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BACKGROUND: Network meta-analysis (NMA) is a popu-
lar tool to compare multiple treatments in medical re-
search. It is frequently implemented via Bayesian
methods. The prior choice of between-study heterogeneity
is critical in Bayesian NMAs. This study evaluates the
impact of different priors for heterogeneity on NMA
results.
METHODS: We identified all NMAs with binary outcomes
published in The BMJ, JAMA, and The Lancet during
2010–2018, and extracted information about their prior
choices for heterogeneity. Our primary analyses focused
on those with publicly available full data. We re-analyzed
the NMAs using 3 commonly-used non-informative priors
and empirical informative log-normal priors. We obtained
the posterior median odds ratios and 95% credible inter-
vals of all comparisons, assessed the correlation among
different priors, and used Bland–Altman plots to evaluate
their agreement. The kappa statistic was also used to
evaluate the agreement among these priors regarding sta-
tistical significance.
RESULTS: Among the selected Bayesian NMAs, 52.3%
did not specify the prior choice for heterogeneity, and
84.1% did not provide rationales. We re-analyzed 19
NMAs with full data available, involving 894 studies, 173
treatments, and 395,429 patients. The correlation among
posterior median (log) odds ratios using different priors
were generally very strong for NMAs with over 20 studies.
The informative priors produced substantially narrower
credible intervals than non-informative priors, especially
for NMAs with few studies. Bland–Altman plots and kap-
pa statistics indicated strong overall agreement, but this
was not always the case for a specific NMA.
CONCLUSIONS: Priors should be routinely reported in
Bayesian NMAs. Sensitivity analyses are recommended
to examine the impact of priors, especially for NMAs with
relatively small sample sizes. Informative priors may pro-
duce substantially narrower credible intervals for such
NMAs.
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INTRODUCTION

Network meta-analysis (NMA) is a statistical method often
used to draw conclusions about multiple-treatment compari-
sons.1–3 It simultaneously synthesizes both direct and indirect
evidence, where the direct evidence comes from head-to-head
trials while the indirect evidence comes from indirect compar-
isons with common comparators.4,5 For example, the compar-
ison between two active drugs A and B can be informed from
indirect comparisons of A vs. C and B vs. C, where C may be
placebo or standard care, or from direct comparison in clinical
trials comparing A vs. B.
In addition to the advantage of combining direct and indi-

rect evidence, NMAs improve the precision of estimates (i.e.,
make the confidence/credible intervals narrower).6,7 This pre-
cision however is affected by the amount of heterogeneity
between studies, because heterogeneity is modeled into the
uncertainty and impacts the width of confidence/credible in-
tervals.8,9 Currently, many NMAs are performed via a Bayes-
ian framework that uses a prior distribution for the between-
study heterogeneity.10 Some NMAs use the traditionally non-
or weakly informative priors for heterogeneity.11–13 Recently,
Turner et al.14 have suggested informative log-normal priors
based on a large database of conventional pairwise meta-
analyses in the Cochrane Library. These empirical priors have
the potential to improve the precision of the treatment effect
estimates, especially when the number of studies is small.
The choice of prior distribution is important and should be

explicitly reported according to the PRISMA-NMA statement
(Preferred Reporting Items for Systematic Reviews and Meta-
Analyses extension for NetworkMeta-Analysis).15 It is critical
that authors of NMAs describe the details of choices and
assumptions made to select the prior distribution for transpar-
ency purposes and to allow reproducibility of the work. Nev-
ertheless, it has been found that the rapid growth of NMAs
published in recent years was not accompanied with better
methodological and reporting quality.16,17 Therefore, we
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conducted this empirical study to assess recent NMAs pub-
lished in high-impact medical journals for the quality of
reporting heterogeneity priors (in terms of distribution and
rationale) and to evaluate how NMAs’ conclusions would
differ based on applying various commonly used prior
distributions.

METHODS

Data Collection

We designed and executed a literature search in July, 2019, for
research articles published in The BMJ, JAMA, and The Lancet
between January 1, 2010, and December 31, 2018, using the
terms “network meta-analysis,” “network meta-analyses,”
“multiple-treatment comparison,” “multiple-treatment meta-
analysis,” and “multiple-treatment meta-analyses.” If Bayes-
ian models were used, we examined if the original articles
gave information about prior choices for heterogeneity and
their rationales.
In our primary analyses, we excluded methodological re-

views that did not present original data. The outcome type was
restricted to be binary, because the heterogeneity may depend
on the measure scale for other outcome types (e.g., for con-
tinuous outcomes) and needed to be modeled on a case-by-
case basis. In addition, we focused on articles whose full NMA
datasets were publicly available. Originally reported effect
measures, outcomes, studies, treatments, event counts, sample
sizes, statistical methods (frequentist or Bayesian) used for
NMAs, and prior distributions (for Bayesian NMAs) were
obtained from the published articles (and the corresponding
supplemental files). If the authors used the Bayesian method
but did not report their prior distributions, we contacted them
for information about the priors. An article may report multi-
ple NMAs with various outcomes; our analyses focused on the
primary outcome. If no primary outcome was specified, we
used the NMA with the largest number of studies. In addition,
regardless the original effect measures, we re-analyzed the
collected data based on the odds ratio (OR) (on a logarithmic
scale) for a consistent comparison across NMAs.

Prior Distribution Choices for Heterogeneity

The Bayesian framework treats unknown parameters, such
as overall treatment effects and heterogeneity variances, as
random variables and attempts to estimate them via the
assignment of prior distributions. This is commonly im-
plemented via the Markov chain Monte Carlo (MCMC)
algorithm.18,19 The Supplementary Material presents the
Bayesian contrast-based random-effects model to perform
an NMA (Appendix A). Among the various parameters to
be estimated, the heterogeneity variance, denoted by τ2,
plays a critical role, because researchers often have di-
verse opinions toward its prior choice and it sometimes
has influential impact on credible intervals (CrIs) of

treatment comparisons. On the other hand, researchers
generally have consensus about the prior for treatment
effects (log ORs in this study), which is usually non-
informative and follows a normal distribution with mean
0 and a very large variance (e.g., 1002).
To re-analyze the collected datasets, we considered three

different non-informative (or arguably, weakly informative)
prior distributions for the heterogeneity variance or standard
deviation: the inverse-gamma, uniform, and half-normal dis-
tributions. Table 1 summarizes the multiple choices.
The inverse-gamma prior IG(α, β) is conjugate (that is, it

produces a posterior also in the inverse-gamma family) and
therefore may facilitate the computation in the MCMC algo-
rithm. It also has the potential to improve both stability and
convergence, and may be useful for sparse data.20 The hyper-
parameters for both α and β (determining distribution shape
and scale, respectively) are conventionally assigned to some
value close to 0. As both hyper-parameters approach 0, it leads
to a flat distribution for the heterogeneity variance on a loga-
rithmic scale. We consider three choices of the hyper-param-
eters, i.e., 0.1, 0.01, and 0.001.
The uniform prior U(0, c) is another commonly used prior

for the heterogeneity standard deviation τ. Here, c denotes the
upper bound of the uniform distribution, and is assigned to
values 2, 5, and 10 in our analyses; these are common choices
for log ORs in practice. We also considered the half-normal
priorHN(0, σ2) for τ.21 This distribution is generated by taking

Table 1 Summary of Prior Distributions for the Heterogeneity
Component (Variance τ2 or Standard Deviation τ) for Odds Ratios

Prior distribution Used
for

Hyper-parameter

Inverse-gamma,
IG(α, β)

τ2 α = β = 0.1;
α = β = 0.01; or
α = β = 0.001.

Uniform, U(0, c) τ c = 2;
c = 5; or
c = 10.

Half-normal, HN(0, σ2) τ σ2 = 0.5;
σ2 = 1; or
σ2 = 2.

Informative log-
normal, LN(μ, σ2)

τ2 Pharmacological vs. placebo/
control comparison:
μ = −4.06, σ = 1.45 (all-cause
mortality);
μ = −3.02, σ = 1.85 (semi-
objective outcome);
μ = −2.13, σ = 1.58 (subjective
outcome).
Pharmacological vs.
pharmacological comparison:
μ = −4.27, σ = 1.48 (all-cause
mortality);
μ = −3.23, σ = 1.88 (semi-
objective outcome);
μ = −2.34, σ = 1.62 (subjective
outcome).
Non-pharmacological
comparison:
μ = −3.93, σ = 1.51 (all-cause
mortality);
μ = −2.89, σ = 1.91 (semi-
objective outcome);
μ = −2.01, σ = 1.64 (subjective
outcome).
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the absolute value of a random variable that follows the
normal distribution N(0, σ2). The hyper-parameter
σ2 determines the range of heterogeneity,22 and is assigned
values 0.5, 1, and 2 in our analyses.
In addition to the non-informative priors above for hetero-

geneity, we considered the empirical informative priors de-
rived by Turner et al.14 for log ORs, which were grouped
based on outcome type and treatment comparison type. Spe-
cifically, the treatment comparisons were classified into three
groups, i.e., pharmacological treatment vs. placebo/control,
pharmacological treatment vs. pharmacological treatment,
and comparisons involved with non-pharmacological treat-
ments (e.g., medical devices, surgical procedures). The out-
come types were classified as all-cause mortality, semi-
objective outcomes (e.g., cause-specific mortality, major mor-
bidity events, obstetric outcomes), and subjective outcomes
(e.g., pain, mental health outcomes, general physical health).
For NMAs containing multiple comparison types, the type of
pharmacological vs. pharmacological treatment comparison
was used for the primary analyses.

Statistical Analyses

For each dataset, we re-performed the random-effects
NMAs with the non-informative priors and the informative
priors in Table 1 for the heterogeneity parameter τ or τ2.
The non-informative prior N(0, 1002) was used for all
treatment effects (log ORs), and we assumed consistency
between direct and indirect evidence in each NMA. In
addition, all treatment comparisons in each NMA were
assumed to share a common heterogeneity variance.5 Of
note, the NMA model used in this article was contrast-
based, because it is currently the most widely used model
and the informative priors were derived under the contrast-
based framework. Many alternatives, such as the arm-
based model (which focuses on estimating each treatment
arm’s absolute effect), may be also used for NMAs.23

The Bayesian analyses were conducted with R (version
3.6.2) package “rjags” (version 4-9). The models were imple-
mented via the MCMC algorithm with three chains24–27; each
chain contained a 50,000-run burn-in period for achieving
stabilization and convergence. The samples generated during
the burn-in period were discarded prior to the final analyses;
the final posterior distributions for each NMAwere based on a
run of 200,000 updates after the burn-in period. We checked
trace plots for assessing MCMC convergence. Trace plots
with certain long-term trends or drifts, instead of stable up-
and-down variation, may indicate non-convergence; see Figs.
S1–S4 in the Supplementary Material for illustrations. The
MCMC may not converge well in cases such as extreme
posterior samples of ORs (produced seemingly due to many
zero even counts) or improper priors. When Markov chains
converged well, the posterior medians and 95% equal-tailed
CrIs can be reliably used as estimates of the parameters of
interest. CrIs of log ORs not covering 0 indicated significant

treatment comparisons. We obtained the posterior estimates
for all treatment comparisons and the heterogeneity variance
in each NMA. We also calculated the width of 95% CrI of log
OR for each comparison, which implied the estimate’s
precision.
Correlation coefficients between the non-informative priors

and informative priors were calculated for both point estimates
(posterior median log ORs) and CrI widths for each NMA and
for all NMAs combined. Bland–Altman plots were used to
evaluate the agreement between these results. The kappa sta-
tistic, κ, was also calculated to quantify the agreement of
statistical significance between the treatment effects produced
by the different priors. This statistic is upper bounded by 1;
roughly, κ < 0 indicates no agreement, and κ within 0–0.4,
0.4–0.6, and 0.6–1 indicates weak, moderate, and strong
agreement, respectively.28,29

Secondary analyses were performed for NMAs which
contained a placebo or control treatment. Among these
NMAs, we additionally considered the informative prior of
the comparison type of pharmacological treatments vs.
placebo/control (Table 1).

RESULTS

Basic Characteristics

The literature search identified 67 research articles containing
NMAs. Of the 44 NMAs that used the Bayesian framework,
52.3% of the NMAs did not explicitly provide the prior
distributions of heterogeneity, and 84.1% did not provide
rationales for the prior choices (Table S1 in the
Supplementary Material). A total of 19 NMAs met inclusion
criteria for our primary analyses (Fig. 1). Total sample sizes in
the selected NMAs ranged from 792 to 111,282; numbers of
treatments ranged from 3 to 23; and numbers of studies ranged
from 7 to 473. We denoted each NMA by the first author’s
surnamewith the publication year of the corresponding article.
Table 2 presents summaries of these NMAs; the complete
references of these NMAs are in the Supplementary Material
(Appendix B). Of note, the NMA of Wu 2013 contained zero
events in many treatment arms, causing poor MCMC conver-
gence in our re-analyses; thus, we only present the results of
the remaining 18 NMAs in the following.

Overall Impact of Priors

Figure 2 compares the posterior median ORs and 95% CrI
widths produced by non-informative priors with those by
informative priors among all 18 NMAs. There was a nearly
perfect correlation between posterior median (log) ORs by
each type of non-informative priors and those by the informa-
tive priors; the correlation coefficients for each set of hyper-
parameters were larger than r = 0.99. The correlations de-
creased in terms of 95% CrI widths. Specifically, 95% CrI
widths produced by the informative prior were strongly
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correlated with those by inverse-gamma priors IG(0.1, 0.1),
IG(0.01, 0.01), and IG(0.001, 0.001), all having r = 0.90. The
half-normal priors, with r = 0.89 for HN(0, 0.5), r = 0.91 for
HN(0, 1), and r = 0.94 for HN(0, 2), also displayed strong
correlations. The correlation with those by the uniform priors
experienced greater variability, with r = 0.87 for U(0, 2), r =
0.82 for U(0, 5), and r = 0.80 for U(0, 10). All P values of the
above correlations were < 0.001.
Figure S5 in the Supplementary Material (Appendix C)

presents the Bland–Altman plots among all 18 NMAs. It
indicates strong agreement for both posterior median log
ORs and 95% CrI widths by the various priors. Large differ-
ences in posterior median log ORs were likely observed when

the log ORs were close to 0, and large differences in 95% CrI
widths were likely observed when CrIs were very wide.
Table 3 shows the kappa statistics between significant treat-

ment comparisons identified via informative priors and non-
informative priors. A total of 942 treatment comparisons were
assessed among all NMAs. The kappa statistic for each pair of
informative and non-informative priors was positive, mostly
close to 1. A total of 236 treatment comparisons were found to
be statistically significant via informative priors, which were
more than those via non-informative priors.
Compared with the results based on the informative priors,

the greatest variability in kappa statistics due to differences in
hyper-parameters was observed when using the inverse-

67 ar�cles on network meta-analyses iden�fied through searching 
The BMJ, JAMA, and The Lancet

8 methodological reviews excluded

19 network meta-analyses extracted for primary analysis:
• All-cause mortality (n = 4)

� Interven�ons: pharmacological vs. pharmacological and 
pharmacological vs. placebo/control (n = 3)

� Interven�ons: non-pharmacological (n = 1)
• Semi-objec�ve outcomes (n = 11)

� Interven�ons: pharmacological vs. pharmacological and 
pharmacological vs. placebo/control (n = 11)

• Subjec�ve outcomes (n = 4)
� Interven�ons: pharmacological vs. pharmacological and 

pharmacological vs. placebo/control (n = 4)

21 network meta-analyses with non-
binary outcomes excluded

19 network meta-analyses without full 
datasets excluded

59 ar�cles’ full texts screened

38 network meta-analyses with binary outcomes obtained

Fig. 1 Flow diagram of network meta-analysis selection.
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gamma prior. Specifically, based on IG(0.1, 0.1), there were
194 significant treatment comparisons identified with κ =
0.87. This number increased to 218 (κ = 0.95) using
IG(0.01, 0.01) and further increased to 232 (κ = 0.97) using
IG(0.001, 0.001). While IG(0.001, 0.001) produced the stron-
gest agreement with the informative priors, it also produced 5
treatment comparisons that were identified as significant by
the non-informative priors but non-significant by the informa-
tive prior. All uniform priors had κ = 0.93 as did the half-
normal priors HN(0, 1) and HN(0, 2); both uniform priors
U(0, 2) and U(0, 5) produced 211 significant treatment com-
parisons, while this number slightly increased to 212 when
using U(0, 10). The half-normal priors HN(0, 1) and HN(0, 2)

both produced 213 significant treatment comparisons; HN(0,
0.5) yielded κ = 0.94 with 216 significant ones.

Impact of Priors Within Network Meta-analyses

Table 4 presents the correlation coefficients between the re-
sults and the kappa statistics within NMAs. The largest NMA
(in terms of sample size) was Cipriani 2018, which included
111,282 samples , while the smalles t NMA was
Anothaisintawee 2011 with 792 samples. In the NMA of
Cipriani 2018, the correlations of posterior median log ORs
between the informative prior and each of the non-informative
priors were nearly perfect with no discernable difference; they
were all > 0.99 with P values < 0.001. An almost identical

Table 2 Summaries of the 19 Network Meta-analyses

Network
meta-analysis

No. of
studies

No. of
treatments

Sample
size

Outcome Method Original
prior in
primary
analysesa

Informative priorb

Alfirevic 2015 95 13 20,293 Failure to achieve vaginal
delivery within 24 h

Bayesian U(0,5) LN(−3.23,1.882);
LN(−3.02,1.852)

Anothaisintawee
2011

9 8 792 Decrease in National
Institutes of Health chronic
prostatitis symptom index

Frequentist NA LN(−2.34,1.622);
LN(−2.13,1.582)

Castellucci 2013 12 11 11,899 Recurrent venous
thromboembolism

Bayesian
and
frequentist

U(0,2) LN(−3.23,1.882);
LN(−3.02,1.852)

Castellucci 2014 22 3 10,600 Recurrent venous
thromboembolism

Bayesian
and
frequentist

U(0,5)c LN(−3.23,1.882)

Chatterjee 2013 21 8 23,113 Beta blockers effect on
mortality

Bayesian
and
frequentist

U(0,5)c LN(−4.27,1.482);
LN(−4.06,1.452)

Cipriani 2018 473 22 111,282 Treatment of unipolar major
depressive disorder

Bayesian U(0,5) LN(−3.23,1.882);
LN(−3.02,1.852)

Daniels 2012 18 7 2831 Rates of amenorrhea Frequentist NA LN(−3.23,1.882)
Dulai 2016 14 14 10,820 Any neoplasia Bayesian U(0,5) LN(−3.23,1.882);

LN(−3.02,1.852)
Giacoppo 2015 13 3 2417 Target lesion

revascularization
Bayesian U(0,2) LN(−3.23,1.882)

Hazlewood 2016 28 23 10,537 American College of
Rheumatology 50%
improvement response:
methotrexate-naïve

Bayesian U(0, 2) LN(−3.23,1.882)

Isayama 2016 20 6 4455 Bronchopulmonary dysplasia Bayesian NAd LN(−3.23,1.882)
Palmerini 2015 10 7 31,666 All-cause mortality Bayesian

and
frequentist

NAd LN(−3.93,1.512)

Phung 2010 13 6 6154 Achieved hemoglobin A1c
goal < 7%

Bayesian
and
frequentist

NAd LN(−2.34,1.622);
LN(−2.13,1.582)

Price 2014 28 4 6861 All-cause mortality Bayesian NAd LN(−4.27,1.482);
LN(−4.06,1.452)

Siontis 2018 18 6 11,246 Invasive coronary
angiography

Frequentist NA LN(−3.23,1.882);
LN(−3.02,1.852)

Stegeman 2018 9 11 11,111 Venous Thrombosis Frequentist NA LN(−3.23,1.882);
LN(−3.02,1.852)

Wu 2013 61 11 36,772 All-cause mortality Bayesian U(0,2) LN(−4.27,1.482);
LN(−4.06,1.452)

Xu 2018 23 7 12,621 Safety of immune checkpoint
inhibitor drugs for cancer

Bayesian NAd LN(−3.23,1.882);
LN(−3.02,1.852)

Zheng 2018 7 3 69,959 Pancreatitis Bayesian
and
frequentist

U(0,5)c LN(−2.34,1.622);
LN(−2.13,1.582)

aPrior distribution for heterogeneity is only available for Bayesian analyses; it is not available (NA) for frequentist analyses
bPriors assigned based on the criteria by Turner et al.14 In cells with two priors listed, the second was used for the secondary analyses because a
placebo or control treatment is included in the network
cPrior was not specified in the published article, but was obtained by contacting the corresponding author
dThe corresponding author was contacted for heterogeneity prior but did not respond at the time of submission
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result was observed for the correlation between the 95% CrI
widths.
The correlations between posterior median log ORs for

each set of non-informative priors were consistently strong
in the NMA of Anothaisintawee 2011; all non-informative
priors for the median log ORs had correlation coefficients
of at least 0.99. However, as this NMA had the smallest
sample size, the correlations between the 95% CrI widths

exhibited more variability across different prior types and
hyper-parameters; the half-normal priors had the highest
correlation coefficients with values of 1.00, 0.99, and 0.97
for HN(0, 0.5), HN(0, 1), and HN(0, 2), respectively. The
least variability was observed for the inverse-gamma dis-
tribution; the correlation coefficients were 0.92 for IG(0.1,
0.1) and 0.91 for both IG(0.01, 0.01) and IG(0.001, 0.001).
The greatest variability across hyper-parameters was ob-
served for the uniform prior; the priors U(0, 2), U(0, 5), and
U(0, 10) had correlation coefficients of 0.98, 0.91, and
0.89, respectively. All correlations had P values < 0.001.
A total of 231 treatment comparisons were produced to

assess the agreement among priors in the NMA of Cipriani
2018. All hyper-parameters led to 100% agreement likely due
to the large number of samples. On the other hand, the small
NMA of Anothaisintawee 2011 contained a total of 28 treat-
ment comparisons. The informative prior led to 2 significant
comparisons, while all non-informative priors produced no
significant comparison. This resulted in a kappa statistic that
was incalculable.
Regardless of the size of NMAs, the informative and non-

informative priors produced fairly similar point estimates of
ORs, because all correlation coefficients were > 0.90. However,

Fig. 2 Distributions of posterior median odds ratios on a logarithmic scale (a–c) and 95% credible interval widths (d–f) by various prior
distributions among 18 network meta-analyses.

Table 3 Kappa Statistics for Assessing the Agreement Between
Informative and Non-Informative Priors with Respect to Significant

Treatment Comparisons

Prior Kappa No. of significant treatment
comparisons (percentage)

Informative prior NA 236 (25.05%)
IG(0.1, 0.1) 0.87 194 (20.59%)
IG(0.01, 0.01) 0.95 218 (23.14%)
IG(0.001, 0.001) 0.97 232 (24.63%)
U(0, 2) 0.93 211 (22.40%)
U(0, 5) 0.93 211 (22.40%)
U(0, 10) 0.93 212 (22.51%)
HN(0, 0.5) 0.94 216 (22.93%)
HN(0, 1) 0.93 213 (22.61%)
HN(0, 2) 0.93 213 (22.61%)
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the correlation between the 95% CrI widths for the different
priors was possibly smaller and exhibited greater variability than
that between point estimates of ORs in some NMAs. The
informative priors typically produced narrower 95% CrIs than
the non-informative priors (Fig. 2d–f). The greatest variability in
correlations between 95% CrI widths was observed in Palmerini
2015 and in the smallest NMA of Anothaisintawee 2011. While
all non-informative priors in Castellucci 2013 (0.95 ≤ r ≤ 0.98),
Giacoppo 2015 (0.88 ≤ r ≤ 0.97), and Palmerini 2015 (0.89 ≤

r ≤ 0.99) had strong correlations, the correlations were not as
strong as those in most other NMAs, which had r > 0.99 for all
non-informative priors. Chatterjee 2013, Daniels 2012, Dulai
2016, Hazlewood 2016, and Phung 2010 had r > 0.99 for all
priors except IG(0.1, 0.1).
The Supplementary Material includes the scatterplots of

posterior median ORs and 95% CrI widths by all priors (Figs.
S6–S23 in Appendix C) and Bland–Altman plots (Figs. S24–
S41 in Appendix C) in all NMAs separately.

Table 4 Correlation Coefficients Between the Results (Posterior Median Log Odds Ratios and 95% Credible Interval Widths) and Kappa
Statistics for Assessing the Agreement Produced By Informative Priors and Non-Informative Priors Within Each Network Meta-analysis

Network meta-analysis Estimate Inverse-gamma priora Uniform priorb Half-normal priorc

IG1 IG2 IG3 U1 U2 U3 HN1 HN2 HN3

Alfirevic 2015 Correlation: median log OR 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Correlation: 95% CrI width 1.00 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Kappa 0.97 0.97 0.97 0.95 0.95 0.95 0.95 0.95 0.97

Anothaisintawee 2011 Correlation: median log OR 0.99 0.99 1.00 0.99 0.99 0.99 1.00 1.00 0.99
Correlation: 95% CrI width 0.92 0.91 0.91 0.98 0.91 0.89 1.00 0.99 0.97
Kappa NA NA NA NA NA NA NA NA NA

Castellucci 2013 Correlation: median log OR 0.90 0.97 1.00 0.94 0.93 0.93 0.97 0.96 0.95
Correlation: 95% CrI width 0.97 0.97 0.98 0.97 0.96 0.95 0.98 0.98 0.97
Kappa NA NA NA NA NA NA NA NA NA

Castellucci 2014 Correlation: median log OR 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Correlation: 95% CrI width 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Kappa 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Chatterjee 2013 Correlation: median log OR 0.91 0.93 0.94 0.93 0.93 0.93 0.93 0.93 0.93
Correlation: 95% CrI width 0.98 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Kappa 0.20 0.53 0.79 0.53 0.53 0.53 0.53 0.53 0.53

Cipriani 2018 Correlation: median log OR 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Correlation: 95% CrI width 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Kappa 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Daniels 2012 Correlation: median log OR 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Correlation: 95% CrI width 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Kappa 0.81 1.00 1.00 0.81 0.81 0.90 0.90 0.90 0.90

Dulai 2016 Correlation: median log OR 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Correlation: 95% CrI width 0.97 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Kappa 0.76 0.91 0.89 0.94 0.94 0.94 0.94 0.94 0.94

Giacoppo 2015 Correlation: median log OR 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Correlation: 95% CrI width 0.93 0.96 0.95 0.94 0.94 0.92 0.97 0.93 0.88
Kappa 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Hazlewood 2016 Correlation: median log OR 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Correlation: 95% CrI width 0.98 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Kappa 0.79 0.93 0.99 0.90 0.90 0.90 0.91 0.91 0.91

Isayama 2016 Correlation: median log OR 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Correlation: 95% CrI width 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Kappa 0.00 0.63 1.00 0.63 0.63 0.63 0.63 0.63 0.63

Palmerini 2015 Correlation: median log OR 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Correlation: 95% CrI width 0.87 0.96 0.99 0.90 0.89 0.89 0.96 0.94 0.92
Kappa NA NA NA NA NA NA NA NA NA

Phung 2010 Correlation: median log OR 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Correlation: 95% CrI width 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Kappa 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Price 2014 Correlation: median log OR 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Correlation: 95% CrI width 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Kappa 0.40 0.40 1.00 0.67 0.67 0.67 0.67 0.67 0.67

Siontis 2018 Correlation: median log OR 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Correlation: 95% CrI width 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Kappa 0.87 0.87 1.00 0.87 0.87 0.87 1.00 0.87 0.87

Stegeman 2018 Correlation: median log OR 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Correlation: 95% CrI width 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Kappa 0.85 1.00 1.00 0.89 0.89 0.89 0.92 0.89 0.89

Xu 2018 Correlation: median log OR 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Correlation: 95% CrI width 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Kappa 0.90 1.00 0.90 0.91 0.91 0.91 0.91 0.91 0.91

Zheng 2018 Correlation: median log OR 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Correlation: 95% CrI width 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Kappa NA NA NA NA NA NA NA NA NA

aInverse-gamma priors for τ2 with three sets of hyper-parameters: IG1, IG(0.1, 0.1); IG2, IG(0.01, 0.01); IG3, IG(0.001, 0.001)
bUniform priors for τ with three sets of hyper-parameters: U1, U(0, 2); U2, U(0, 5); U3, U(0, 10)
cHalf-normal priors for τ with three sets of hyper-parameters: HN1, HN(0, 0.5); HN2, HN(0, 1); HN3, HN(0, 2)
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There was generally small variability in kappa statistics
across informative priors within NMAs. The four NMAs of
Castellucci 2014, Cipriani 2018, Giacoppo 2015, and Phung
2010 had κ = 1 for all priors. For the NMAs of Castellucci
2013, Palmerini 2015, and Zheng 2018, each treatment com-
parison was non-significant by both the informative and non-
informative priors. Xu 2018 had the same kappa statistic for all
uniform and half-normal priors (κ = 0.91) and for IG(0.1, 0.1)
and IG(0.001, 0.001) (κ = 0.90), while IG(0.01, 0.01) had κ =
1. For Isayama 2016, IG(0.1, 0.1) had κ = 0, IG(0.001, 0.001)
had κ = 1, and all other priors had identical agreement (κ =
0.63). Chatterjee 2013 (κ = 0.53), Dulai 2016 (κ = 0.94), and
Price 2014 (κ = 0.67) all had identical agreements for the
uniform and half-normal priors with different hyper-parame-
ters. The greatest variability in agreements between hyper-
parameters occurred when using the inverse-gamma prior; it
was consistent with the observations in the overall assessment
among all NMAs.

Secondary Analyses

A total of 11 NMAs contained a placebo or control treatment;
the secondary analyses were performed for them by addition-
ally considering alternative informative priors (i.e., for the type
of comparisons with placebo/control as in Tables 1 and 2).
Tables S2 and S3 and Figs. S42–S65 in the Supplementary
Material (Appendix D) present the results. As in the primary
analyses, the correlation coefficients of posterior median log
ORs for each set of hyper-parameters were larger than r =
0.99. The correlations of 95% CrI widths for the secondary
analyses were higher than their primary counterparts for U(0,
10) (r = 0.80) and HN(0, 2) (r = 0.94); all other correlations
were lower in the secondary analyses than in the primary
analyses. As in the primary analyses, the half-normal priors
led to the highest correlation, and the greatest variability was
observed for the uniform priors. The greatest variability in
kappa statistics due to differences in hyper-parameters was
observed when using the inverse-gamma prior, and the largest
number of significant comparisons was observed using
IG(0.001, 0.001). All uniform and half-normal priors led to
κ = 0.95. Four NMAs had r > 0.99 for all hyper-parameters for
both the 95% CrI widths and median log ORs. All NMAs had
strong correlations for all hyper-parameters; the weakest cor-
relation was present in Anothaisintawee 2011, as in the pri-
mary analyses.

DISCUSSION

Main Findings

In this empirical study of 19 NMAs, we found that posterior
median ORs produced by different priors had a very strong
association. Noticeable variability appeared in estimates by
different priors for NMAs with relatively small sample sizes
per treatment comparison; thus, these NMAs tended to be

sensitive to the prior specification. For large NMAs, non-
informative priors generally produced nearly identical point
estimates and 95% CrI widths, thus leading to an almost
perfect agreement with the results based on informative priors.
For small NMAs, the point estimates by informative priors
were approximately the same as those produced by non-
informative priors, but the CrIs produced by non-informative
priors were often substantially wider than those produced by
the informative priors. As a result, overall, informative priors
yielded more statistically significant treatment effects. The
greatest variability in agreement was observed when using
the inverse-gamma priors, while the uniform and half-normal
priors yielded approximately similar results.

Strengths and Limitations

This study considered most commonly used prior choices for
modeling heterogeneity in the current practice of Bayesian
NMAs. The results were based on recent NMAs published
in high-impact medical journals, which were thus expected to
be of high quality. All R code is provided in the Supplemen-
tary Material (Appendix E).
Nevertheless, this study had several limitations. First, we

focused on assessing the impact of priors on the posterior
medians and 95% CrIs of ORs, while the conclusions may
not be directly generalized to other effect measures. Second,
because the datasets involved in this study were relatively
large, we did not examine the validity of several important
assumptions (e.g., transitivity, consistency, reporting bias) in
each NMA.30 These factors may also influence NMA esti-
mates along with the choice of priors, and researchers should
investigate them on a case-by-case basis. Third, the NMAs
published in high-impact journals may contain more studies,
treatments, and samples than those published in other journals.
The results of much smaller NMAs were likely more sensitive
to prior choices.

Implications

Contemporary Bayesian NMAs published in high-impact
journals do not adequately report details on the choice
of heterogeneity prior distributions and their rationales.
If an NMA does not have a large sample size, sensitiv-
ity analyses are recommended to examine the impact of
using different hyper-parameters or other types of prior
distributions, especially for the inverse-gamma prior.
When the number of studies included in NMA is large,
various non-informative priors produce similar conclu-
sions. When the number of studies is small, conclusions
become more sensitive to the prior type and hyper-
parameters. In such cases, empirical informative priors
may be used to produce more precise estimates.
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