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BACKGROUND: Predicting death in a cohort of clinically
diverse, multi-condition hospitalized patients is difficult.
This frequently hinders timely serious illness care conver-
sations. Prognostic models that can determine 6-month
death risk at the time of hospital admission can improve
access to serious illness care conversations.
OBJECTIVE: The objective is to determine if the demo-
graphic, vital sign, and laboratory data from the first 48 h
of a hospitalization can be used to accurately quantify 6-
month mortality risk.
DESIGN: This is a retrospective study using electronic
medical record data linked with the state death registry.
PARTICIPANTS: Participants were 158,323 hospitalized
patients within a 6-hospital network over a 6-year period.
MAIN MEASURES: Main measures are the following: the
first set of vital signs, complete blood count, basic and
complete metabolic panel, serum lactate, pro-BNP,
troponin-I, INR, aPTT, demographic information, and as-
sociated ICD codes. The outcome of interest was death
within 6 months.
KEYRESULTS:Model performancewasmeasured on the
validation dataset. A random forest model—mini serious
illness algorithm—used 8 variables from the initial 48 h of
hospitalization and predicted death within 6months with
an AUC of 0.92 (0.91–0.93). Red cell distribution width
was the most important prognostic variable. min-SIA
(mini serious illness algorithm) was very well calibrated
and estimated the probability of death to within 10% of
the actual value. The discriminative ability of the min-SIA
was significantly better than historical estimates of clini-
cian performance.

CONCLUSION:min-SIA algorithm can identify patients at
high risk of 6-month mortality at the time of hospital
admission. It can be used to improved access to timely,
serious illness care conversations in high-risk patients.

KEY WORDS: palliative care; hospital outcomes; predictive models; data

mining.

Abbreviations
aPTT Activated partial thromboplastin time
AST Aspartate amino transferase
ALT Alanine amino transferase
AHRQ Agency for Health Care Research and Quality
EMR Electronic medical record
MCV Mean corpuscular volume
WBC White blood cell count
CMP Complete metabolic panel
CBC Complete blood count
BMP Basic metabolic panel
BNP Brain natriuretic peptide
RF Random forest
Lab Laboratory
LR Likelihood ratio
LR Logistic regression
SD Standard deviation
AUC Area under the curve
ROC Receiver operator curve
OOB Out of bag
ICD9-CM International Classification of Diseases

9-Clinical Modification
ICD10 International Classification of Diseases 10
INR International normalized ratio
MD-Gini Mean Decrease in Gini Index
MI Machine learning
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INTRODUCTION

Accurate and timely prognostication is essential for ensuring
that seriously ill patients receive care that is concordant with
their goals and values—a critical component of high-quality
care. Early conversations about advance care planning (ACP)
with seriously ill patients can improve outcomes for patients
and caregivers.1, 2 However, serious illness care conversations
often occur too late, when patients are in crisis or unable to

Key Statements
- There is a lack of accurate prognostic models that predict 6-month
mortality at the time of hospital admission in multi-condition patients.
- We describe the development and validation of a user-friendly, lean,
machine learning model (min-SIA) that accurately risk-stratifies patients at
the time of hospital admission. min-SIA has a remarkable AUC of 0.92 for
death within 6 months of admission. This discriminative ability exceeds
AUCs reported for clinician performance in the literature (0.60–0.85)
- The min-SIA model is an innovative advancement that can potentially
improve the delivery of timely serious illness conversations in appropriate
situations.
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make decisions for themselves.3, 4 Of those admitted to hos-
pitals, less than half needing palliative care actually receive
it.5, 6 One of the major barriers to timely serious illness care
conversations is the poor prognostic performance of clinicians
in predicting longer term mortality.7 This is especially true in
patients who have a number of serious, chronic medical con-
ditions—such patients constitute the largest proportion of
hospice utilizers in the USA. Timely prognostication and
referral remains the Achilles heel for timely serious illness
discussions.8 Despite prior efforts, a relatively simple predic-
tive model to accurately prognosticate 6-month mortality in
diverse, multi-condition patients at the time of hospital admis-
sion remains elusive.3, 6 Existing prognostic models in this
area frequently rely extensively on variables that may not be
available to clinicians at the time of hospital admission, or use
a very large number of variables—making them unwieldy to
use.9 In this study, we aim to develop a user-friendly predictive
model that estimates the probability of 6-month mortality at
the time of hospital admission. Such a model will facilitate the
objective and timely identification of high-risk hospitalized,
“multi-condition” patients.

METHODS

Inclusion Criterion

After obtaining institutional review board approval, we used
our institution’s clinical data warehouse to create an EMR-
derived dataset of hospital admissions for 158,323 patients
within a 6-hospital network in the Twin Cities area, Minne-
sota. The encounters spanned a 6-year period ranging from
2012 to 2018. The hospital system consists of one 450-bed
university tertiary care center and 5 community hospitals
ranging from 100 to 450 beds in capacity. Patients who were
less than 18 years of age who did not consent to their medical
record being used for research purposes or had less than a year
of follow-up mortality data were excluded. We included hos-
pitalizations to all units and services as long as they met the
above criterion. Vital status and death dates were obtained
from the state death registry. Our database had the complete
death record issued from 2011 onwards for deceased individ-
uals who were born in Minnesota, had died in Minnesota, or
have ever had a permanent address in the state.

Model Variables

Our dataset included 4 broad classes of variables (features)
that were very commonly available in the EMR from most
hospitalizations and were clinically relevant: (1) demographic
variables: age, sex, race; (2) physiologic variables: systolic
blood pressure, diastolic blood pressure, pulse, respiratory
rate, temperature, pulse-oximetry readings, and body mass
index; (3) biochemical variables: serum sodium, potassium,
chloride, bicarbonate, creatinine, urea nitrogen, ALT, AST,
alkaline phosphatase, total bilirubin, albumin, white blood cell

count, hematocrit, hemoglobin, platelet count, mean corpus-
cular volume, red cell distribution width, troponin, pro-BNP,
INR, aPTT, arterial blood gas results; (4) clinical co-morbidity
variables: We created a co-morbidity profile for each patient
across the 30 classes of diseases in the AHRQ co-morbidity
category index from ICD codes billed during an encounter.10

All laboratory and physiologic data was time-stamped and
was obtained within 48 h of the admission. For each data
element, the first available measurement within 48 h of hos-
pital admission was used in the model. The primary outcome
of interest was predicting whether death occurred within
6 months of hospital admission.

Missing Data

We tested two imputation strategies to deal with missing data.
The first was the k-nearest neighbor approach, which replaced
missing data in an encounter with the values of its nearest
neighbor based on a distance measure.9 The second was the
median imputation approach where missing values for a var-
iable were replaced with median values for the variable.9 The
two approaches did not change model performance signifi-
cantly. Due to its simplicity and fast computation time, the
median imputation was used.

Dataset Partitioning

The dataset was partitioned into a derivation dataset and a
validation dataset with encounters selected randomly at a ratio
of 0.6/0.4.

Modeling

We compared the performance of logistic regression (LR) to a
class of MLmodels known as random forest (RF) models.9, 11

Due to their higher discriminative performance, we focused on
developing the RF models. A more detailed explanation of
RFs can be obtained by referring to existing reviews on this
methodology.11 RFs are known for their superior “out of box”
performance and are able to handle non-linear data and are less
prone to over-fitting.11–13 RFs are based on decision trees.
Decision tree algorithms formulate decision rules to fit the
underlying data. However, decision trees are frequently “un-
stable” and are sensitive to minor alterations in the data.11 RFs
aggregate the results of many different decision trees, in order
to eliminate this instability. RFs utilize two basic strategies to
achieve this objective: (1) The algorithm utilizes a random
subset of the training data to build each new tree in the
ensemble; (2) A random subset of features is utilized for
constructing each decision rule in a tree. This approach avoids
introducing an in-ordinate degree of bias in the classification,
stemming from a few influential observations.13, 19 Variable
importance is interpreted in RFs, by using an importance
measure known as “Mean Decrease in Gini index” (MD-
Gini). MD-Gini measures a variable’s performance by ran-
domly permuting it and measuring the resultant change in
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classification error. 14 For each RF classifier, 501 trees were
used in the ensemble in our analysis. The mtry parameter
which is the number of variables randomly sampled as candi-
dates at each split was sqrt(p) where p is number of variables in
the model. We used the RF implementation from the “ranger”
package in R for our analysis.

Statistical Tests

For non-normal variables, median values with interquartile
range (IQR) were reported. Mean with standard deviation
(SD) was reported for normal variables. The significance of
comparisons between two non-normal continuous variables
was tested using the Wilcoxon test. For comparisons between
two categorical variables, the Fisher test was used.

Model Validation and Testing

The discriminative performance of the models was measured
by constructing receiver operator curves (ROC) and calculat-
ing the area under the curve (AUC) on the validation dataset.
In clinical studies, the AUC gives the probability that a ran-
domly selected patient who experienced an event (e.g., a
disease or condition) had a higher risk score than a patient
who had not experienced the event. It is equal to the area under
the receiver operating characteristic (ROC) curve and ranges
from 0.5 to 1. The 95% confidence intervals around the AUC
estimates were estimated using the DeLong method, which is
implemented in the pROC package in R.15 In order to evaluate
whether the predicted probability of 6-month mortality from
the random forest model reflected the observed probabilities,

we constructed model calibration curves. In a perfectly cali-
brated model, all the points would fall along the diagonal
straight line.

RESULTS

Characteristics of the Cohort

The demographic, physiological, and laboratory characteris-
tics of the encounters are shown in Table 1. In 8.1% of the
hospitalizations, death occurred within 6 months of hospital
admission (Table 1). The median age, creatinine, blood urea
nitrogen (BUN), mean corpuscular volume (MCV), white
blood count (WBC), and red cell distribution width (RDW)
were higher in hospitalizations that were followed by death
within 6 months (Table 1). The albumin and hemoglobin
readings were significantly lower for patients who died within
6 months of hospital admission (Table 1).

Variable Importance in the Model

We called our algorithm the serious illness algorithm (SIA). The
highest-ranking 25 features of SIA are shown in Figure 1. We
also constructed min-SIA8, an algorithm that had only 8 varia-
bles: red cell distribution width, age, presence of metastatic
disease or tumor, serum albumin, platelet count, creatinine,
and total bilirubin.We also tested a 10-variable algorithm called
min-SIA10. min-SIA10 included serum alkaline phosphatase
and hemoglobin in addition to the variables in min-SIA8.

Table 1 Cohort Characteristics

Survival greater than 6 months Survival less than 6 months p value

Number of patients 145,478 12,845
0 (0.0) 12,845 (100.0) < 0.001

Age (years, median [IQR]) 50.16 (20.02) 72.32 (15.79) < 0.001
Sex (=female, number %) 92,871 (63.8) 6423 (50.0) < 0.001
Race (=white, number %) 119,615 (82.2) 11,299 (88.0) < 0.001
Metastatic disease (number, %) 4530 (3.1) 3479 (27.1) < 0.001
Tumor (number, %) 13,283 (9.1) 4722 (36.8) < 0.001
Serum albumin (g/dL, median [IQR]) 3.80 [3.30, 4.20] 3.10 [2.60, 3.60] < 0.001
Total bilirubin (mg/dL, median [IQR]) 0.60 [0.40, 0.90] 0.70 [0.50, 1.20] < 0.001
Blood urea nitrogen (mg/dL, median [IQR]) 15.00 [11.00, 20.00] 24.00 [16.00, 37.00] < 0.001
Serum chloride (mEq/L, median [IQR]) 104.00 [101.00, 106.00] 102.00 [97.00, 105.00] < 0.001
Serum bicarbonate (mEq/L, median [IQR]) 26.00 [24.00, 28.00] 26.00 [23.00, 29.00] 0.939
Serum creatinine (mg/dL, median [IQR]) 0.84 [0.70, 1.04] 1.05 [0.77, 1.59] < 0.001
Blood glucose (mg/dL, median [IQR]) 109.00 [94.00, 133.00] 118.00 [99.00, 150.00] < 0.001
Hemoglobin (mmol/L, median [IQR]) 12.70 [11.20, 14.10] 11.40 [9.70, 13.10] < 0.001
International normalized ratio (IU, median [IQR]) 1.06 [0.99, 1.20] 1.25 [1.09, 1.77] < 0.001
Serum lactate (mmol/L, median [IQR]) 1.50 [1.00, 2.20] 2.00 [1.30, 3.50] < 0.001
Mean corpuscular volume (femtoliters/cell, median [IQR]) 90.00 [86.00, 93.00] 92.00 [87.00, 97.00] < 0.001
Serum sodium (mEq/L, median [IQR]) 139.00 [136.00, 141.00] 137.00 [134.00, 140.00] < 0.001
Platelet count (X 10^9/L, median [IQR]) 218.00 [175.00, 267.00] 203.00 [138.00, 275.00] < 0.001
Pro-brain natriuretic peptide (pg/mL, median [IQR]) 1267.50 [300.00, 4120.00] 4130.00 [1267.50, 11,200.00] < 0.001
Red cell distribution width (μm, median [IQR]) 13.50 [12.90, 14.40] 15.20 [13.90, 17.10] < 0.001
White blood cell count (X 10^9/L, median [IQR]) 8.90 [6.70, 12.00] 9.60 [6.80, 13.70] < 0.001
Body mass index (kg/m2) 28.13 [24.37, 32.77] 25.10 [21.59, 29.66] < 0.001

The table is stratified by whether death occurred 6 months of hospital admission. Interquartile ranges are listed in parentheses. Median values are
reported for non-normal variables. The Wilcox test is used for comparisons between the non-normal continuous variables, and the Fisher test is used for
comparisons between categorical variables. IQR, interquartile range; SD, standard deviation
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Discriminative Performance of Models for
Death Within 6-Months of a Hospital Admission

The SIA model with all available predictors in the dataset (54
predictors) had an AUC of 0.94 (0.93–0.95). The leaner mod-
els with 8 and 10 variables—min-SIA8 and min-SIA10—had
AUCs of 0.92 (0.91–0.92) and 0.93 (0.91–0.93), respectively.
The ROC curve for min-SIA8 is shown in Figure 2.

Model Calibration

The calibration of a model is a measure of how well the
probabilities estimated by the model reflect the observed prob-

abilities. min-SIA8 and min-SIA10 had excellent calibration
across the whole probability range. Even though that SIA had
a higher AUC, the min-SIA models were better calibrated.

Models’ Cumulative Gains, Recall, and
Accuracy

The cumulative gains or recall plot (Fig. 3, left panel) visual-
izes the percentage of targets selected at a certain threshold of
predicted probability (k%). For example, if patients within the
top 20% of predicted probability range were selected, we
would “capture” 83% of the patients that died within 6 months
with the min-SIA8 model (Fig. 3, left panel). For the full SIA
model, this number would be 88% (data not shown). At a
threshold of the top 20% of predicted probability (k = 20%),
the accuracy of the min-SIA8 is 85.3% (Fig. 3, right panel).

Addressing Potential Selection Bias

We repeated the model development and testing using one of
two approaches: approach (1): In this approach, each distinct
hospitalization was treated as a unit of analysis. We used the
last set of data from each available hospitalization for each
patient; approach (2): In this approach, each unique patient
was treated as a unit of analysis. The dataset was sampled and
one hospitalization for each patient was randomly selected for
inclusion analysis (i.e., random admission model). This was
done to test the effect of potential selection bias that could be
theoretically introduced by using multiple data-points from the
same patient. Both these strategies yielded models with nearly
identical AUCs and predictive performance.9

Fig. 1 Feature importance in the random forest models. The 25 highest-ranking features in the SIA model ranked by importance (as measured
by the Mean Decrease in Gini Index). f48_ prefix refers to values obtained within the first 48 h of a hospitalization.

Fig. 2 The receiver operator curve for the minSIA8 model.
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DISCUSSION

We demonstrate that it is possible to accurately identify
patients who have a high risk of 6-month mortality at the
time of hospital admission. We construct and validate min-
SIA8, which is a high-performing and lightweight model.
min-SIA uses data that is typically available during the first
48 h of admission to clinicians and delivers remarkable dis-
criminative performance. To our knowledge, SIA and min-
SIA have the one of the highest AUCs described for predic-
tive models in multi-condition, hospitalized patients.9, 16 The
min-SIA relies on 8 predictors and is fairly easy to use for
clinicians. The probability estimates produced by the model
closely mirror the observed rates of mortality as demonstrated
in the calibration curve.
Clinicians are very poor at estimating the probability of

survival beyond a few days—even in intensive care unit
patients.17 Clinician discriminative ability has ranged from
an AUC of 0.5 to 0.79 for 6-month survival, in prior studies.8,
17 Compared with this, the min-SIA has an excellent AUC at
0.92. Other studies looking at longer termmortality estimation
(3–12 months) in multi-condition hospitalized patients have
achieved an AUC of around 0.94 with a deep-learning ap-
proach and 0.91 with random forests.9, 16 However, both these
studies used a much larger number of predictors than min-SIA
and relied on data beyond what was available at the time of
hospital admission, thereby limiting their use at the beginning
of a hospitalization.9, 16

Even though the SIA has higher AUC (0.94) than the
min-SIA, the min-SIA was better calibrated and used a
much smaller number of variables. The difference in dis-
criminative performance was not large enough to be clini-
cally meaningful. Given that min-SIA retains the excellent
performance of the SIA—but achieves this by using a much
lower number of variables, we selected the min-SIA for
web-deployment (https://niceguy.shinyapps.io/sia8/) for pur-
poses of demonstration.

When these models are deployed at a systems wide level
(such as with automatic EMR interfacing), it is possible to
capture 83–88% of patients that die within 6 months of ad-
mission, by screening patients in the top 2 decile of predicted
probability (Fig. 3, left panel). This would facilitate automated
flagging of high-risk patients for clinical review. Such a strat-
egy would ensure that the majority of patients that could
benefit from a serious illness consultation would be identified
in a timely manner.
It is notable that red cell distribution width emerged as the

single most important variable in our prognostic model. Strik-
ingly, it outperformed age as a prognostic factor. While previous
studies have shown that red cell distribution width (RDW) is
linked with mortality,18 our data highlights that RDW is central
to prognostication. The mechanistic underpinnings of the link
between mortality and RDWare not entirely clear. Some studies
have suggested that RDW may be correlated with several dif-
ferent biological pathways such as chronic inflammation, mal-
nutrition, and blood disease.19 It may therefore be viewed as an
unspecific and general “chronic disease prognostic marker.”19

Our models were developed and validated on a clinically
diverse cohort (Supplementary Table 1). Our dataset
includes data from a large multi-hospital health system.
The system encompasses a university tertiary care center
and urban, suburban, and semi-rural hospitals. Ultimately,
our model needs to be validated in other settings in order to
demonstrate geographic and temporal portability. We used
state death registry data for ascertaining the date of death
(for out-of-hospital deaths). If a death were not reported to
the Minnesota state registry, then it would not be captured
in our dataset.
We demonstrate that it is possible to develop high-

performing, parsimonious, predictive models—such as
min-SIA8—to accurately identify patients at high risk for
6-month mortality at the time of hospital admission. This
could potentially be used in areas where accurate risk-

Fig. 3 Left panel: The recall plot shows the percentage of the overall number of cases in a given category “gained” (y-axis) when we apply the
min-SIA8 and select the highest k-deciles (x-axis). For example, if the positivity threshold is set to be the highest-ranking 20% cases (by

predicted probability), then 83% of true positives would be selected. Right panel: The accuracy plot plots the accuracy (y-axis) of the model at
each decile threshold of predicted probability (x-axis).

1417Sahni et al.: Machine Learning Models for 6-Month MortalityJGIM

https://niceguy.shinyapps.io/shiny_model2/sia8/


stratification is crucial, such as institutional implementa-
tions of serious illness care programs and outcomes re-
search.20 Future work is needed to test how to incorporate
this model into clinical workflow, in order to improve the
delivery of timely serious illness care conversations in
appropriate situations. Care will have to be taken that any
such model implementation is part of a comprehensive
serious illness care program designed around the bedrock
principles of autonomy, beneficence, non-maleficence, jus-
tice, privacy, and confidentiality.
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