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ABSTRACT:
INTRODUCTION: Sodium glucose co-transporter-2
inhibitors (SGLT2) are commonly prescribed to patients
with type 2 diabetes mellitus, but can increase the risk of
diabetic ketoacidosis. Identifying patients prone to diabet-
ic ketoacidosis may help mitigate this risk.
METHODS: We conducted a population-based cohort
study of adults initiating SGLT2 inhibitor use from 2013
through 2017. The primary objective was to identify poten-
tial predictors of diabetic ketoacidosis. Two machine-
learning methods were applied to model high-
dimensional pre-exposure data: gradient boosted trees
and least absolute shrinkage and selection operator
(LASSO) regression. We rank ordered the variables pro-
duced from LASSOby the size of their estimated coefficient
(largest to smallest). With gradient boosted trees, a relative
importance measure for each variable is provided rather
than a coefficient. The “top variables” were identified after
reviewing the distributions of the effect estimates from
LASSO and gradient boosted trees to identify where there
was a substantial decrease in variable importance. The
identified predictorswere thenassessed in a logistic regres-
sion model and reported as odds ratios (ORs) with 95%
confidence intervals (CIs).
RESULTS: We identified 111,442 adults who started
SGLT2 inhibitor use. The mean age was 57 years, 44%
were female, the mean hemoglobin A1C was 8.7%, and
the mean creatinine was 0.89 mg/dL. During a mean
follow-up of 180 days, 192 patients (0.2%, i.e., 2 per
1000) were diagnosed and hospitalized with diabetic
ketoacidosis (DKA) and 475 (0.4%, i.e., 4 per 1000) were
diagnosed in either an inpatient or outpatient setting.
Using gradient boosted trees, the strongest predictors
were prior DKA, baseline hemoglobin A1C level, baseline
creatinine level, use of medications for dementia, and
baseline bicarbonate level. Using LASSO regression not
including laboratory test results due to missing data, the
strongest predictors were prior DKA, digoxin use, use of
medications for dementia, and recent hypoglycemia. The
logistic regression model incorporating the variables

identified from gradient boosted trees and LASSO regres-
sion suggested the following pre-exposure characteristics
had the strongest association with a hospitalization for
DKA: use of dementia medications (OR= 7.76, 95% CI
2.60, 23.1), prior intracranial hemorrhage (OR = 11.5,
95% CI 1.46, 91.1), a prior diagnosis of hypoglycemia
(OR = 5.41, 95% CI 1.92,15.3), prior DKA (OR = 2.45,
95% CI 0.33, 18.0), digoxin use (OR= 4.00, 95% CI 1.21,
13.2), a baseline hemoglobin A1C above 10% (OR=3.14,
95% CI 1.95, 5.06), and baseline bicarbonate below
18 mmol/L (OR 5.09, 95% CI 1.58, 16.4).
CONCLUSION: Diabetic ketoacidosis affected approxi-
mately 2 per 1000 patients starting to use an SGLT2 inhib-
itor.We identified both anticipated, e.g., lowbaseline serum
bicarbonate, and unanticipated, e.g., digoxin, dementia
medications, risk factors for SGLT2 inhibitor-induced
DKA.
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INTRODUCTION

Sodium glucose co-transporter 2 (SGLT2) inhibitors are com-
monly used for the treatment of type 2 diabetes mellitus.1,2

Their primary mechanism of action lowers plasma glucose by
inhibiting reabsorption at the nephron.1,2 Two of the SGLT2
inhibitors, empagliflozin and canagliflozin, also reduce the
risk of myocardial infarction, stroke, and cardiovascular mor-
tality.3,4 Because of the reduction in cardiovascular events,
clinical trials are underway to test thesemedications in patients
with cardiovascular disease who do not have diabetes.5 One
trial, DAPAHF, recently demonstrated a lower risk of cardio-
vascular death or heart failure with dapagliflozin compared to
placebo, regardless of whether the patient had diabetes.6 As a
result, SGLT2 inhibitors may soon be indicated for a much
wider patient population which highlights the importance of
rare adverse events for this class of medications.
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Important adverse events of SGLT2 inhibitors identified in
clinical trials included mycotic genital infection and excessive
volume depletion.1,3,4,7 One additional adverse event not initially
detected in clinical trials, but subsequently identified after wide-
spread use, was euglycemic diabetic ketoacidosis.8–10 Diabetic
ketoacidosis is typically a complication of type 1 diabetes melli-
tus rather than type 2 diabetes and can be fatal.11,12 Because it is
uncommon among adults with type 2 diabetes, initial cases of
SGLT2 inhibitor-related ketoacidosis were unexpected and a
diagnostic challenge for clinicians.8 In May 2015,13 the Food
and Drug Administration (FDA) released a warning and subse-
quently updated the drug label to include diabetic ketoacidosis as
a side effect of SGLT2 inhibitors.14

Four observational studies8,10,15,16 and two randomized tri-
als17,18 have subsequently demonstrated that SGLT2 inhibitors
are associated with diabetic ketoacidosis. However, these studies
have not identified the risk factors for this adverse event. Risk
factors for diabetic ketoacidosis generally fall into three catego-
ries: non-adherence to insulin, intercurrent illness (e.g., severe
infection), and cardiovascular events (e.g., myocardial infarction,
stroke). Prior to SGLT2 inhibitors, no specific medications were
consistently shown to be associated with diabetic ketoacidosis.
Because it is well established that diabetic ketoacidosis with
SGLT2 inhibitors is rare, being able to identify risk factors for
this could helpmitigate this potential patient harm among patients
prescribed an SGLT2 inhibitor. This is particularly important due
to expanding indications for these medications.19 The objective
of this study was to identify patient-level characteristics associat-
ed with an increased risk of diabetic ketoacidosis for patients
receiving an SGLT2 inhibitor.

METHODS

Study Population

We conducted a population-based, new-user, cohort study
using the nationwide US commercial insurance claims data-
base Optum© Clinformatics® Data Mart.20 This database
provides individual-level de-identified data on demographics,
healthcare utilization, diagnoses, diagnostic tests and proce-
dures, outpatient laboratory results, and pharmacy dispensing
of drugs to over 13 million people in the USA. It has been
widely used to understand the safety and effectiveness of
medications used in routine care.20–22

We included adults with type 2 diabetes mellitus over age
18 who were newly prescribed an SGLT2 inhibitor (empagli-
flozin, canagliflozin, dapagliflozin) between March 29, 2013
(date of approval of the first SGLT2 inhibitor) and September
30, 2017 (last available database update). Patients with diabe-
tes mellitus type 2 were identified using the International
Classification of Diseases, Ninth Revision (ICD-9) and ICD-
10 codes. The cohort entry date was the date of the first
prescription for an SGLT2 inhibitor. A new user of an SGLT2
inhibitor was defined as an adult without a prior prescription
for an SGLT2 inhibitor in the preceding 180 days.

Patients with insufficient baseline data (i.e., less than
180 days of available data) or a diagnosis of type 1 diabetes
were excluded. For our primary analysis, we included patients
with a prior history of DKA (in a sensitivity analysis, these
patients were excluded).
The Brigham and Women’s Hospital Institutional Review

Board provided ethics approval and a valid data use agreement
for the database was in place.

Cohort Follow-Up

Follow-up began on the day after the first SGLT2
inhibitor prescription was filled and continued until the end of
the study period (i.e., September 30, 2017), end of continuous
health plan enrollment, first study outcome, discontinuation of
SGLT2 inhibitor, 365 days, or death (whichever came first). An
SGLT2 inhibitor was considered discontinued if 30 days elapsed
after the expiration of the last prescription’s supply without being
refilled (data censored on day 31 onwards).

Study Outcomes

The primary objective was to identify predictors of DKA
among patients prescribed an SGLT2 inhibitor. A diagnosis
of DKAwas defined as one of (i) hospitalization with DKA as
the primary diagnosis, (ii) hospitalization with DKA as a
secondary diagnosis, and (iii) outpatient diagnosis of DKA.
The primary analysis was restricted to hospitalizations with
DKA. Secondary analyses were restricted to (i) alone expand-
ed and to (i), (ii), or (iii). In all cases, DKA was identified
using ICD-9 or ICD-10 codes (Appendix). Prior studies have
utilized claims data to estimate the risk of DKA in various
clinical scenarios.10,23,24 In addition, two prior studies suggest
these codes have a specificity of about 92%, a sensitivity of
68%, and a positive predictive value above 90%.25,26

Baseline Covariates

For the primary analysis, covariates were assessed during the
180 days before cohort entry. In a secondary analysis, cova-
riates were assessed in the 60 days before cohort entry since
diagnoses immediately preceding the prescription may be
especially relevant. Data included chronic medical conditions
(e.g., cardiovascular disease), proxies for diabetes severity
(e.g., hemoglobin A1C), established risk factors for diabetic
ketoacidosis (e.g., prior event, current insulin use, recent in-
fection), healthcare utilization (e.g., recent hospitalization,
emergency department visit, or surgery), prescriber informa-
tion (e.g., endocrinologist, general practitioner), other diabetes
medications (e.g., metformin, sulfonylureas) and non-
diabetes-related medications (e.g., diuretics, steroids). These
covariates were a priori selected based on prior literature,
clinical experience, and expert opinion (Table 1).27,28 Impor-
tantly, some of the laboratory measurements (e.g., serum
bicarbonate) may appear to be causal intermediates; however,
we only included laboratory values that preceded the
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prescription for the SGLT2 inhibitor. Thus, the laboratory
values by definition are not on the causal pathway between
SGLT2 inhibitor use and diabetic ketoacidosis.

Statistical Analysis

Each patient had 83 covariates identified during the baseline
period before being prescribed an SGLT2 inhibitor. Because

DKA was rare, including all covariates can cause over-fitting
in a logistic regression model. Instead, we applied two ma-
chine learning techniques for identifying variables that might
be associated with SGLT2 inhibitor-related DKA: least abso-
lute shrinkage and selection operator (LASSO) regression and
gradient boosted trees. These two approaches were selected
because they are two of the most commonly applied super-
vised machine learning techniques.
LASSO regression can handle high-dimensional data (i.e., a

large number of predictors relative to outcomes), even with
substantial collinearity among covariates.29 Because LASSO
cannot handle missing data, we included only baseline covariates
with complete data (i.e., excluding serum creatinine, serum bi-
carbonate, serum hemoglobin A1C). We performed LASSO
using the glmnet package available in R and standardized the
predictors by their individual standard deviation (sd) so that the
odds ratios (OR) produced by LASSOwere on a consistent scale.
Gradient boosted trees can accommodate missing data, and

it has been shown to have good predictive performance across
a wide range of problems.29,30 Since gradient boosting effec-
tively handles missing data, we retained variables with miss-
ing data. The model tuning parameters were selected using a
grid search of varying number of trees (0 to 12,000), interac-
tion depth (1 or 3), shrinkage factor (0.001, 0.01, or 0.1), and
bag fraction (0.4, 0.5) that optimized the standard loss function
for classification (i.e., Bernoulli deviance) (Appendix).29,30

To quantify the association between potential predictors and
the risk of DKA, we included variables identified using LASSO
regression and gradient boosted trees in a logistic regression
model. We rank ordered the variables produced from LASSO
by the size of their estimated coefficient (largest to smallest).
With gradient boosted trees, a relative importance (RI) measure
for each variable is provided rather than a coefficient.29,30 The
relative importance measure was then sorted from largest to
smallest to identify the variables with the largest association
with diabetic ketoacidosis.29,30 We selected the top variables
from LASSO (i.e., largest coefficient) and gradient boosted
trees (i.e., largest relative importance) as candidates for subse-
quent logistic regression. The “top variables” were identified
after visually reviewing the distributions of the effect estimates
from LASSO and gradient boosted trees to identify where there
was a substantial decrease in variable importance. There was no
specific cut-off or analytic metric used because both approaches
would require arbitrary cut-offs and there is no specific literature
to indicate this approach is robust. Partial dependence plots
were reviewed for the top variables that were continuous to
aid in model interpretability.31 A partial dependence plot dis-
plays the marginal effect of the continuous variable on the
outcome.31 An alternative approach is to arbitrarily dichotomize
variables (e.g., hemoglobin A1C less than 7%), but doing so
decreases statistical power and limits the ability to identify
potentially clinically relevant cut-points.
Three predefined sensitivity analyses were performed. First,

the original cohort was re-analyzed using only baseline char-
acteristics in the 60 days rather than 180 days before being

Table 1 Baseline Characteristics

SGLT2 inhibitor use

(N = 111,442)
Age, mean (sd) 57.3 (11.2)
Sex, female 49,397 (44.3)
Diabetes-related
Hemoglobin A1C, mean (sd) %* 8.72 (1.80)
Creatinine, mean (sd) mg/dL* 0.89 (0.25)
Hypoglycemia 1088 (1.0)
Prior diabetic ketoacidosis 530 (0.5)
Diabetic nephropathy 9621 (8.6)
Diabetic neuropathy 17,975 (16.1)
Diabetic retinopathy 5071 (4.6)
Chronic kidney disease 3827 (3.4)
Ischemic heart disease 15,007 (13.5)
Ischemic stroke or TIA 1838 (1.6)
Peripheral vascular disease 5324 (4.8)

Other comorbid conditions
Heart failure 4158 (3.7)
Hypertension 82,960 (74.4)
Dyslipidemia 82,061 (73.6)
Obese or overweight 35,837 (32.2)
Cancer 6331 (5.7)
Delirium 473 (0.4)
Pneumonia 1604 (1.4)
Urinary tract infection 6438 (5.8)
Liver disease 741 (0.7)
Underweight 79 (0.1)
Smoking 10,168 (9.1)
Bicarbonate, mean (sd) mmol/L* 24.1 (3.1)

Diabetes medications
Metformin 68,715 (61.7)
Insulin 26,925 (24.2)
Glucagon-like peptide-1 analogue 15,283 (13.7)
Dipeptidyl-peptidase 4 inhibitor 20,440 (18.3)
Sulfonylurea 39,616 (35.5)

Other medications
Angiotensin converting enzyme inhibitor 46,527 (41.7)
Angiotensin receptor blocker 29,625 (26.6)
Beta blocker 26,233 (23.5)
Digoxin 1053 (0.9)
Antiplatelet 7790 (7.0)
Antipsychotics 2525 (2.3)
Dementia medications 689 (0.6)
Oral steroid 10,981 (9.9)
Statin 71,905 (64.5)
Proton pump inhibitors 22,028 (19.8)
Antibiotics 35,409 (31.8)

Healthcare utilization
Number of outpatient visits, mean (sd) 4.7 (3.7)
Inpatient hospitalization 434 (0.4)
Emergency room visit 11,213 (10.1)
Primary care doctor visit 69,612 (62.5)
Endocrinologist visit 22,776 (20.4)
A1C ordered 92,714 (83.2)
Flu shot 13,238 (11.9)
Pneumococcal vaccine 4865 (4.4)
Surgical procedure 1625 (1.5)

Legend - numbers represent row totals (%) unless otherwise specified;
SGLT2= sodium glucose co-transporter 2; sd = standard deviation;
surgical procedure included knee replacement, hip replacement,
cholecystectomy, or appendectomy; * available for approximately 34%
of patients

Fralick et al.: Identifying Risk Factors for Diabetic KetoacidosisJGIM 2603



prescribed an SGLT2 inhibitor. A shorter baseline period was
used under the assumption that perhaps variables identified
closer to the index date (i.e., up to 60 days before) might be
more relevant than ones identified further from the index date
(e.g., up to 180 days before). Second, a new cohort of patients
was constructed that excluded any patients with a prior diag-
nosis of diabetic ketoacidosis. Excluding patients with a prior
diagnosis of diabetic ketoacidosis was considered in the event
that prior diabetic ketoacidosis is the strongest predictor and
thus overshadows other potentially relevant characteristics.
Third, an additional cohort of patients was constructed to
include those with type 1 diabetes mellitus, since some
patients with type 1 diabetes mellitus have been prescribed
an SGLT2 inhibitor off-label.

RESULTS

Study Population

A total of 111,442 patients satisfied study inclusion and ex-
clusion criteria (Fig. 1). The mean age was 57 years and 44%
were female. The mean hemoglobin A1C was 8.7% (sd = 1.8)
and the mean creatinine was 0.89 (sd = 0.25). Overall, 62%
were prescribed metformin and 24% were prescribed insulin
(Table 1). Risk factors for diabetic ketoacidosis were infre-
quent (e.g., prior diabetic ketoacidosis). Over a mean follow-
up of approximately 180 days, 475 patients were diagnosed
with diabetic ketoacidosis (inpatient or outpatient).

Predictors Identified by LASSO Regression

In the LASSOmodel of hospitalization with a diagnosis of DKA
(N = 192), 54 of the 80 predictors had an odds ratio (OR) of 1,
and 4 had an OR close to 1 (i.e., 1.01 to 1.09). Of the remaining
22 variables, the largest predictors were a prior diagnosis of
DKA (OR= 4.8), use of dementia medications (OR= 4.2), hy-
poglycemia (OR = 2.4), digoxin use (OR = 2.0), insulin use
(OR= 1.8), diabetic retinopathy (OR= 1.8), heparin use (OR=
1.7), or gastrointestinal bleed (OR= 1.62). Similar findings were
observed in analyses restricted to DKA as the primary diagnosis
(N = 125), and analyses expanded to include outpatient diagno-
ses (N = 475). Similarly, limiting the baseline time period to
60 days yielded comparable results (Appendix Table 1).
When we restricted the cohort to only patients without a past

episode of DKA, the strongest predictors for a hospitalization
with DKA were use of dementia medications (OR = 3.7) and
use of digoxin (OR = 2.1). When we broadened the cohort to
include patients with a diagnosis of type 1 diabetes, the stron-
gest predictors were intracranial hemorrhage (OR = 4.7), use of
dementia medications (OR = 4.6), prior DKA (OR = 4.1), and a
diagnosis of type 1 diabetes mellitus (OR= 3.3).

Predictors Identified by Gradient Boosted Trees

The selected model with the lowest Bernoulli deviance had
1257 trees, a lambda of 0.1, interaction depth of 1, and a bag

fraction of 0.4 though differences in the Bernoulli deviance
across the tuned model hyper-parameters were small (i.e.,
generally less than 0.01). In the fitted gradient boosted tree
model that included a hospitalization with a diagnosis of DKA
(N = 192), 63 of the 83 predictors had a relative importance of
0 and 9 predictors had a relative importance near 0 (i.e.,
between 0 and 0.1). Of the remaining 11 variables, the largest
predictors were baseline hemoglobin A1C (RI = 55.9), base-
line creatinine (RI = 40.0), use of dementia medications (RI =
1.1), prior diagnosis of DKA (RI = 1.0), and serum bicarbon-
ate (RI = 0.6). Similar findings were observed in analyses
restricted to hospitalizations with DKA as the primary diag-
nosis (N = 125), or in analyses expanded to include outpatient
diagnoses (N = 475). In addition, analyses limited to a baseline
time period to 60 days rather than 180 days yielded compara-
ble findings (Appendix Table 2). When we restricted the
cohort to only patients without a past episode of DKA, the
strongest predictors were serum creatinine (RI = 51.4), hemo-
globin A1C (RI = 46.4), and serum bicarbonate (RI = 0.92).
When we broadened the cohort to include patients with a
diagnosis of type 1 diabetes, the strongest predictors were
baseline hemoglobin A1C (RI = 54.5) and baseline creatinine
(RI = 28.9).

Predictors Analyzed Using Logistic Regression

A logistic regression model included the variables that were
consistently identified using either LASSO or gradient boosted
trees: prior diabetic ketoacidosis, hypoglycemia, digoxin, demen-
tia medications, delirium, intracranial hemorrhage, hemoglobin
A1C, creatinine, and bicarbonate (Table 2). The cut-offs for
hemoglobin A1C, serum bicarbonate, and creatinine were iden-
tified using partial dependency plots that indicated clear transition
points in the predicted probability of DKA. Results are also
provided for the logistic regression model only including varia-
bles in the preceding 60 days (Table 3).

DISCUSSION

In this study of over 100,000 adults who started on an SGLT2
inhibitor, overall 475 (4 per 1000) were subsequently diagnosed
with diabetic ketoacidosis in the inpatient or outpatient setting,
with 192 in the inpatient setting (2 per 1000) over a mean
follow-up of approximately 180 days. Using machine learning
techniques, both anticipated (i.e., prior DKA, low serum bicar-
bonate, and a hemoglobin A1C above 10%) and unanticipated
(i.e., digoxin, dementia medications) risk factors for DKA were
identified. These findings were robust across various sensitivity
analyses and highlight a role of machine learning for identifying
potential risk factors for rare adverse events.
Preventing SGLT2 inhibitor-related DKA is important be-

cause it can be life threatening and an easily over-looked
diagnosis for several reasons.8,12 First, DKA is typically asso-
ciated with type 1 diabetes mellitus, rather than type 2 diabe-
tes.12,32 Since SGLT2 inhibitors are prescribed to patients with
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type 2 diabetes mellitus, DKA is not always considered.5

Second, DKA was traditionally considered to be caused by
profound insulin deficiency rather than an adverse event from
medications.12 Third, patients with SGLT2 inhibitor-related

DIAGNOSIS OF TYPE 1 DIABETES
-1,434

LESS THAN 180 DAYS OF BASELINE DATA
-23,259

AGE < 18
-10

REASONS FOR EXCLUSION

PATIENTS PRESCRIBED AN
SGLT2

N = 186,803

FINAL COHORT
N= 111,442

N = 163,544

N = 114,023

PRIOR USE OF AN SGLT2
-49,521

N = 112,579
LACK OF TYPE 2 DIABETES DIAGNOSIS

-997

N = 114,013

N = 111,582

LACK OF FOLLOW-UP
-140

Figure 1 Cohort entry criteria. Legend: SGLT2 = sodium glucose co-transporter 2 inhibitor; all criteria assessed in the preceding 180 days with
the exception of a diagnosis of type 2 diabetes which was assessed up to 1000 days prior.

Table 3 Risk Factors for Diabetic Ketoacidosis Using Variables
Identified Up to 60 Days Prior to SGLT2 Inhibitors

Inpatient diagnosis of
DKA

Inpatient or outpatient
diagnosis of DKA

OR 95% CI OR 95% CI

Prior DKA 5.14 0.63 42.08 56.17 29.54 106.83
Hemoglobin
A1C > 10%

2.55 1.50 4.32 1.92 1.34 2.73

Bicarbonate
<18 mmol/L

3.91 0.94 16.34 3.00 1.07 8.42

Creatinine ≤
0.5 mg/dL

3.09 0.96 9.96 1.25 0.39 4.02

Creatinine
>1.5 mg/dL

0.73 0.10 5.54 1.40 0.50 3.93

Acute kidney
injury diagnosis

1.65 0.18 15.17 0.45 0.08 2.41

Delirium 4.24 0.43 41.58 5.65 1.10 29.06
Dementia
medication

13.28 4.44 39.7 5.97 2.25 15.85

Digoxin 4.20 0.97 18.21 4.59 1.78 11.81

Legend: SGLT2 = sodium glucose co-transporter 2; OR= odds ratio;
CI = confidence interval; DKA= diabetic ketoacidosis; dementia medi-
cation = donepezil, memantine, or rivastigmine For creatinine the
reference group was between 0.5 and 1.5

Table 2 Risk Factors for Diabetic Ketoacidosis Using Variables
Identified Up to 180 Days Prior to SGLT2 Inhibitors

Inpatient diagnosis of
DKA

Inpatient or outpatient
diagnosis of DKA

OR 95% CI OR 95% CI

Prior DKA 2.43 0.33 17.82 24.07 14.28 40.59
Hypoglycemia 5.43 1.92 15.32 2.46 0.98 6.17
Hemoglobin
A1C > 10%

3.16 1.97 5.08 1.89 1.38 2.59

Bicarbonate <
18 mmol/L

5.10 1.58 16.42 2.93 1.17 7.32

Creatinine ≤
0.5 mg/dL

2.55 0.79 8.17 1.03 0.33 3.26

Creatinine
>1.5 mg/dL

0.50 0.06 3.86 1.54 0.66 3.60

Delirium 3.22 0.68 15.14 2.26 0.75 6.89
Dementia
medication

7.65 2.57 22.76 3.47 1.34 8.96

Digoxin 3.97 1.20 13.09 5.45 2.71 10.93
Intracranial
hemorrhage

11.46 1.45 91.38 5.30 0.71 39.52

SGLT2 = sodium glucose co-transporter 2; OR = odds ratio; CI =
confidence interval; DKA= diabetic ketoacidosis; dementia medica-
tion = donepezil, memantine, or rivastigmine. For creatinine the
reference group was between 0.5 mg/dL and 1.5 mg/dL
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DKA can have normal or mildly elevated blood glucose
levels.8,9,32 This is atypical for DKA, because patients typical-
ly present with blood glucose levels that are five- to tenfold
higher than normal. Indeed, many physicians do not initially
recognize DKA due to the near-normal glucose levels.8 Edu-
cating clinicians about SGLT2 inhibitor-related DKA may
help raise awareness and identifiy startegies to prevent it from
occuring.
We identified prior DKA, digoxin, dementia medications,

serum bicarbonate less than 18 mmol/L, and a hemoglobin
A1C greater than 10% as some of the important risk factors.
Prior DKA, a low serum bicarbonate, and an elevated hemoglo-
bin A1C may seem intuitive since the former suggests a meta-
bolic acidosis may already be present and the latter suggests
poorly controlled diabetes. However, many associations in med-
icine can appear intuitive, but empirical data help to support
informed care. Other predictors were surprising (i.e., digoxin,
dementia medications, intracranial hemorrhage), and thus, it is
unknown whether these findings are spurious, surrogate markers
of underlying risk, or potentially directly related to an increased
risk of DKA with SGLT2 inhibitors. Of note, both digoxin and
SGLT2 inhibitors are a substrate for p-glycoprotein.33,34 A recent
pharmacokinetic study of healthy volunteers identified that di-
goxin modestly increased serum concentration of empagliflozin
whichmay help explain the increased odds of DKAwe observed
compared to adults not prescribed digoxin.33,34 However, digox-
in may instead be a surrogate for cardiovascular disease severity,
rather than being causally linked to SGLT2 inhibitor-associated
diabetic ketoacidosis.
It is unclear why dementia medications might be associated

with a higher risk of DKA. SGLT2 inhibitors are generally not
metabolized by cytochrome P450 enzymes and instead are
eliminated by glucuronidation via UGT1A9 and UGT2B4.
Neither donepezil nor memantine should affect glucuronida-
tion, but memantine is eliminated by tubular secretion which
could alter plasma levels of SGLT2 inhibitors which are renally
cleared and act at the proximal convoluted tubule.35 An alter-
native explanation is that the increased risk of DKA might be
related to dementia severity, and dementia medication use is a
proxy for severity, or that dementia medications are a sign of
polypharmacy. It is also unclear why prior intracranial hemor-
rhage was a seemingly important predictor. It may represent a
surrogate of recent hospitalization, illness severity, or perhaps a
spurious finding.
Despite observational studies, some clinicians remain skep-

tical that DKA can be caused by an SGLT2 inhibitor.36,37 For
example, two prior meta-analyses of clinical trials found no
association between SGLT2 inhibitors and DKA.36,37 Howev-
er, the average number of patients who received an SGLT2
inhibitor was about 500 in each of the trials. Since the overall
rate is approximately 3–8 per 1000 person-years, themajority of
those trials were underpowered to detect diabetic ketoacidosis.
Moreover, our study identified that a hemoglobin A1C above
10% is a strong risk factor yet the majority of trials included
excluded patients who had a hemoglobin A1C above 10%.36,37

The cardiovascular outcome trial for dapagliflozin (N = 17,160)
included patients who had a hemoglobin A1C up to 12%, and
found a twofold higher rate of DKA (hazard ratio [HR] 2.18,
95% confidence interval [CI] 1.10–4.30).17 Furthermore, the
renal outcome trial for canagliflozin (N = 4410) also included
patients who had a hemoglobin A1C of up to 12% and also
found an increased rate of DKA in patients randomized to
canagliflozin (HR = 10.80, 95% CI 1.39–83.65).
Unlike the recent clinical trials identifying an increased risk

of DKA with SGLT2 inhibitors, our study lacked diagnostic
certainty in identifying DKA. While ICD codes are popular,
they are imperfect and can result in misclassification. For ex-
ample, we observed a higher odds ratio for prior DKAwhen our
outcome definition included an outpatient diagnosis of DKA as
opposed to only an inpatient diagnosis of DKA. The higher
odds ratio with prior DKA may represent re-recording of prior
events rather than a truly new DKA event. For this reason, the
results from our models that defined outcomes based on inpa-
tient diagnostic codes might be more accurate. We also lacked
complete laboratory data (i.e., only one-third had a baseline
hemoglobin A1C) in addition to not having data related to other
potential risk factors for DKA including body mass index,
dietary intake, alcohol use, and genetic markers.12 Furthermore,
diagnostic codes for variables such as hypoglycemia, delirium,
and smoking are imperfect measures and likely underestimate
the prevalence of these conditions. Similarly, there were con-
siderable amounts of missing data for laboratory measures, and
thus, themere fact that theywere performedmay be an indicator
of underlying illness severity or concern by the attending phy-
sician. These gaps are an important area for future research.
For patients with multiple risk factors, further laboratory mon-

itoring might help to risk stratify these patients. For example, if
laboratory testing identifies a low serum bicarbonate level, then
these should be worked up accordingly and an SGLT2 inhibitor
should be initially avoided. Of course, this recommendation is
pragmatic and not formally tested in our study.

CONCLUSION

SGLT2 inhibitors are an effective class of medications for
adults with type 2 diabetes mellitus, but DKA remains an
important risk. We applied machine learning methods and
identified both anticipated (i.e., prior DKA, low serum bicar-
bonate, elevated hemoglobin A1C) and unanticipated (i.e.,
digoxin) risk factors to advance our understanding of
SGLT2 inhibitor-related DKA. Additional studies are required
to confirm our findings, but patients with multiple risk factors
for SGLT2 inhibitor-related diabetic ketoacidosis may benefit
from laboratory testing prior to initiation of an SGLT2 inhib-
itor, closer monitoring for diabetic ketoacidosis, or alternative
medications to manage their diabetes.
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