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BACKGROUND: Meta-analysis is increasingly used to
synthesize proportions (e.g., disease prevalence). It can
be implemented with widely used two-step methods or
one-step methods, such as generalized linear mixed
models (GLMMs). Existing simulation studies have shown
that GLMMs outperform the two-step methods in some
settings. It is, however, unclear whether these simulation
settings are common in the real world. We aim to compare
the real-world performance of various meta-analysis
methods for synthesizing proportions.
METHODS: We extracted datasets of proportions from the
Cochrane Library and applied 12 two-step and one-step
methods to each dataset. We used Spearman’s ρ and the
Bland–Altman plot to assess their results’ correlation and
agreement. The GLMMwith the logit link was chosen as the
reference method. We calculated the absolute difference and
fold change (ratio of estimates) of the overall proportion esti-
mates produced by eachmethod vs. the reference method.
RESULTS: We obtained a total of 43,644 datasets. The
various methods generally had high correlations (ρ > 0.9)
and agreements. GLMMs had computational issuesmore
frequently than the two-step methods. However, the two-
step methods generally produced large absolute differ-
ences from the GLMM with the logit link for small total
sample sizes (< 50) and crude event rates within 10–20%
and 90–95%, and large fold changes for small total event
counts (< 10) and low crude event rates (< 20%).
CONCLUSIONS: Although different methods produced
similar overall proportion estimates in most datasets,
one-step methods should be considered in the presence
of small total event counts or sample sizes and very low or
high event rates.
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INTRODUCTION

Epidemiological and medical studies frequently report propor-
tions, including the prevalence of disease, case fatality rate,
and sensitivity and specificity of a diagnostic test.1,2 Meta-

analysis approaches have been increasingly used to synthesize
proportion estimates from multiple studies on common topics
over the past decade.3 Various methods are available for this
purpose, and we may group them into two classes. The first
class includes the two-step methods that are widely used in
current practice. Because conventional meta-analysis models
assume the input data are normally distributed,4 proportion
estimates from individual studies are first transformed using a
certain function to approximately meet this assumption. Meta-
analyses are subsequently performed on the transformed scale,
and the synthesized results are back-transformed to the pro-
portion scale from 0 to 100% at the final step.5 Among many
options, the Freeman–Tukey double-arcsine transformation
has been popular in contemporary meta-analyses of propor-
tions3,6 because it has the advantages of stabilizing variances
of transformed proportions and producing smaller biases com-
pared with other transformations.5,7 For example, it was used
in a recent systematic review to pool the prevalence of
COVID-19 among pregnant women.8 Nevertheless, this trans-
formation suffers from several limitations, such as lacking
intuitive interpretations and the potential to give misleading
conclusions.9–11

The second class of methods includes generalized linear
mixed models (GLMMs).12–15 Although they are less fre-
quently used in current practice, existing simulation studies
have shown that these methods outperform the two-step
methods in several settings.16,17 They do not require data
transformations within studies and thus are referred to as
one-step methods. They fully account for uncertainties and
thus produce confidence intervals (CIs) with satisfactory cov-
erage probabilities.18 They can be feasibly implemented via
many statistical software programs, including SAS and several
R packages.17

In a recent survey of 152 meta-analyses of prevalence
investigated by Borges Migliavaca et al.,3 32 (21.1%) applied
the Freeman–Tukey double-arcsine transformation, 5 (3.3%)
applied the logit transformation, and 4 (2.6%) applied the log
transformation, while 107 (70.4%) did not explicitly specify
the transformations. Although several existing simulation
studies have compared the various methods,5,9,16,17 the per-
formance of these methods depends heavily on how the meta-
analysis data are simulated. It is largely unclear whether the
simulation settings are representative of real-world meta-anal-
yses of proportions. The one-step methods generally perform
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better than the two-step methods in cases of rare events or
small sample sizes, while the two types of methods produce
similar results in cases of common events and sufficiently
large sample sizes.19,20 Nevertheless, there is no consensus
on cutoffs for distinguishing small vs. large sample sizes, rare
vs. common events, etc. In addition, the methods’ perfor-
mance also depends on the number of studies and the extent
of heterogeneity. It is infeasible to match real-world settings
with existing knowledge from simulation studies and deter-
mine the appropriate methods for a specific meta-analysis.
This article fills this research gap. We use a large collection
of meta-analysis datasets published in the Cochrane Library to
evaluate the differences between the overall proportion esti-
mates produced by the various meta-analysis methods.

METHODS

Data Sources

We iteratively downloaded all data of each systematic review
published in theCochrane Database of Systematic Reviews from
2003 Issue 1 to 2020 Issue 1. Each Cochrane review dealt with a
specific healthcare-related topic. Some reviews had multiple
updates during this period; we only included their latest versions.
Moreover, we excluded data from withdrawn reviews.
Each Cochrane review may contain multiple meta-analyses

on different outcomes, intervention comparisons, or subgroups.
We extracted meta-analyses of intervention comparisons with
binary outcomes, and we focused on their control groups to
investigate the performance of meta-analysis methods for syn-
thesizing proportions. The control group in each meta-analysis
contributed a dataset of proportions. Our analyses were restrict-
ed to the datasets with at least three studies.21

Synthesis of Proportions

We applied both the two-step and one-step meta-analysis
methods to each dataset of proportions. Appendix A in the
Supplemental Information gives a brief review of these
methods. For the two-step methods, we used the log, logit,
arcsine-square-root, and Freeman–Tukey double-arcsine
transformations. For the Freeman–Tukey double-arcsine
transformation, a sample size is required for back-
transforming the synthesized result to the original proportion
scale,10 while this sample size is not well defined for the
synthesized result (Appendix A). As suggested by several
researchers,5,10,11,17 we considered the harmonic, geometric,
and arithmetic means of study-specific sample sizes, as well as
the inverse of the variance of the synthesized result. These led
to seven two-step methods in total.
When applying the one-step methods, we considered the

GLMMs with the commonly used log, logit, probit, cauchit,
and complementary log-log (cloglog) link functions, leading
to five one-step methods in total. The GLMMs with the log
and logit links correspond to the two-step methods with the

log and logit transformations, respectively, but the GLMMs
fully account for within-study uncertainties. The probit,
cauchit, and cloglog links do not correspond to commonly
used transformations for the two-step methods. Similarly, the
arcsine-based transformations for the two-step methods do not
correspond to well-known links for GLMMs. The different
links used in GLMMs essentially correspond to different
distributional assumptions for continuous latent variables
(e.g., Hospital Anxiety and Depression Scale score) that are
dichotomized to produce the binary data (e.g., depression).2,22

For example, the logit and probit links correspond to the
logistic and normal distributions of continuous latent vari-
ables, respectively. The cauchit link corresponds to the
Cauchy distribution, which is suitable for modeling data with
extreme values. The cloglog link corresponds to an asymmet-
ric distribution (specifically, the so-called extreme value dis-
tribution), and it may be suitable for modeling skewed data.

Implementations

We estimated the overall proportion in each dataset via the
maximum-likelihood (ML) approach using both the two-step
and one-step methods. All meta-analyses were performed under
the random-effects setting to account for heterogeneity between
studies. Of note, although the restricted maximum-likelihood
(REML) estimators may be superior to the ML estimators,23

GLMMs are usually implemented via theML approach because
the REML estimation for GLMMs is computationally challeng-
ing.24 Our analyses were performed in R (version 4.0.2) with
package “altmeta” (version 3.2). We obtained the overall pro-
portion estimate and its 95% confidence interval (CI) in each
meta-analysis. We recorded when the implementations of
GLMMs failed (specifically due to the convergence issues
related to maximizing likelihood algorithms).

Comparisons of Various Methods

Existing simulation studies have shown that the one-step
GLMMs generally produce smaller biases and mean squared
errors and CIs with higher coverage probabilities than the two-
step methods.16,17 In addition, the logit link is the canonical
link for binomial data, and proportions on the logit scale have
intuitive interpretations (i.e., log odds) for practitioners. There-
fore, we chose the GLMM with the logit link as the reference
method when comparing the various methods. We visualized
the estimated overall proportions produced by each method
against those by the reference method, and we calculated
Spearman’s rank correlation coefficient ρ to assess their cor-
relation. Similar analyses were repeated for the lower and
upper bounds of 95% CIs.
Moreover, we calculated the absolute difference of the

estimated overall proportions produced by each method and
the reference method for each dataset. Since proportions are
bounded at 0%, outcomes with rare events are likely to have
smaller differences. In addition to the absolute difference, we
also calculated the fold change of the estimated overall
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proportion by each method vs. the reference method. The fold
change is defined as the ratio of a larger estimate divided by a
smaller estimate; thus, it has a minimum value of 1.25 For
example, 55% and 50% had an absolute difference of 5% and
a fold change of 1.1; 0.2% and 0.1% had a much smaller
absolute difference of 0.1% but a much larger fold change of
2. The interpretations of the fold change’s extent may differ
case by case, depending on the importance of outcomes, etc.;
roughly, a fold change > 1.2 may be considered large.25,26

For each method, we additionally investigated how the com-
putational failures, Spearman’s rank correlation coefficients,
absolute differences, and fold changes were related to (1) the
number of studies, (2) the total event count, (3) the total sample
size, and (4) the crude event rate within a meta-analysis. The
crude event rate was calculated as the total event count divided
by the total sample size. The total sample size was categorized
based on the cutoffs of 10 to 200 by increments of 10. The crude
event rate was categorized based on the cutoffs of 0.1%, 0.5%,
1%, 5%, 10% to 90%, 95%, 99%, 99.5%, and 99.9%.
For the one-step GLMMs, we also obtained the value of the

Akaike information criterion (AIC) for each dataset. The AIC
is a tool for model selection, with smaller values indicating
better models. We calculated the difference in AIC between
each GLMM and the reference method; a negative difference
implied that the corresponding GLMM performed better than
the reference method. A difference > 5 (in absolute magni-
tude) in AIC may be considered substantial.27

RESULTS

Basic Characteristics

In total, we obtained 43,644 datasets of proportions from 3244
Cochrane reviews. Table S1 summarizes some descriptive
statistics about the datasets. Most meta-analyses contained

few studies, with a median of 5. The median of total event
counts was 56 (interquartile range [IQR], 18 to 163), and 1063
(2.4%) meta-analyses had zero total event counts. The total
sample sizes had a median of 438 (IQR, 200 to 1049), and the
crude event rates had a median of 12.6% (IQR, 4.4 to 29.8%).
Tables S2–S5 give the counts of datasets in categories based
on the number of studies, total event count, total sample size,
and crude event rate.

Computational Issues

Table 1 presents the counts and proportions of datasets that led
to computational issues when using the various methods. In
the presence of such issues, the methods failed to produce
synthesized proportion estimates. All two-step methods led to
computational issues in < 1% of the datasets, while the log
transformation had more computational issues than other
transformations. The one-step GLMMs produced computa-
tional issues more frequently than the two-step methods. The
GLMM with the logit link generally produced fewer issues
than other one-step methods, but its proportion of computa-
tional issues (6.3%) was still higher than that of the two-step
methods. The GLMM with the cauchit link produced more
computational issues than the GLMMs with the probit and
cloglog links.
Figures 1 and S1–S4 illustrate how the number of studies,

total event count, total sample size, and crude event rate
affected computational issues. Because the two-step methods
had fewer computational issues than the one-step GLMMs, the
following interpretations focus on the GLMMs. The GLMMs
could not be implemented in all meta-analyses with zero total
event counts. Excluding such meta-analyses, the proportion of
computational issues seemed to slightly increase as the num-
ber of studies or the total event count increased (Figs. S1–S3).
For the GLMM with the cauchit link, the proportion of com-
putational issues was relatively high across different settings.

Table 1 Results Produced by the Various Methods for Synthesizing Proportions Among Cochrane Datasets (n = 43,644)

Method Failure* Absolute difference† Fold change†

Two-step (log) 260 (0.6%) 0.9% (0.2%, 2.4%) 1.10 (1.03, 1.46)
Two-step (logit) 215 (0.5%) 0.6% (0.2%, 1.8%) 1.07 (1.02, 1.42)
Two-step (arcsine) 113 (0.3%) 0.4% (0.0%, 1.3%) 1.05 (1.01, 1.26)
Two-step (DAS-H) 125 (0.3%) 0.3% (−0.1%, 1.2%) 1.06 (1.01, 1.25)
Two-step (DAS-G) 125 (0.3%) 0.4% (−0.1%, 1.4%) 1.06 (1.01, 1.26)
Two-step (DAS-A) 125 (0.3%) 0.5% (0.0%, 1.5%) 1.06 (1.01, 1.30)
Two-step (DAS-IV) 125 (0.3%) 0.6% (0.1%, 1.6%) 1.06 (1.01, 1.36)
GLMM (log) 3822 (8.8%) 0.0% (−0.4%, 0.0%) 1.01 (1.00, 1.03)
GLMM (probit) 2766 (6.3%) 0.0% (0.0%, 0.2%) 1.00 (1.00, 1.02)
GLMM (cauchit) 5708 (13.1%) 0.0% (−0.5%, 0.0%) 1.02 (1.00, 1.10)
GLMM (cloglog) 2818 (6.5%) 0.0% (−0.2%, 0.0%) 1.00 (1.00, 1.01)
GLMM (logit) 2131 (4.9%) Reference Reference

*The column of “failure” gives the counts of datasets that led to computational issues when using the various methods. The corresponding proportions
are given in parentheses
†The columns of “absolute difference” and “fold change” give the medians of absolute differences and fold changes of the overall proportion estimates
produced by the various methods compared with the reference method. The corresponding interquartile ranges are given in parentheses. The fold
change is the ratio of a larger estimate of the overall proportion divided by a smaller estimate
Abbreviations: Two-step (log, logit, or arcsine), two-step method with the log, logit, or arcsine-square-root transformation; Two-step (DAS-H, DAS-G,
DAS-A, or DAS-IV), two-step method with the Freeman–Tukey double-arcsine (DAS) transformation, using the harmonic (H), geometric (G), or
arithmetic (A) mean of study-specific sample sizes, or using the inverse of the variance (IV) of the synthesized result, as the overall sample size; GLMM
(log, logit, probit, cauchit, or cloglog), generalized linear mixed model with the log, logit, probit, cauchit, or complementary log-log link
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Figure 1 Proportions (with 95% confidence intervals) of Cochrane datasets that led to computational issues when using various meta-analysis
methods, categorized by the total sample size within a meta-analysis. The two-step method (DAS-H, DAS-G, DAS-A, or DAS-IV) corresponds
to the Freeman–Tukey double-arcsine (DAS) transformation, using the harmonic (H), geometric (G), or arithmetic (A) mean of study-specific

sample sizes, or using the inverse of the variance (IV) of the synthesized result, as the overall sample size.
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Figure 1 shows that the proportion of computational issues
decreased as the total sample size increased. In addition, the
GLMMs very likely had computational issues when the crude
event rate was < 0.1% or > 99.9% (Fig. S4). The proportion of
computational issues produced by the GLMM with the log
link sharply increased as the crude event rate increased, espe-
cially when the crude event rate was > 50%.

Comparisons of Results from the 12 Meta-
analysis Methods

Figure 2 presents the overall proportion estimates produced by
the variousmethods against the referencemethod, and Figure 3
presents the associated Bland–Altman plots. The figures and
the following results were based on the datasets whose overall
proportions were successfully produced by both methods in
each pairwise comparison without computational issues.
Spearman’s ρ was > 0.97 for each pairwise comparison. The
various methods produced very similar results with median

absolute differences close to 0% and median fold changes
close to 1 (Table 1). The GLMMs with different links pro-
duced nearly identical results, with ρ>0.99. The GLMM with
the probit link seemed to have the most similar performance to
the reference method of the GLMM with the logit link. De-
spite the high correlations, the overall proportion estimates in
some meta-analyses by different methods were noticeably
different. For example, the two-step method with the logit
transformation tended to produce larger and smaller overall
proportion estimates than the GLMMwith the logit link when
the overall proportions were close to 0% and 100%,
respectively.
Figures S5–S8 show the relationships between Spearman’s

ρ and the number of studies, total event count, total sample
size, and crude event rate. Spearman’s ρ for GLMMs was
generally high across different settings. The number of studies
had a small impact on Spearman’s ρ for the two-step methods
(Fig. S5). Spearman’s ρ could be noticeably lower for smaller

Figure 2 Scatter plots of overall proportion estimates (in percentage) produced by various meta-analysis methods against those by the
generalized linear mixed model with the logit link among Cochrane datasets. In each panel, the diagonal dashed line represents the identity line,
and Spearman’s rank correlation coefficient ρ between the corresponding two meta-analysis methods is displayed. The two-step method (DAS-
H, DAS-G, DAS-A, or DAS-IV) corresponds to the Freeman–Tukey double-arcsine (DAS) transformation, using the harmonic (H), geometric
(G), or arithmetic (A) mean of study-specific sample sizes, or using the inverse of the variance (IV) of the synthesized result, as the overall

sample size.

Lin et al.: Empirical Comparisons of 12 Meta-analysis Methods JGIM312



total event counts (Fig. S6). For crude event rates close to 0%
or 100%, Spearman’s ρ could be as low as 0.2 (Fig. S8).
Figures S9 and S10 present the lower and upper bounds of

95% CIs, respectively, and Figures S11 and S12 present the
corresponding Bland–Altman plots. The correlations were
smaller than those for the point estimates. The two-step
methods tended to produce larger CI lower bounds and smaller
CI upper bounds than the reference method. The GLMMwith
the cauchit link generally produced larger CI upper bounds
than the reference method, with ρ < 0.7.
Figures S13 and S17 present the histograms of absolute

differences and fold changes by the various methods. Consis-
tent with Figure 2, absolute differences and fold changes were
close to 0 and 1 for GLMMs, respectively, while absolute
differences could be > 6% and fold changes could be > 2 for
the two-step methods in a considerable number of datasets.
Because the absolute differences and fold changes among
GLMMs were mostly tiny, we focus on those for the two-
step methods in the following. The absolute difference and

fold change slightly increased as the number of studies in-
creased (Figs. S14 and S18). As the total event count in-
creased, the absolute difference slightly decreased toward 0
(Fig. S15), while the fold change dramatically decreased to-
ward 1 (Fig. 4). As the total sample size increased, the absolute
difference dramatically decreased (Fig. 5), while the fold
change did not change much (Fig. S19). When the crude event
rate was < 50%, the absolute difference tended to be positive,
and they mostly changed to be negative when the crude event
rate was >50% (Fig. S16). The fold change sharply decreased
toward 1 when the crude event rate increased from 0 to 20%
(Fig. S20).
In addition, Figure S21 gives the histogram of differences in

AIC values. Many datasets had differences in AIC around 0,
indicating no substantial differences between the GLMMs’
performance. However, there were still a noticeable number
of datasets with large differences in AIC, especially for the
GLMM with the cauchit link. For the GLMM with the log,
probit, cauchit, and cloglog links, 2884 (7.4%), 9365 (23.5%),

Figure 3 Bland–Altman plots of agreement between overall proportion estimates (in percentage) produced by various meta-analysis methods
and those by the generalized linear mixed model with the logit link among Cochrane datasets. In each panel, the horizontal solid line represents
the mean difference, and the horizontal dashed lines represent 95% limits of agreement. The two-step method (DAS-H, DAS-G, DAS-A, or
DAS-IV) corresponds to the Freeman–Tukey double-arcsine (DAS) transformation, using the harmonic (H), geometric (G), or arithmetic (A)

mean of study-specific sample sizes, or using the inverse of the variance (IV) of the synthesized result, as the overall sample size.
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Figure 4 Box plots of fold changes of overall proportion estimates produced by various meta-analysis methods compared with those by the
generalized linear mixed model with the logit link among Cochrane datasets, categorized by the total event count within a meta-analysis.

Because many datasets led to extreme values of fold changes, the box plots do not present outliers, and the vertical axis only presents the range
from 1 to 2. The two-step method (DAS-H, DAS-G, DAS-A, or DAS-IV) corresponds to the Freeman–Tukey double-arcsine (DAS)

transformation, using the harmonic (H), geometric (G), or arithmetic (A) mean of study-specific sample sizes, or using the inverse of the
variance (IV) of the synthesized result, as the overall sample size.
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Figure 5 Box plots of absolute differences between overall proportion estimates (in percentage) produced by various meta-analysis methods and
those by the generalized linear mixed model with the logit link among Cochrane datasets, categorized by the total sample size within a meta-
analysis. In each panel, the horizontal dashed line represents no difference. Because many datasets led to extreme values of absolute differences,
the box plots do not present outliers, and the vertical axis only presents the range from − 6 to 6%. The two-step method (DAS-H, DAS-G, DAS-
A, or DAS-IV) corresponds to the Freeman–Tukey double-arcsine (DAS) transformation, using the harmonic (H), geometric (G), or arithmetic

(A) mean of study-specific sample sizes, or using the inverse of the variance (IV) of the synthesized result, as the overall sample size.
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6490 (17.5%), and 3703 (9.3%) datasets had differences in
AIC < − 5, respectively, indicating substantially better perfor-
mance than the reference method of the GLMMwith the logit
link; 16,825 (43.2%), 9558 (24.0%), 17,468 (47.2%), and
13,002 (32.5%) datasets had differences in AIC > 5, indicating
substantially worse performance than the reference method.

DISCUSSION

This article has investigated 12 two-step and one-step methods
for meta-analyses of proportions. This is the largest study in
the current literature that compared the various methods using
real-world (instead of simulated) data. Although the one-step
GLMMs have been shown to outperform two-step methods
with smaller biases and mean squared errors and higher CI
coverage probabilities in simulation studies, they may lead to
computation issues more frequently than the two-step
methods, especially when sample sizes were small or propor-
tions were close to 0% or 100%.
In general, the various methods produced similar overall

proportion estimates with very high correlation coefficients
and agreements. Although the popular Freeman–Tukey
double-arcsine transformation has been recently criticized for
its misleading conclusions in extreme scenarios (e.g., very
diverse sample sizes across studies and small event counts),11

our results indicated that such scenarios were uncommon in
practice. Moreover, it is a conventional practice for meta-
analysts to report forest plots for displaying the collected
studies’ distribution and funnel plots for assessing small-
study effects. These plots require study-specific proportion
estimates, which need to be obtained from the two-step
methods. Our findings indicate that, in most cases, meta-
analysts may safely use two-step methods for facilitating data
visualizations.
Nevertheless, large absolute differences (e.g., > 6%) and

large fold changes (e.g., > 2) existed for the two-step methods
in certain cases. Large absolute differences weremore likely to
occur when the total sample sizes were small (e.g., < 50) or the
crude event rates were about 10–20% and 90–95%. Large fold
changes were more likely to occur when the total event counts
were small (e.g., < 10) or the crude event rates were low (e.g.,
< 20%). Based on specific research purposes, meta-analysts
should cautiously use the two-step methods in such cases.
In addition, the two-step methods generally produced

narrower CIs than the GLMM with the logit link. These are
in line with conclusions from existing simulation studies that
the CIs produced by the two-step methods may have poor
coverage probabilities. The CIs produced by the one-step
GLMMs may be more suitable because the GLMMs fully
account for within-study uncertainties.
This study has several limitations. First, meta-analyses of

proportions are frequently used to synthesize prevalence from
observational studies with very large sample sizes, while many
studies from Cochrane reviews are randomized studies with

smaller sample sizes. In this sense, event counts and crude
event rates may be more important factors than sample sizes
that may affect differences between methods for meta-
analyses of prevalence. Second, because meta-analyses from
the same Cochrane review investigated different but relevant
interventions, outcomes, or subgroups on a specific topic, they
may be associated to some extent, potentially affecting our
conclusions. On average, each Cochrane review contributed
approximately 13 meta-analyses. This problem could be
avoided by extracting a single meta-analysis from each re-
view, but it would lead to much fewer datasets and thus larger
uncertainties in the results. Also, the criteria for choosing a
single meta-analysis from each review might confound the
results. Third, besides the 12 methods investigated in this
article, other methods are available for synthesizing propor-
tions, such as the beta-binomial model and Bayesian hierar-
chical models.15,28 These alternatives are seldom used in the
current applications of meta-analyses of proportions, so this
article did not investigate their empirical performance. In
addition, we implemented GLMMs using the Laplace approx-
imation for maximizing likelihoods. Alternative approaches
such as the adaptive Gauss–Hermite approximation may also
be used, and they may produce different results for GLMMs.29

Fourth, this article has limited to univariate proportions, while
multivariate models (e.g., for simultaneously synthesizing
sensitivities and specificities of diagnostic tests) may be more
efficient by accounting for the correlations when multiple
proportions are reported in each study.30

In summary, although different methods produced similar
overall proportion estimates in most datasets, sensitivity anal-
yses using both one- and two-step methods are recommended
in the presence of small total event counts or sample sizes and
very low or high event rates.
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