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BACKGROUND:Electronic health record (EHR)-based re-
admission risk prediction models can be automated in
real-time but have modest discrimination and may be
missing important readmission risk factors. Clinician
predictions of readmissions may incorporate information
unavailable in theEHR, but the comparative usefulness is
unknown. We sought to compare clinicians versus a val-
idated EHR-based prediction model in predicting 30-day
hospital readmissions.
METHODS:Weconducted a prospective survey of internal
medicine clinicians in an urban safety-net hospital. Clini-
cians prospectively predicted patients’ 30-day readmis-
sion risk on 5-point Likert scales, subsequently dichoto-
mized into low- vs. high-risk. We compared human with
machine predictions using discrimination, net reclassifi-
cation, and diagnostic test characteristics. Observed
readmissions were ascertained from a regional hospitali-
zation database. We also developed and assessed a “hu-
man-plus-machine” logistic regression model incorporat-
ing both human and machine predictions.
RESULTS: We included 1183 hospitalizations from 106
clinicians, with a readmission rate of 20.8%. Both clini-
cians and the EHR model had similar discrimination (C-
statistic 0.66 vs. 0.66, p = 0.91). Clinicians had higher
specificity (79.0% vs. 48.9%, p < 0.001) but lower sensitiv-
ity (43.9 vs. 75.2%, p < 0.001) than EHR model predic-
tions. Compared with machine, human was better at
reclassifying non-readmissions (non-event NRI + 30.1%)
but worse at reclassifying readmissions (event NRI −
31.3%). A human-plus-machine approach best optimized
discrimination (C-statistic 0.70, 95% CI 0.67–0.74), sen-
sitivity (65.5%), and specificity (66.7%).
CONCLUSION: Clinicians had similar discrimination but
higher specificity and lower sensitivity than EHR model
predictions. Human-plus-machine was better than either
alone. Readmission risk prediction strategies should in-
corporate clinician assessments to optimize the accuracy
of readmission predictions.
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INTRODUCTION

Up to 1 in 5 hospitalized adults experiences an unplanned
readmission within 30 days, accounting for $26 billion of
annual Medicare costs.1–3 Since 2012, hospitals have been
subject to financial penalties under the Centers for Medicare
andMedicaid Services Hospital Readmissions Reduction Pro-
gram (HRRP) for excessive all-cause 30-day readmissions
among patients with an index hospitalization for an increasing
number of targeted medical and surgical conditions, including
congestive heart failure, acute myocardial infarction, pneumo-
nia, and chronic obstructive pulmonary disease.4,5 These fed-
eral penalties have stimulated intense efforts to develop read-
mission reduction intervention strategies, which are highly
resource-intensive but have been only modestly effective
when indiscriminately applied to all hospital inpatients.6–9

Identifying hospitalized patients at high risk for readmission
before they are discharged can enable interventions to be
targeted to those at the highest risk and therefore most likely
to benefit.10 Electronic health record (EHR)-based risk predic-
tion models incorporating granular clinical data (i.e., vital signs,
hospital-acquired conditions, laboratory results, etc.), are supe-
rior to approaches using claims-based administrative data, but
are limited by the types of information documented and
encoded in the EHR.11–18 A growing body of evidence suggests
that social, functional, and behavioral factors are associated
with increased risk of readmission, and that incorporating this
information into prediction models improves readmission risk
prediction across a variety of conditions.19–30 However, at
present, this information is not uniformly available in EHRs.31

Clinician perceptions of readmission risk are readily ascer-
tainable and may incorporate valuable information on severity
and complexity of patient illness, as well as information on
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social, functional, and behavioral factors unavailable in the
EHR, but the comparative accuracy of physician predictions
for 30-day readmissions is not well established. Prior research
in this area consists of only two studies, which were
both limited by small sample sizes and modest to poor
discrimination of readmissions by both clinicians and
comparator risk tools. One study, conducted prior to
HRRP, compared provider predictions (attending and
resident physicians, nurses, and case managers) with a
standardized risk tool for a cohort of 164 patients and
found that both providers and the risk tool had uniform-
ly poor discrimination (C-statistic 0.50–0.59 for pro-
viders vs. 0.56 for the risk tool).32 A more recent study
compared clinician predictions (attending and resident
physicians and nurses) with the LACE index (length of
stay, acuity, comorbidities, emergency department use)
for 359 patients and found that clinicians and the LACE
index had similarly modest discrimination (C-statistic
0.63–0.69 for clinicians vs. 0.62 for LACE).33

Thus, we sought to conduct a head-to-head compari-
son of the performance of physicians versus a validated
EHR-based prediction model in predicting 30-day hos-
pital readmissions in a large, diverse cohort of hospital-
ized adults with a wide range of clinical, social, func-
tional, and behavioral needs. We hypothesized that phy-
sicians would be better able to predict 30-day
readmissions due to increased awareness of social con-
text and other patient characteristics influencing
readmissions not captured as well in EHR data.

METHODS

Study Setting and Population

In this prospective cohort study, we recruited inpatient internal
medicine physicians from Parkland Hospital, a large 862-bed,
public safety-net hospital in Dallas, Texas, from September
through October 2017. Parkland is a level 1 trauma center, the
sole safety-net hospital in Dallas County, and is part of a large
integrated county health system that cares for 1.5 million
patients annually who represent a racially and ethnically di-
verse poor, underinsured and uninsured urban population.
We included all attending physicians, trainees, and ad-

vanced practice providers providing patient care on the inpa-
tient internal medicine (6 teaching and 21 hospitalist direct
care services) and cardiology services (4 teaching services),
with a combined average daily census of about 300 patients.
We obtained verbal consent from all participants.We recruited
at least one team member from all teaching services. All
recruited individuals other than two faculty on non-teaching
services agreed to participate in the study. The UT Southwest-
ern Institutional Review Board reviewed and approved this
study prior to the onset of data collection.

Clinicians’ Predictions of Readmission Risk

We surveyed clinicians on their perceived risk of readmission for
each patient under their care whowas potentially being discharged
that day, using a 3-item verbal questionnaire developed by the
research team and administered in-person by a team member on
the day of anticipated discharge (Appendix Figure 1). Clinicians
were unaware of the included predictors and results of the EHR-
based model prediction of readmission risk. For each patient,
clinicians were asked to predict the risk of 30-day readmission
and rate their own confidence in each prediction on 5-point Likert
scales. Theywere also asked to select the main reason for potential
30-day readmission from three choices: medical issue, social issue,
or mental health/substance abuse issue. All responses were directly
recorded in REDCap.34 For patients on a teaching service, we
collected predictions from as many teammembers as possible and
used the most senior team member’s prediction (by descending
level of experience: attending, resident, intern) to limit predictions
to one per patient in the primary analysis. We identified individual
clinician characteristics from information publicly available
through the Texas Medical Board.35

EHR-Based Model Predictions of Readmission
Risk

After completion of the clinician surveys, we retrospectively ex-
tracted clinical data from the EHR (Epic Systems, Verona,WI) for
hospitalized patients forwhomwehad at least one clinician survey,
to calculate the risk of 30-day all-cause readmission using a
previously validated EHR-based readmission risk prediction mod-
el.14 Themodel included 24EHRvariables spanning demographic
characteristics (age, sex, race/ethnicity, primary payer), utilization
history (history of emergency department visits, hospitalizations in
the prior year), clinical characteristics (comorbidities, laboratory
values, vital signs) and hospital processes (hospital, acquired con-
ditions and/or complications, length of stay, disposition status)
(Appendix Table 1). We then categorized patients into quintiles
of risk based on cutoffs from the original validation study.

Ascertainment of Observed 30-Day
Readmissions

We ascertained 30-day readmissions from October through
November 2017 at the study hospital using EHR data and
across 80 hospitals within a 100-mile radius using hospital
claims from an all-payer regional hospitalization database
(North Texas Health Information and Quality Collaborative),
an approach used in our previous studies.14–16,36,37

Statistical Analysis
Comparison of Human vs. Machine Predictions of
Readmission Risk. We compared clinicians’ predictions of
readmission risk with the EHR model predictions by
discrimination, agreement, net reclassification, and diagnostic
test characteristics (sensitivity, specificity, and likelihood
ratios).
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We assessed discrimination using the area under the receiv-
er operating curve (AUC or C-statistic) and conducted tests of
equality of the AUCs to compare human vs. machine. We
assessed agreement between human and machine predictions
using unweighted kappa scores. For net reclassification and
diagnostic test characteristics, we dichotomized clinician and
EHRmodel risk predictions into “low risk” (Likert scores 1, 2,
and 3 for clinician predictions; quintiles 1, 2, and 3 for EHR
model predictions) and “high risk” (Likert scores 4 and 5 for
clinician predictions, quintiles 4 and 5 for EHR model) risk in
order to calculate net reclassification indices (NRIs), sensitiv-
ity, specificity, and positive and negative likelihood ratios.
We calculated the overall NRI for clinician predictions, using

the EHR model as the reference standard. The NRI measures
how many events and non-events (in this case, readmissions and
non-readmissions) a new model (here, clinician perceptions)
correctly predicts compared with a reference model (here, the
EHR model). It is mathematically defined as the sum of the net
proportions of correctly reclassified persons with and without the
event of interest (i.e., the sum of event and non-event NRIs)
compared with a reference model.38,39 The theoretical range of
values is − 2 to + 2 (or − 200 to + 200 when scaled to approxi-
mate percentages), with more positive values indicating that the
new model outperforms the reference model.
We visualized diagnostic utility of predictions by clinicians

and the EHR model using leaf plots, a data visualization tool
that illustrates the usefulness of positive vs. negative test
results in correctly ruling in or ruling out a readmission re-
spectively across a range of pre-test probabilities.40

Sensitivity and Subgroup Analyses. We conducted two
sensitivity analyses. First, we repeated the above analyses for
a restricted cohort of inpatient hospitalizations without a
preceding hospitalization in the 30 days prior to admission,
to mirror the Centers for Medicare and Medicaid Services
defini t ion of individuals experiencing an index
hospitalization.41 Second, we repeated the above analyses
including only hospitalizations for which attending
predictions were available (n = 1003 hospitalizations). We
found no meaningful differences in our findings for either
analysis compared with the primary analysis presented here
(data not shown; available upon request). We also conducted
pre-specified subgroup analyses, repeating the above analyses
stratified by clinician confidence (low, Likert score 1–3 vs.
high, Likert score of 4–5) and reason for readmission (medical
versus non-medical) to assess whether accuracy and discrim-
ination of clinician predictions varied by these factors.

“Human-Plus-Machine” Model. To assess whether
incorporating information from both clinicians and the EHR
model resulted in improved predictions, we developed a
“human-plus-machine” model using logistic regression to
predict 30-day readmissions. The model included the compos-
ite EHR model score as a single continuous predictor and
clinician predictions of risk as a 5-level ordinal predictor.

We categorized human-plus-machine model scores into quin-
tiles of risk to allow for direct comparison with clinician and
EHR model predictions and repeated the above analyses for
our human-plus-machine predictions.
We conducted all analyses using SAS (version 9.4, SAS

Institute, Inc.) and Stata statistical software (version 16.0,
Stata Corp).

Role of the Funding Source

This study was supported by the Agency for Healthcare Quality
and Research through the UT Southwestern Center for Patient-
Centered Outcomes Research (AHRQ R24 HS022418), the
National Heart, Lung, and Blood Institute (Nguyen, NHLBI
1K23HL133441), the National Institute on Aging (Makam,
NIA 5K23AG052603), and the National Center for Advancing
Translational Sciences of the National Institutes of Health
(UL1TR001105). The funding sources had no role in the study
design, data collection, analysis, preparation of the manuscript,
or decision to submit the manuscript for publication.

RESULTS

We surveyed 106 clinicians on 1183 hospitalizations among
1119 unique individuals. The observed 30-day readmission rate
was 20.8% (n = 246). Mean age of hospitalized individuals was
53.7 ± 15.9 years, with large proportions of individuals from
minority racial and ethnic backgrounds and with charity health
coverage, reflecting the safety-net study setting (Table 1,
Appendix Table 2). Over two-thirds were hospitalized on non-
teaching services. Surveyed clinicians were almost entirely phy-
sicians (n = 104), with two advanced practice providers in our
cohort (Table 2). About half of clinicians were attending physi-
cians, with a preponderance of hospitalists spanning a range of
experience. Clinicians completed surveys for a median of 10
patients (range 1–50 patients) under their care.

Prediction Performance for Human, Machine,
and Human-Plus-Machine
Discrimination. Both clinician and EHR model predictions
had similar discrimination (C-statistic 0.66 vs. 0.66, 95% CI
0.62–0.70 vs. 0.63–0.70, p = 0.91 for comparison, Fig. 1).
However, there was only modest concordance between
predictions (56.7% agreement, unweighted kappa 0.16), due
to the differences in distribution of predictions. Clinician
predictions were right-skewed towards more frequent predic-
tions of lower risk while EHR predictions were left-skewed
towards high risk (Appendix Figure 2). A human-plus-
machine approach had the best discrimination, with a C-
statistic of 0.70 (95% 0.67–0.74, p = 0.001 for comparison
with clinician and p = 0.002 for comparison with EHR model
predictions). The human-plus-machine model also effectively
stratified individuals across the broadest range of readmission
risk from 12.0% in the low-risk group to 34.0% in the high-
risk group (Fig. 1).
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Net Reclassification. Compared with the EHR model,
clinicians were better at reclassifying patients who were not
readmitted (non-event NRI + 30.1%) but were also nearly
equally worse at reclassifying patients who had a
readmission (event NRI − 31.3%), with an overall NRI of −
1.2 (Fig. 2). Compared with the EHR model, a human-plus-
machine approach was worse at reclassifying patients who
were not readmitted (non-event NRI − 12.3%) but better at
reclassifying patients who had a readmission (event NRI +
21.5%), with an overall NRI of + 9.3 (Fig. 2).

Diagnostic Characteristics. Compared with the EHR model,
clinician predictions of readmission risk had much higher
specificity (79.0% vs. 48.9%, p < 0.001) but lower sensitivity
(43.9% vs. 75.2%, p < 0.001). Because of the high specificity,
clinician predictions had a higher positive likelihood ratio (2.1
vs. 1.5) and were of higher diagnostic utility in ruling in
readmissions than EHR model predictions (Fig. 3). Human-
plus-machine predictions had the best balance between

maximizing sensitivity (65.5%, 95% CI 59.1–71.4%) and
specificity (66.7, 95% CI 63.6–69.7%), and consequently
had the best balance of diagnostic utility for both ruling in
(positive likelihood ratio 2.0, 95% CI 1.7–2.2) and ruling out
readmissions (negative likelihood ratio 0.5, 95% CI 0.4–0.6)
(Fig. 3).

Human Vs. Machine Predictions by Clinician
Confidence and Reason for Readmission

We found no differences between clinician and EHR model
predictions in terms of discrimination when predictions were
stratified by high vs. low clinician confidence in predictions
(Appendix Table 3). Both the clinician and EHR model had
poor discrimination for low-confidence predictions (C-statistic
0.59 vs. 0.62, 95% CI 0.53–0.64 vs. 0.57–0.68, p = 0.35), and
improved but similarly modest discrimination for high-
confidence predictions (C-statistic 0.70 vs. 0.70, 95% CI
0.65–0.74 vs. 0.65–0.75, p = 0.86). The human-plus-machine
model had better discrimination than either clinician or EHR
model predictions across both high- and low-confidence cli-
nician predictions (C-statistic 0.74, 95% CI 0.69–0.78 for
high-confidence predictions, p = 0.006 for comparisons to
both human and machine; C-statistic 0.65, 95% CI 0.60–
0.70 for low-confidence predictions, p = 0.01 for comparison
with human, p = 0.20 for comparison with machine).
Clinicians identified medical illness as the main potential

reason for readmission for 75% of discharges. In this subgroup
(n = 887), our findings were similar to the overall analysis
(Appendix Table 4). However, when clinicians identified
non-medical issues as the main potential reason for readmis-
sion (n = 296), the EHR model had slightly better discrimina-
tion, similar accuracy, and slightly better sensitivity and spec-
ificity compared with clinician prediction. However, the
human-plus-machine model still had the best discrimination
in this subgroup, with a C-statistic of 0.74 (95%CI 0.68–0.79)
and the best balance between sensitivity and specificity.

Table 1 Patient Characteristics

Characteristic All encounters*
(n = 1183)

Age in years, mean (SD) 53.7 (15.9)
Female, n (%) 514 (43.5)
Race/ethnicity, n (%)
White 213 (18.0)
Black 435 (36.8)
Hispanic 491 (41.5)
Other 44 (3.7)
Marital status, n (%)
Single 585 (49.5)
Married 345 (29.2)
Other† 253 (21.4)
Primary payer, n (%)
Private 60 (5.1)
Medicare 281 (23.8)
Medicaid 221 (18.7)
Charity, self-pay, or other‡ 621 (52.5)
Hospitalizations in prior year, median (IQR) 1 (0–3)
Non-elective admission, n (%) 1171 (99.0)
Non-teaching service, n (%) 812 (68.6)
CMS HRRP-targeted medical conditions, n (%) 201 (17.0)
Congestive heart failure 115 (9.7)
Acute myocardial infarction 11 (0.9)
Pneumonia 53 (4.5)
Chronic obstructive pulmonary disease 22 (1.9)
Charlson comorbidity index, median (IQR) 2 (0–6)
Length of stay in days, median (IQR) 3 (2–6)
Vital sign instability§ at discharge, n (%) 363 (30.7)
Discharge location, n (%)
Home 1125 (95.1)
Post-acute care 51 (4.3)
Hospice 7 (0.6)

CMS, Centers for Medicare and Medicaid Services; ED, emergency
department; HRRP, Hospital Readmissions Reduction Program; IQR,
interquartile range; SD, standard deviation
*Characteristics described across all hospital encounters, which
occurred among 1119 unique individuals
†Includes widowed, separated/divorced, unknown status
‡Eligible individuals with “charity” and “self-pay” status had coverage
through the Dallas County indigent health program which covers health
services rendered at the study hospital
§Defined as having at least one of the following: temperature ≥ 37.8 °C,
heart rate > 100 beats/min, respiratory rate > 24 breaths/min, systolic
blood pressure ≤ 90 mmHg, or oxygen saturation < 90%

Table 2 Clinician Characteristics (n = 106)

Characteristic n (%)

Specialty*
Hospital medicine 46 (43.4)
General internal medicine 6 (5.7)
Other medicine subspecialty 3 (2.8)
Internal medicine trainee 51 (48.1)
Clinician type
Attending physician faculty 53 (50.0)
Advanced practice provider (NP or PA) 2 (1.9)
Resident or fellow† 20 (18.9)
Intern 31 (29.3)
Female 43 (41.0)
Years since graduation‡

0–4 59 (55.7)
5–9 17 (16.0)
10–14 10 (9.4)
15–19 10 (9.4)
20+ 10 (9.4)

*Specialties assigned only for attending physicians and/or advanced
practice providers
†Two fellows were included in this grouping
‡Denotes years since graduation from medical or professional school
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DISCUSSION

In a head-to-head comparison of clinician versus automated
EHR-based predictions for 30-day hospital readmissions, we
found that contrary to our hypothesis, both clinicians and the
EHR model had similarly modest discrimination for
readmissions, though each strategy had unique strengths and
blind spots. The EHR model was better at predicting who
would be readmitted but overestimated readmission risk

overall (i.e., high sensitivity but low specificity), while clini-
cians were better at predicting who would not be readmitted
but underestimated readmission risk overall (i.e., high speci-
ficity but low sensitivity). A human-plus-machine approach
incorporating clinician predictions as a variable in the EHR
model had significantly better discrimination and also best
optimized sensitivity and specificity. In other words, human-
plus-machine was better than either alone in terms of
predicting 30-day hospital readmissions.

Human (Clinician) Machine (EHR Model) Human + Machine
Prediction performance

C-statistic (95% CI)a 0.66 (0.62-0.70) 0.66 (0.63-0.70) 0.70 (0.67-0.74)
Observed readmissions, %

Low risk groupb 15.7 12.1 12.0
High risk groupb 35.4 28.5 34.0

Fig. 1 Prediction performance of human, machine and human-plus-machine predictions. CI, confidence interval; EHR, electronic health
record; NRI, net reclassification index ap value for human vs. machine comparison = 0.91; p value for human vs. human +machine

comparison = 0.001; p value for machine vs. human +machine comparison = 0.002 bFor clinician predictions, “low risk” defined as Likert scale
scores of 1–3 and “high risk” defined as scores of 4 or 5. For EHR model predictions, “low risk” defined as those in the lowest three quintiles of

risk and “high risk” defined as those in the highest two quintiles of risk using cutoffs from our original validation study.14

A. Human vs. Machinea B. Human + Machine vs. Machine Onlya

NRI† -1.2 +9.3
Event NRIb, % -31.3 21.5
Non-event NRIb, % +30.1 -12.3

Fig. 2 Net reclassification for human and human-plus-machine predictions. NRI, net reclassification index. aDenotes the reference model for the
described comparison. For panel A, clinician (“human”) predictions are compared with EHR model (“machine”) predictions as a reference; for
panel B, a human-plus-machine predictions are compared with EHR model predictions as the reference standard. bOverall NRI is the sum of
the event (readmissions) NRI and non-event (non-readmissions) NRI (i.e., the sum of the net proportions of correctly reclassified persons with
and without the event of interest, respectively). For example, in panel A, 9.3% of readmissions (solid teal bar) were missed by the EHR model
but correctly predicted by clinicians. However, 40.7% of readmissions were missed by clinicians but correctly predicted by EHR model. Thus,
overall clinicians were 31.3% worse than the EHR model in correctly predicting readmissions (event NRI = 9.3 + − 40.7 = − 31.3). The black
solid and hatched bars can be similarly interpreted to arrive at the non-event NRI, which indicates that clinicians were overall 30.1% better
than the EHR model at predicting non-readmissions. The overall NRI is the sum of the event NRI (− 31.3%) and the non-event NRI (+ 30.1%),
which for panel A is equal to − 1.2%. In other words, clinicians were overall about − 1.2% worse at correctly classifying readmissions and non-
readmissions compared with the EHR model, with most of this difference attributable to clinicians failing to predict readmissions that were

correctly identified by the EHR model.
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Our findings have several implications for hospitals and
health systems developing workflows to identify and target
hospitalized patients at risk for 30-day readmissions. Hospitals
with limited care transitions resources or lacking real-time
predictive analytic capabilities could opt for a “human-only”
approach to reducing readmissions, where readmission reduc-
tion interventions would be targeted to patients who were
identified as being at high-risk for readmission by their inpa-
tient physicians using a 1-question screening tool that could be
embedded directly into an EHR. Resources would thus be
allocated to those most likely to potentially benefit from
intervention, though many high-risk patients would be missed
as a tradeoff of this approach. Hospitals for whom
readmissions reduction is a high priority—and who have
actionable, predictive analytic resources—could consider a
“human-plus-machine” approach to target a larger number of
patients for intervention, though some patients identified in
this approach may be less likely to be readmitted, and thus
may benefit less from intervention.
There are several potential reasons why clinicians were not

better at predicting readmissions compared with the EHR
model. First, clinicians may be overly optimistic when prog-
nosticating readmission risk in general, as this phenomenon
has been observed for prognostication in other areas.42–44

Second, clinicians may have an optimism bias for the both
the effectiveness of their care on readmission risk, and also for
their own patients’ ability to avoid readmission compared with
other patients in general.45,46 Third, readmissions may be
challenging to predict for both humans and machines due to
the breadth and varying influence of social, behavioral, envi-
ronmental, financial, medical and structural factors on read-
mission risk.12,22,23,25,28,30,47–57 Lastly, clinicians’ framework
for thinking about readmission riskmay not incorporate social,

functional, and behavioral factors, since these readmission risk
factors are novel and may not be well integrated in current
clinical curricula and continuing medical education.58–60 To
this end, we found that clinicians performed somewhat worse
than the EHR model at predicting readmissions if they identi-
fied non-medical issues as the main potential reason for read-
mission, versus medical illness where clinicians were more
proficient prognosticators. This directly contradicted our ini-
tial study hypothesis that physicians would be better able to
predict readmissions due to increased awareness of patient
social, behavioral, and situational factors not captured as well
in EHR data.
Our study had certain limitations. First, this was a single site

study of patients hospitalized over 1 month. However, our
cohort of both patients and clinicians is large and represents a
diverse population with a wide range of clinical, social, func-
tional, and behavioral needs. Additionally, we ascertained
readmissions from hospitals within a 100-mile radius of the
study hospital (not just same-site readmissions), and surveys
were conducted for consecutive patients to mitigate potential
sampling bias. Second, we were unable to explore clinicians’
rationale for their predictions, or for selecting medical vs. non-
medical reasons for potential readmission due to the structured
format of our questionnaire, since we designed the survey to
be both brief and of low burden to busy practicing clinicians to
facilitate recruitment. Future studies in this area would be
valuable to not only improve readmission risk prediction but
to also identify potentially modifiable social, functional, and
behavioral risk factors to target for intervention. Finally, our
human perceptions of risk only include the input of clinicians
and not other members of the care team, such as nursing staff,
pharmacists, social workers, or case managers. Future studies
assessing predictions and perspectives from other members of

Human (Clinician) Machine (EHR Model) Human + Machine

Summary statistic
Sensitivitya, % 43.9 (37.6-50.4) 75.2 (69.3-80.5) 65.5 (59.1-71.4)
Specificityb, % 79.0 (76.2-81.5) 48.9 (45.6-52.1) 66.7 (63.6-69.7)
Positive likelihood ratioc 2.1 (1.7-2.5) 1.5 (1.3-1.6) 2.0 (1.7-2.2)
Negative likelihood ratiod 0.7 (0.6-0.8) 0.5 (0.4-0.6) 0.5 (0.4-0.6)

Fig. 3 Diagnostic test characteristics of human, machine, and human-plus-machine predictions. CI, confidence interval; EHR, electronic health
record; NRI, net reclassification index. Leaf plots illustrate the usefulness of positive vs. negative predictions by clinicians (human), the EHR
model (machine), and a human-plus-machine prediction model in correctly “diagnosing” a readmission across a range of pre-test probabilities.
The impact of a positive prediction is shown by the shaded area above the diagonal red line and the impact of a negative prediction is shown by
the shaded area below the diagonal red line.40. aSensitivity defined as the probability that an individual who was readmitted had a “high-risk”
prediction. bSpecificity defined as the probability that an individual who was not readmitted had a “low-risk” prediction. cPositive likelihood
ratio defined as the probability of a “high-risk” prediction in those who were readmitted divided by the probability of a “high-risk” prediction
in those who were not readmitted—i.e., sensitivity/(1-specificity). dNegative likelihood ratio defined as the probability of a “low-risk” prediction
in those who were readmitted divided by the probability of a “low-risk” prediction in those who were not readmitted—i.e., (1-sensitivity)/

specificity.
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an interdisciplinary care team could be helpful to inform a
more global perspective of readmission risk and potential
targets for intervention.

CONCLUSION

In conclusion, a human-plus-machine approach was better
than either human or machine alone to predict 30-day hospital
readmission. Readmission risk prediction strategies should
seek to incorporate clinician assessments of readmission risk
to optimize the accuracy of readmission predictions.
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