at risk for receiving high-risk opioid episodes. Our findings
may reflect barriers to access to care for patients without insur-
ance, clinician efforts to limit out-of-pocket costs to uninsured
patients, or limitations of current opioid prescribing monitoring

Table 3 Adjusted Odds Ratio* of Characteristics of Unbalanced Prescribers vs. Other Prescribers†

Medicaid-self-pay dyad
aOR‡ (95% CI)

Medicaid-commercial dyad
aOR‡ (95% CI)

Commercial-self-pay dyad
aOR‡ (95% CI)

Specialty/Provider type
Primary Care Physician Ref Ref Ref
Emergency Physician 0.2 (0.18–0.23) 0.2 (0.19–0.24) 0.5 (0.44–0.52)
Other specialty 0.9 (0.77–0.98) 1.2 (1.08–1.28) 1.2 (1.1–1.29)
Physician Assistant/Nurse Practitioner 0.6 (0.59–0.68) 0.8 (0.8–0.89) 0.8 (0.74–0.83)
Pain Physician 1.2 (1.03–1.34) 1.3 (1.21–1.49) 1 (0.87–1.07)
Surgeon 1.2 (1.16–1.34) 0.6 (0.57–0.66) 0.6 (0.61–0.68)
Quartile non-White or Hispanic
First Ref Ref Ref
Second 0.9 (0.82–1.08) 0.9 (0.8–0.95) 0.9 (0.77–0.97)
Third 1 (0.86–1.12) 0.9 (0.86–1.04) 0.9 (0.81–1.02)
Fourth 1 (0.87–1.17) 1.2 (1.05–1.33) 1.1 (0.94–1.23)
Overdose rate (quartile)
First Ref Ref Ref
Second 1 (0.85–1.1) 1.1 (0.94–1.19) 1 (0.92–1.11)
Third 1.1 (0.93–1.23) 1.1 (0.93–1.19) 1 (0.88–1.1)
Fourth 1 (0.87–1.18) 1.2 (1.04–1.38) 1 (0.91–1.18)
Urbanicity
Urban Ref Ref Ref
Rural 1 (0.91–1.07) 1.2 (1.11–1.27) 1.4 (1.26–1.45)
Total opioid per capita (tercile)
First Ref Ref Ref
Second 1 (0.88–1.21) 1 (0.88–1.12) 0.9 (0.8–0.95)
Third 1.1 (0.91–1.26) 1.1 (0.95–1.2) 0.9 (0.86–1.02)
Minimum patient volume per prescriber‡ 0.1 (0.06–0.08) 0.2 (0.17–0.2) 0.1 (0.11–0.14)

*Logistic regression models also included state fixed effects. Standard errors were clustered at the county level
†Comparison group includes balanced, moderate, and high-risk prescribers
‡Log-transformed minimum number of patients across 2 payers of each provider
Odds ratios that are statistically signification at p <.05 are bolded
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systems. Our findings warrant further examination of how the
structure of the US health system may contribute to disparate
high-risk prescribing. Specifically, we need a better under-
standing of the extent to which our findings reflect barriers
to access to care for patients without insurance and clinician
efforts to limit out-of-pocket costs to uninsured patients. These
results may also reflect the limitations of current opioid pre-
scribing monitoring systems and the need for them to better
capture patients who pay out-of-pocket for their medications.
Our findings may further support the need for health insurance
expansion and additional policy interventions to address the
disparities observed in potentially high-risk opioid prescribing
by the same clinician to different populations of patients.
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