Expert Recommendations on Frequency of Utilization of Common Laboratory Tests in Medical Inpatients: a Canadian Consensus Study

Anshula Ambasta, MD, MPH, FRCPC^{1,2}, Stefana Pancic, MD¹, Brian M. Wong, MD^{3,4}, Todd Lee, MD, MPH⁵, Deirdre McCaughey, PhD, MBA^{1,6}, and Irene W. Y. Ma, MD, PhD^{1,2}

¹Cumming School of Medicine University of Calgary, Calgary, Alberta, Canada; ²Ward of the 21st century, University of Calgary, Calgary, Alberta, Canada; ³Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; ⁴Center for Quality Improvement and Patient Safety, Toronto, Ontario, Canada; ⁵Faculty of Medicine, McGill University, Montreal, Quebec, Canada; ⁶Department of Community Health Sciences, University of Calgary, Calgary

BACKGROUND: Repetitive inpatient laboratory testing in the face of clinical stability is a marker of low-value care. However, for commonly encountered clinical scenarios on medical units, there are no guidelines defining appropriate use criteria for laboratory tests.

OBJECTIVE: This study seeks to establish consensusbased recommendations for the utilization of common laboratory tests in medical inpatients.

DESIGN: This study uses a modified Delphi method. Participants completed two rounds of an online survey to determine appropriate testing frequencies for selected laboratory tests in commonly encountered clinical scenarios. Consensus was defined as agreement by at least 80% of participants.

PARTICIPANTS: Participants were 36 experts in internal medicine across Canada defined as internists in independent practice for ≥ 5 years with experience in medical education, quality improvement, or both. Experts represented 8 of the 10 Canadian provinces and 13 of 17 academic institutions.

MAIN MEASURES: Laboratory tests and clinical scenarios included were those that were considered common on medical units. The final survey contained a total of 45 clinical scenarios looking at the utilization of six laboratory tests (complete blood count, electrolytes, creatinine, urea, international normalized ratio, and partial thromboplastin time). The possible frequency choices were every 2–4 h, 6–8 h, twice a day, daily, every 2–3 days, weekly, or none unless there was specific diagnostic suspicion. These scenarios were reviewed by two internists with training in quality improvement and survey methods.

KEY RESULTS: Of the 45 initial clinical scenarios included, we reached consensus on 17 scenarios. We reached weak consensus on an additional 19 scenarios by combining two adjacent frequency categories.

CONCLUSIONS: A Canadian expert panel of internists has provided frequency recommendations on the utilization of six common laboratory tests in medical inpatients. These recommendations need validation in prospective

Prior Presentations This study was presented as a poster presentation at the Canadian Society for Internal Medicine Conference Oct 14, 2018 in Banff, Alberta, Canada

Received April 1, 2019 Accepted July 9, 2019 Published online August 5, 2019 studies to assess whether restrictive versus liberal laboratory test ordering impacts patient outcomes.

KEY WORDS: laboratory tests; utilization; consensus-based recommendations; modified Delphi; internal medicine.

J Gen Intern Med 34(12):2786–95 DOI: 10.1007/s11606-019-05196-z © Society of General Internal Medicine 2019

INTRODUCTION

Laboratory testing is an important contributor to health care expenditure, $^{1-3}$ and yet up to 42% of laboratory testing could be considered wasteful.⁴⁻⁷ Redundant testing has been estimated to waste up to 5 billion USD annually in the USA^{8-10} and Canadians receive over 1 million unnecessary tests each year.⁴ Unnecessary diagnostic testing performed without appropriate consideration of pretest probability can generate false-positive results, which drives further unnecessary tests and wasted health care dollars.³ Therefore, redundant laboratory testing could result in substantial downstream costs even if the individual tests themselves are relatively inexpensive. The motivation to improve testing practices extends beyond cost savings. Excessive blood work may result in additional unintended consequences which include patient discomfort, hospital-acquired anemia, unnecessary transfusions, prolonged hospitalizations, over-investigation of false positives, and increased mortality for patients with cardiopulmonary diseases.^{3,11,12} Efforts to reduce the frequency of laboratory tests can improve patient satisfaction and reduce costs without worsening patient outcomes, readmission rates, critical care utilization, or mortality.^{3,13,14}

Several organizations attempt to address unnecessary laboratory testing. Choosing Wisely is a campaign to help clinicians and patients engage in conversations about reducing unnecessary tests, treatments, and procedures.¹⁵ Several of its recommendations focus on appropriate utilization of laboratory testing. The American Association of Blood Banks recommends against performing serial blood counts on clinically stable patients.¹⁶ The Society for the Advancement of Blood Management recommends against performing laboratory blood testing unless clinically indicated or necessary for diagnosis/management in order to avoid iatrogenic anemia.¹⁷ Choosing Wisely Canada recommends internists to avoid ordering repeated complete blood count and chemistry testing in the face of clinical and lab stability in the inpatient setting.¹⁸ Although there is some evidence to guide this in the perioperative setting, there is minimal existing evidence in the medical inpatient population to guide either indications or frequencies for use of common laboratory tests.¹⁹

Without clear guidance on how frequently to order common laboratory tests and under what circumstances, optimization of inpatient laboratory testing is difficult. This is particularly relevant for complex patients admitted under internal medicine who are often responsible for significant resource use in teaching hospitals.²⁰ In addition, there is substantial inter-physician variability with respect to practices and patterns of testing even within the same practice setting.²¹ The aim of this study was to develop consensus-based frequency recommendations for the use of common laboratory tests in routinely encountered clinical scenarios on general medical units. This contributes to filling the current gap of evidence-based guidelines for laboratory testing.

METHODS

Study Design

To reach consensus on frequency recommendations on common laboratory tests, we used the modified Delphi²² approach. Consensus was defined as > 80% of agreement by experts on the same frequency choice. This cutoff is in keeping with current recommendations for consensus-based studies.²³ Consensus was considered weak when it was reached by combining two adjacent frequency categories. We determined a priori to conduct no more than three rounds of voting.²⁴ All rounds of this closed survey were conducted using an online survey tool²⁵ between November 2017 and March 2018. Each expert who completed all rounds of the survey received \$50 CAD in honorarium.

Participants

An expert considered for inclusion in this study was an internist who had been in independent practice in a Canadian medical unit for at least 5 years and who had made significant contributions to the fields of quality improvement, medical education, or both. This included serving as an examiner at the Royal College of Physicians and Surgeons of Canada, authoring peer-reviewed publications in either area, and/or holding educational or quality improvement leadership roles within their hospitals. Medical units considered for this study are Canadian clinical teaching units, which are non-critical care general internal medicine inpatient teaching wards.²⁶ Our expert panel was limited to this setting because similar types of patients are cared for in a similar fashion across the country. This homogeneity assists with consensus building given the shared mental model held by experts across the country.

As only a small subset of academic internists in Canada have known expertise in the fields of quality improvement and/or medical education, we used a non-probabilistic snowball technique to form our expert panel, by first targeting experts known to our authorship team.²⁷ Targeting a panel size of at least 10, consistent with guidelines on consensus methods,²¹ and assuming a response rate of 25%, we sought to invite a minimum of 40 experts to participate in this panel through an e-mail invitation.

Laboratory Test Selection and Survey Development

We performed a review of laboratory test use in medical units in four adult tertiary care hospitals in Western Canada to identify the highest cost contributors to laboratory test expenditure (Appendix Table 4). We decided to focus on the top contributors, i.e., complete blood count and differential (CBC), electrolytes, renal studies (creatinine and urea), extended electrolytes (calcium, magnesium, phosphate), and coagulation studies [international normalized ratio (INR) and partial thromboplastin time (PTT)]. Although not a high-cost contributor, we also included creatine kinase in our survey because its narrow range of utilization makes it a good candidate for an attempt to derive consensus-based recommendations for use. Research team members who were general internists with expertise in quality improvement and survey design/consensus methods (A.A. and I.M. respectively), with input from local internists, compiled an initial survey draft of commonly encountered clinical scenarios (total 123) where the above laboratory tests may be ordered on medical units. The scenarios referred only to general medical units in Canada and did not include scenarios which might require an intensive care unit admission.

We piloted the initial draft survey on 12 internists who were not part of the expert panel and solicited feedback on survey usability and technical functionality. Based on their input regarding common clinical scenarios, we reduced the number of scenarios to 45 and the number of laboratory tests to six in the final survey to optimize survey length while still focusing on common scenarios for the most utilized tests. These six tests were CBC (13 scenarios), electrolytes (14 scenarios), creatinine (7 scenarios), urea (3 scenarios), INR (5 scenarios), and PTT (3 scenarios). For each of the 45 clinical scenarios, we asked experts how frequently they would recommend ordering the associated laboratory test on a time scale that included the following selections: every 2–4 h, every 6–8 h, twice a day, daily, every 2–3 days, weekly, once for diagnostic workup, or not indicated.

Participants were provided space for written feedback in the survey. Scenarios where expert comments demonstrated a requirement for more contextual clarity were modified and included in round 2. For each scenario, frequency range choices that had received no votes in round 1 were removed for round 2. We provided statistical group response feedback to participants between rounds including quantitative results (% agreement in prior round for each scenario).²⁴

RESULTS

Sixty-four experts were invited to participate in this panel. A total of 36 members participated representing 13 of 17 (76%) Canadian academic institutions and 8 of the 10 Canadian provinces (Table 1). The majority (n = 31, 86%) of the experts were specialists in internal medicine or general internal medicine and the remaining (n = 5, 14%) had additional training in other medicine subspecialties (Table 1).

Round One

Of the 45 clinical scenarios included, consensus was reached in nine clinical scenarios, weak consensus was reached for 20 scenarios, and no consensus was reached for the remaining 16 scenarios (Fig. 1, Appendix Table 5).

Round Two

All 36 members participated in this round. A total of 18 scenarios were included (Fig. 1, Appendix Table 6). Of the 20 scenarios that had reached weak consensus in round 1, 6 were modified for round 2. Of the 16 scenarios that had not reached consensus in round 1, 4 were modified and an additional 4 split into two each for round 2. For this round, the frequency options were the following: every 2–4 h, every 6–8 h, twice a day, daily for 3 days followed by reassessment, every 2–3 days, weekly, and none unless diagnostic suspicion.

Of the six scenarios that had been modified from the "weak consensus" pool from round 1, four scenarios now reached consensus^{4,8,25,28} while the other two remained in the weak consensus category.^{3,5} Of the total of 12 scenarios that had entered round 2 from the no consensus pool from round 1, we arrived at consensus for four, weak consensus for three, and no consensus for the remaining five scenarios (Fig. 1).

Summary of Consensus

We started with 45 clinical scenarios and for round 2 split up scenarios 1, 6, 14, and 28 leading to a total of 49 surveyed scenarios. Of these, we arrived at consensus on frequency recommendations for 17 scenarios (Table 2), weak consensus for 19 scenarios (Table 3), and no consensus for 13 scenarios (Table 3).

DISCUSSION

In this study, for ordering laboratory investigations on the medical inpatient unit, frequency recommendations were

 Table 1 Demographic of the 36 Members of the Expert Panel

 Convened for the Study

Demographic	N (%)
Academic institution	
University of British Columbia	6 (17)
University of Calgary	1 (3)
University of Alberta	1 (3)
University of Saskatchewan	1 (3)
University of Manitoba	1 (3)
Western University	1 (3)
McMaster University	2 (6)
University of Toronto	9 (25)
Queen's University	1 (3)
University of Ottawa	6 (17)
McGill University	4 (11)
Université de Sherbrooke	1 (3)
Dalhousie University	2 (6)
Province	
British Columbia	6 (17)
Alberta	2 (6)
Saskatchewan	1 (3)
Manitoba	1 (3)
Ontario	19 (53)
Québec	5 (14)
New Brunswick	1 (3)
Nova Scotia	1 (3)
Gender	
Male	19 (53)
Female	17 (47)
Subspecialty*	
Internal medicine/general internal medicine	31 (86)
Critical care	2 (6)
Infectious disease	1 (3)
Nephrology	1 (3)
Respirology	1 (3)
Medical biochemistry	1 (3)
Years of independent practice in internal medicine	
5 to 7 years	5 (14)
8 to 10 years	4 (11)
11 to 15 years	4 (11)
16 to 20 years	6 (17)
21 years or more	17 (47)
Average number of weeks on the medical teaching unit per year	over the
past 5 years	0 (22)
1 to 10 weeks	8 (22)
11 to 20 weeks	21 (58)
21 to 30 weeks	5(14)
31 or more weeks	2 (6)

*Some respondents indicated more than one specialty choice. One expert had a combined respirology/critical care specialty and is represented in both

reached for 17 common clinical scenarios and weak consensus was reached for 19 clinical scenarios. Our experts seemed to agree on scenarios that require urgent, daily, or no blood work at all. For example, they agreed that patients with diabetic ketoacidosis should get electrolytes tested every 2–4 h, but for several other conditions daily testing sufficed (e.g., daily creatinine for patients with sepsis, acute kidney injury, or those on nephrotoxic agents; daily electrolytes when abnormalities were anticipated and daily CBC for workup for severely abnormal cell counts). For stable inpatients who are awaiting rehabilitation/transition/placement, our experts agreed that regular blood work was not indicated. In addition, urea was generally thought to be unnecessary for most patients. Lastly, for diagnostic purposes, our experts felt that testing of coagulation parameters once during the hospital stay was sufficient,

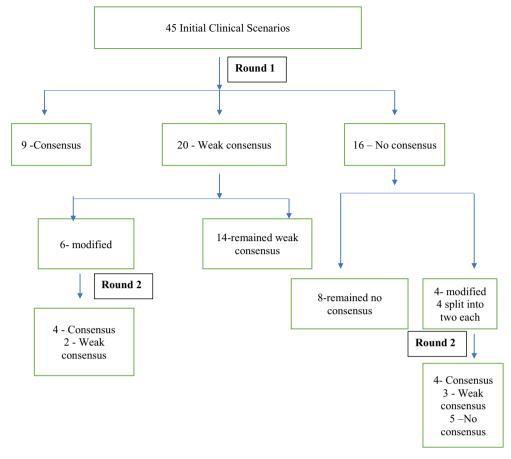


Figure 1 Flow diagram of the consensus process summary.

to be repeated only in the setting of anticipated invasive procedure.

Our experts were less able to agree in the scenarios where testing needs to be done either more than daily or less than daily. For instance, in patients with gastrointestinal bleeding or acute electrolyte abnormalities (sodium/potassium), experts generally agreed that testing should be done more frequently than daily. However, a number of experts pointed out that the exact frequency would depend on numerous contextual factors that the scenario description cannot capture. In scenario 2, looking at the use of CBC for monitoring an actively bleeding patient requiring hemodynamic support, our experts indicated that the exact frequency would depend on the starting hemoglobin, the rate of bleeding, requirements for and response to transfusion, and timing and success of planned interventions. Thus, the suggested frequency may range between every 2– 8 h. Similarly in scenarios involving patients with resolving issues, those with less severe or chronic anemia, less severe or chronic thrombocytopenia, in patients on warfarin, and those with stable chronic kidney disease, experts agree that testing should generally be less than daily. Again the exact frequency would depend on other factors. Often, the scenarios where the experts desired more clinical information and context were the ones where there was either weak or no consensus.

Our expert panel, comprised predominantly of general internists, was not able to agree on the utility of urea in

diagnosis/monitoring of gastrointestinal bleeding and uremic encephalopathy.

Although we only arrived at consensus in 17 scenarios, the results from the other scenarios (including weak and no consensus) still provide insight into expert recommendations of laboratory test utilization. For instance, in scenario 1b (Appendix Table 6), for a stable inpatient with resolving medical issues, while experts did not agree on how frequently CBC should be performed, all agreed that it should be done *no more* frequently than every 2–3 days. Hence, even though there was no consensus on a specific frequency window for several scenarios, the frequency range can still be helpful to guide optimization efforts.

Unnecessary blood work is often ordered daily in many institutions.^{29,30} Several studies acknowledge the paucity of consensus on what comprises appropriate laboratory testing in this population and recognize a need for guideline development.^{28,31–35} However, little has been done to establish appropriate testing frequencies in medical inpatients possibly because there are too many variables that make the task onerous. We used a geographically diverse expert panel of internists in Canada to provide frequency recommendations for the utilization of six laboratory among medical inpatients. These six tests are known to be highly utilized, both from local data (Appendix Table 4) and in the test utilization literature.^{13,14,20,29} Even though we arrived at consensus in only 17 scenarios, we believe

Table 2 Consensus-Based Frequency Recommendation for Scenarios That Reached Consensus or Weak Consensus (over Two Adjacent Frequency Categories)

	Clinical scenarios by laboratory test	Final frequency recommendation	Recommendation strength
Complet	e blood count (CBC)		
*1a	Stable inpatient awaiting rehabilitation/transition/placement	None unless diagnostic suspicion	Consensus
2	Monitoring an actively bleeding patient requiring hemodynamic support	Q2-8h	Weak consensus
*3 *4	A slowly bleeding patient NOT requiring crystalloids and/or blood products New diagnosis of anemia in newly admitted patient without overt bleeding	BID—daily \times 3 then r/a Daily \times 3 then reassess	Weak consensus Consensus
*5	(Hemoglobin <70 g/L) New diagnosis of anemia in newly admitted patient without overt bleeding (Hemoglobin>70 g/L)	Daily \times then r/a—q2–3 days	Weak consensus
*6b	Stable inpatient (admitted >3 days) with chronic asymptomatic anemia (Hemoglobin 70-120 g/L)	Weekly—none unless diagnostic suspicion	Weak consensus
*7	New admission with acute inflammatory state	Daily \times 3 then r/a—q2– 3 days	Weak consensus
*8	Patient being worked up for new leukocytosis	Daily \times 3 then reassess	Consensus
9 10 lectroly	Monitoring new thrombocytopenia (Platelets $<50 \times 10^{9}/\mu$ L) Monitoring new thrombocytopenia (Platelets $50-150 \times 10^{9}/\mu$ L)	Daily Daily—q2–3 days	Consensus Weak consensus
*14a	Stable in-patient awaiting rehabilitation/transition/placement	None unless diagnostic suspicion	Consensus
15	Monitoring in DKA being treated with IV insulin infusion	Q2-4h	Consensus
16	Monitoring on treatment associated with electrolyte abnormalities (e.g. new diuresis)	Daily	Consensus
17	Monitoring acute severe hyponatremia (<120 mEq/L)	Q2-8h	Weak consensus
22	Monitoring hypernatremia not requiring hypotonic IV fluids	BID—daily	Weak consensus
23	Initial monitoring of acute hyperkalemia requiring shifting	Q2-8h	Weak consensus
24 *25	Initial monitoring of mild/moderate acute hyperkalemia not requiring shifting For a patient with stable hyperkalemia (5.5–6.0 mmol/L) would you in general be comfortable with only daily monitoring (not more frequently) of potassium as an in-patient?	BID—daily Daily	Weak consensus Consensus
26 27	Monitoring new hypokalemia requiring IV/PO replacement Monitoring new hypokalemia not requiring potassium replacement	BID—daily	Weak consensus Weak consensus
reatinii			-
*28a	Stable in-patient awaiting rehabilitation/transition/placement	None unless diagnostic suspicion	Consensus
*28b 29	Stable in-patient (admitted >3 days) with resolving medical issues Monitoring in patient with sepsis	Q2-3 days—weekly Daily	Weak consensus Consensus
30	Initial monitoring with use of new nephrotoxic agents/therapies (contrast, diuretics, antibiotics, large volume paracentesis)	Daily	Consensus
31	Monitoring in patient with worsening AKI	Daily	Consensus
32	Monitoring in patient with improving AKI	Daily—q3 days	Weak consensus
*33	Monitoring in patient on chronic dialysis with no residual renal function	None unless diagnostic suspicion	Consensus
rea *35	Urea testing is NOT indicated for most stable inpatients without specific diagnostic suspicion	None unless diagnostic suspicion	Consensus
36 NR	Diagnosis of gastrointestinal bleed	Once or not indicated	Weak consensus
38	General surveillance for an in-patient	Once for diagnosis—not in- dicated	Weak consensus
40 41 42	Monitoring in patient on warfarin (new start/new dose/concurrent antibiotics Monitoring in patient on stable dose warfarin with therapeutic INRs Prior to invasive procedures where INR check is recommended	Daily—q2–3 days Q2 days—weekly Once for diagnosis	Weak consensus Weak consensus Consensus
ГТ 43	General surveillance for an in-patient	Once for diagnosis or not indicated	Weak consensus
44 45	Diagnosis of a bleeding diathesis (congenital or acquired) Monitoring in patient on intravenous heparin infusion	Once for diagnosis Per local heparin infusion	Consensus Consensus

DKA diabetic ketoacidosis, IV intravenous, PO per oral, AKI acute kidney injury, BID twice daily, Q every *Indicates scenario was reworded between rounds 1 and 2 for clarity

that knowledge of the range of frequency selections by our expert group can still help with professional development and guide quality improvement efforts to standardize practices. Intervention bundles used to optimize laboratory testing often include an educational component.³ These recommendations could be incorporated into the Choosing Wisely Toolkit and

help standardize the educational component of these bundles and be used to set benchmarks for audit and feedback.

There are several limitations to our study. First, our group is composed entirely of internists who work on Canadian medical units. This limits the generalizability of our recommendations outside the Canadian medical teaching unit context.

Table 3 Survey Results on Scenarios Where No Consensus Was Reached

Clinical scenarios by laboratory test

Complete blood count (CBC)

- 1b Stable inpatient (admitted for > 3 days) with resolving medical issues
- 6a New admission with chronic asymptomatic anemia (hemoglobin 70–120 g/L)
- 11 Monitoring chronic asymptomatic thrombocytopenia (platelets $< 50 \times 10^9 / \mu L$)
- 12 Monitoring chronic asymptomatic thrombocytopenia (platelets $50-150 \times 10^9/\mu L$)
- 13 Monitoring on treatment associated with CBC abnormalities (heparin, antibiotics, etc.)

Electrolytes

- 14b Stable inpatient (admitted > 3 days) with resolving medical issues
- 18 Monitoring acute hyponatremia (120–134 mEq/L)
- 19 Monitoring severe chronic hyponatremia (<120 mEq/L)
- 20 Monitoring chronic hyponatremia (120–134 mEq/L)
- 21 Monitoring hypernatremia requiring hypotonic IV fluids
- Urea
- 34 Monitoring in stable chronic kidney disease
- 37 Diagnosis of uremic encephalopathy

INR

39 Diagnosis of a bleeding diathesis (congenital/acquired, e.g., disseminated intravascular coagulation, liver disease)

However, medical units serve as teaching units for Canadian internists. We also know that spending habits picked up during residency can persist for years.³⁶ Hence, optimization of laboratory test use in this population and setting may impact the practice pattern of current residents and future internists. Second, a disadvantage of using non-probabilistic sampling strategy is that it may be difficult to assess how representative our sample is compared to all possible relevant experts in the field. Third, the scope of our study was such that we were able to focus only on the common scenarios for highly utilized tests. We did not attempt to comprehensively define all possible indications for each laboratory test. The description of clinical scenarios was general and could not possibly capture all relevant contextual features. Thus, any ensuing recommendations cannot replace nuanced clinical judgment. Fourth, our recommendations are only based on expert opinion-based consensus. We did not grade the strength of our recommendations nor conduct a systematic review on all applications. However, given the lack of evidence on the ideal testing frequency for most of these scenarios, we believe that consensus-based recommendations from experts serve as an important starting point. As additional evidence becomes available on appropriate use of laboratory tests, the current recommendations will need to be updated. Fifth, the frequency recommendations are limited to scenarios commonly seen on general medical units and may not be applicable to specific scenarios encountered on specialized services. Sixth is the issue of representation; we deliberately sought to seek general internists as experts in the field of laboratory test management in the inpatient setting. However, we notice the ambiguity in certain areas (e.g., use of urea for diagnosis of gastrointestinal bleeding or uremic encephalopathy) where additional medical subspecialty representation may have been useful. Lastly, our recommended test order frequency do not take into account automatic test bundling that may be in place for a variety of reasons in specific institutions. For example, it may not be possible to order an INR without a PTT or a sodium and potassium without extended electrolytes. Individual physicians will need to take these practice constraints into consideration.

In conclusion, our expert panel consensus-based recommendations highlight considerate and indication-driven utilization of laboratory testing in the inpatient setting. They are not intended to replace clinical judgment. In the setting of limited evidence in this area, consensus-based recommendations are an important intermediate step as we move towards evidence-based guidelines directing appropriate use of laboratory tests. These recommendations can guide future clinical trials of restrictive versus liberal frequency of laboratory testing to assess their impact on patient-oriented outcomes.

Acknowledgments: We would like to acknowledge the members of our expert panel for their participation in the survey.

Corresponding Author: Anshula Ambasta, MD, MPH, FRCPC; Cumming School of Medicine University of Calgary, Calgary, Alberta, Canada (e-mail: aambasta@ucalgary.ca).

Funders This study was funded by Alberta Health Services. The funding body played no role in the design of the study; collection, analysis, and interpretation of the data; and the decision to approve publication of the finished manuscript.

Compliance with Ethical Standards:

Conflict of Interest: The authors declare that they do not have a conflict of interest.

IRB Approval: This study was approved by the Conjoint Health Research Ethics Board at the University of Calgary (REB17-0702).

REFERENCES

- Berwick DM. A user's manual for the IOM's 'Quality Chasm' report. Health affairs (Project Hope). 2002;21(3):80–90. https://doi.org/10. 1377/hlthaff.21.3.80
- Berwick DM, Hackbarth AD. Eliminating waste in US health care. Jama. 2012;307(14):1513–6. https://doi.org/10.1001/jama.2012.362
- Eaton KP, Levy K, Soong C, Pahwa AK, Petrilli C, Ziemba JB, et al. Evidence-Based Guidelines to Eliminate Repetitive Laboratory Testing. JAMA Intern Med. 2017;177(12):1833–9. https://doi.org/10.1001/ jamainternmed.2017.5152
- Canadian Institute for Health Information Unnecessary Health Care in Canada. Unnecessary Health Care in Canada. 2017. https://www.cihi. ca/en/unnecessary-care-in-canada-infographic. Accessed April 17 2018.
- Fuchs VR. The gross domestic product and health care spending. New Engl J Med 2013;369(2):107–9. https://doi.org/10.1056/ NEJMp1305298
- Huck A, Lewandrowski K. Utilization management in the clinical laboratory: an introduction and overview of the literature. Clin Chim Acta; Int J Clin Chem 2014;427:111–7. https://doi.org/10.1016/j.cca. 2013.09.021
- McConnell TS, Berger PR, Dayton HH, Umland BE, Skipper BE. Professional review of laboratory utilization. Hum Pathol 1982;13(4):399– 403.
- Jha AK, Chan DC, Ridgway AB, Franz C, Bates DW. Improving safety and eliminating redundant tests: cutting costs in U.S. hospitals. Health Affairs (Project Hope). 2009;28(5):1475–84. https://doi.org/10.1377/ hlthaff.28.5.1475

- Baird G. The laboratory test utilization management toolbox. Biochem Med 2014;24(2):223–34. https://doi.org/10.11613/bm.2014.025
- Bates DW, Boyle DL, Rittenberg E, Kuperman GJ, Ma'Luf N, Menkin V, et al. What proportion of common diagnostic tests appear redundant? Am J Med. 1998;104(4):361–8.
- Lin RJ, Evans AT, Chused AE, Unterbrink ME. Anemia in general medical inpatients prolongs length of stay and increases 30-day unplanned readmission rate. South Med J 2013;106(5):316–20. https://doi. org/10.1097/SMJ.0b013e318290f930
- Thavendiranathan P, Bagai A, Ebidia A, Detsky AS, Choudhry NK. Do blood tests cause anemia in hospitalized patients? The effect of diagnostic phlebotomy on hemoglobin and hematocrit levels. J Gen Intern Med 2005;20(6):520–4. https://doi.org/10.1111/j.1525-1497.2005.0094.x
- May TA, Clancy M, Critchfield J, Ebeling F, Enriquez A, Gallagher C, et al. Reducing unnecessary inpatient laboratory testing in a teaching hospital. Am J Clin Pathol. 2006;126(2):200–6. https://doi.org/10. 1309/wp59-ym73-l6ce-gx2f
- Wertheim BM, Aguirre AJ, Bhattacharyya RP, Chorba J, Jadhav AP, Kerry VB, et al. An Educational and Administrative Intervention to Promote Rational Laboratory Test Ordering on an Academic General Medicine Service. Am J Med. 2017;130(1):47–53. https://doi.org/10. 1016/j.amjmed.2016.08.021
- Choosing Wisely. Philidelphia, PA. 2014. http://www.choosingwisely.org. Accessed March 25 2019.
- American Association of Blood Banks. Five Things Physicians and Patients Should Question. 2014.
- Choosing Wisely Clinician Lists: Laboratory Recommendations. 2017. http://www.choosingwisely.org/clinician-lists/#keyword=laboratory. Accessed August 1 2018.
- Canadian Society of Internal Medicine Choosing Wisely Canada Internal Medicine: Five Things Physicians and Patients Should Question. 2018. https://choosingwiselycanada.org/internal-medicine/. Accessed April 25 2018.
- Bock M, Fritsch G, Hepner DL. Preoperative Laboratory Testing. Anesthesiol Clin 2016;34(1):43–58. https://doi.org/10.1016/j.anclin. 2015.10.005
- Iwashyna TJ, Fuld A, Asch DA, Bellini LM. The impact of residents, interns, and attendings on inpatient laboratory ordering patterns: a report from one university's hospitalist service. Acad Med. 2011;86(1):139–45. https://doi.org/10.1097/ACM.0b013e3181fd85c3
- McDonald EG, Saleh RR, Lee TC. Mindfulness-Based Laboratory Reduction: Reducing Utilization Through Trainee-Led Daily Time Outs'. Am J Med. 2017;130(6):e241-e4. https://doi.org/10.1016/j.amjmed. 2017.01.011
- 22. **Dalkey N.** An Experimental Study of Group Opinion: The Delphi Method. Futures. 1969:408–26.
- Diamond IR, Grant RC, Feldman BM, Pencharz PB, Ling SC, Moore AM, et al. Defining consensus: a systematic review recommends methodologic criteria for reporting of Delphi studies. J Clin Epidemiol. 2014;67(4):401–9. https://doi.org/10.1016/j.jclinepi.2013.12.002
- Humphrey-Murto S, Varpio L, Gonsalves C, Wood TJ. Using consensus group methods such as Delphi and Nominal Group in medical education research(). Med Teach. 2017;39(1):14–9. https://doi.org/10.1080/ 0142159X.2017.1245856
- SurveyMonkey Inc San Mateo C, USA, San Mateo, California, USA. www. surveymonkey.com.
- Gupta S., Detsky A.S. Prioritizing continuity in Canadian clinical teaching units. Can Med Assoc J 2014; 186(10) 800
- 27. Goodman LA. Snowball Sampling. Ann Math Stat 1961;32(1):148–70.
- Dhanani JA, Barnett AG, Lipman J, Reade MC. Strategies to reduce inappropriate laboratory blood test orders in intensive care are effective and safe: a before-and-after quality improvement study. Anaesth Intensive Care. 2018;46(3):313–20.
- Miyakis S, Karamanof G, Liontos M, Mountokalakis TD. Factors contributing to inappropriate ordering of tests in an academic medical department and the effect of an educational feedback strategy. Postgrad Med J 2006;82(974):823–9. https://doi.org/10.1136/pgmj.2006.049551
- Stuebing EA, Miner TJ. Surgical vampires and rising health care expenditure: reducing the cost of daily phlebotomy. Arch Surg (Chicago, Ill.: 1960). 2011;146(5):524–7. https://doi.org/10.1001/archsurg.2011. 103
- Corson AH, Fan VS, White T, Sullivan SD, Asakura K, Myint M, et al. A multifaceted hospitalist quality improvement intervention: Decreased frequency of common labs. J Hosp Med. 2015;10(6):390–5. https://doi. org/10.1002/jhm.2354

- Gupta SS, Voleti R, Nyemba V, Demir S, Lamikanra O, Musemwa N, et al. Results of a Quality Improvement Project Aimed at Eliminating Healthcare Waste by Changing Medical Resident Test Ordering Behavior. J Clin Med Res. 2017;9(12):965–9. https://doi.org/10.14740/ jocmr3210w
- Konger RL, Ndekwe P, Jones G, Schmidt RP, Trey M, Baty EJ, et al. Reduction in Unnecessary Clinical Laboratory Testing Through Utilization Management at a US Government Veterans Affairs Hospital. Am J Clin Pathol. 2016;145(3):355–64. https://doi.org/10.1093/ajcp/aqv092
- Melendez-Rosado J, Thompson KM, Cowdell JC, Sanchez Alvarez C, Ung RL, Villanueva A, et al. Reducing unnecessary testing: an intervention to improve resident ordering practices. Postgrad Med J 2017;93(1102):476–9. https://doi.org/10.1136/postgradmedj-2016-134513
- Rudolf JW, Dighe AS, Coley CM, Kamis IK, Wertheim BM, Wright DE, et al. Analysis of Daily Laboratory Orders at a Large Urban Academic Center: A Multifaceted Approach to Changing Test Ordering Patterns. Am J Clin Pathol. 2017;148(2):128–35. https://doi.org/10.1093/ajcp/ aqx054
- Poonam S, Wachter A, Ming D, Cohen L, Noppon S. Physician Spending Habits During Residency Training Can Persist for Years. In: The Hospitalist. 2015. https://www.the-hospitalist.org/hospitalist/article/122555/physician-spending-habits-during-residency-training-canpersist-years.

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

APPENDIX

Table 4 Individual Contributions of the Top 15 Contributors to Laboratory Test Expenditure on Medical Units from the Period of 2015–2018 in Four Adult Tertiary Care Hospitals in Western Canada

Laboratory test	% contribution to total expenditure on laboratory testing
Complete blood count and differential	15.7
Electrolytes (sodium/potassium/ chloride/bicarbonate)	9.2
Creatinine and urea	8.5
Extended electrolytes (calcium/ magnesium/phosphate)	6.2
Coagulation studies (PT INR/ PTT)	5.7
Liver studies (ALT/total and direct bilirubin/AST/ALP/GGT)	4.9
Blood gas arterial	3.2
Respiratory infection panel (viral)	3.2
MRSA swab	2.9
Blood culture	2.8
Anti-GBM (GBM, ANCA, MPO, PR3, ANA)	2.1
Vancomycin level	1.3
Troponin	1.3
CK	1.2
Alpha-1 antitrypsin	1.1

Italicized tests are those that were included in the draft survey PT INR prothrombin time international normalized ratio, PTT partial thromboplastin time, ALT alanine aminotransferase, AST aspartate aminotransferase, ALP alkaline phosphatase, GGT gamma-glutamyltransferase, MRSA methicillin-resistant Staphylococcus aureus, GBM glomerular basement membrane, ANCA antineutrophil cytoplasmic antibodies, MPO myeloperoxidase, PR3 proteinase 3, ANA antinuclear antibody, CK creatine kinase

Table 5 Survey Results of Round 1; Number (%) of 36 Members Who Voted in Each Scenario

	Scenarios per laboratory test	s per laboratory test Number of experts (%) who voted for each frequency range										
Compl	ete blood count	Q2-	Q6-	BID	Daily	Q2-	Weekly	Once for	Not	Total		
1^{a}	General surveillance for a stable in-patient	4 h 0 (0)	8 [°] h 0 (0)	0 (0)	0 (0)	3 days 4 (11)	12 (34) ^b	diagnosis 10 (29) ^b	indicated 9 (26) ^b	35		
2	Monitoring an actively bleeding patient requiring hemodynamic support	15 (44) ^b	18 (53) ^b	1 (3)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	34		
3 ^a	Monitoring an actively bleeding patient not requiring hemodynamic support	1 (3)	9 (26) ^b	19 (54) ^b	6 (17)	0 (0)	0 (0)	0 (0)	0 (0)	35		
4 ^a	Monitoring new anemia (hemoglobin < 70 g/L)—no active bleeding	0 (0)	$\begin{pmatrix} 20 \\ 0 \\ 0 \end{pmatrix}$	0(0)	27 (75) ^b	5 (14) ^b	2 (6)	2 (6)	0 (0)	36		
5 ^a	Monitoring new anemia (hemoglobin \geq 70 g/L)—no active bleeding	0 (0)	0 (0)	0 (0)	(73) 16 $(44)^{b}$	16 (44) ^b	1 (3)	2 (6)	1 (3)	36		
6 ^a	Monitoring chronic asymptomatic anemia (hemoglobin 70–120 g/L)	0 (0)	0 (0)	0 (0)	0(0)	(44) 7 (19) ^b	14 (39) ^b	9 (25) ^b	6 (17)	36		
7 ^a	Monitoring in patient with known inflammatory state (sepsis, rheumatological	0 (0)	0 (0)	0 (0)	11 (31) ^b	16 (44) ^b	$(3)^{b}$ $(8)^{b}$	3 (8)	3 (8)	36		
8 ^a	flare-up) Monitoring in patient with leukocytosis not	0 (0)	0 (0)	0 (0)	24 (67) ^b	9 (25) ^b	0 (0)	2 (6)	1 (3)	36		
9	yet diagnosed Monitoring new thrombocytopenia (related at 50×10^{9} (vL)	0 (0)	0 (0)	1 (3)	(67) 33 $(92)^{b}$	2 (6)	0 (0)	0 (0)	0 (0)	36		
10	(platelets $< 50 \times 10^9/\mu$ L) Monitoring new thrombocytopenia	0 (0)	0 (0)	0 (0)	(92) 19 (53) ^b	15 (42) ^b	1 (3)	1 (3)	0 (0)	36		
11	(platelets $50-150 \times 10^{9}/\mu$ L) Monitoring chronic asymptomatic thrombocytopenia (platelets $< 50 \times 10^{9}/\mu$ L)	0 (0)	0 (0)	0 (0)	$(53)^{6}$ 5 $(14)^{b}$	(42) ^b 16 (44) ^b	10 (28) ^b	3 (8)	2 (6)	36		
12	Monitoring chronic asymptomatic thrombocytopenia (platelets $50-150 \times 10^9$ /	0 (0)	0 (0)	0 (0)	$\begin{pmatrix} 14 \\ 0 \end{pmatrix}$	$(44)^{b}$ 10 $(28)^{b}$	$(28)^{4}$ 16 $(44)^{6}$	7 (19) ^b	3 (8)	36		
13	μL) Monitoring on treatment associated with CBC abnormalities (heparin, antibiotics, etc.)	0 (0)	0 (0)	0 (0)	14 (40) ^b	13 (37) ^b	6 (17) ^b	1 (3)	1 (3)	35		
Electro	lytes						h	h in th	h			
14 ^a	General surveillance for an in-patient	0 (0)	0 (0)	0 (0)	2 (6)	10 (28) ^b	7 (19) ^b	9 (25) ^b	8 (22) ^b	36		
15	Monitoring in DKA being treated with IV insulin infusion	29 (81) ^b	7 (19)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	36		
16	Monitoring on treatment associated with electrolyte abnormalities (e.g., new diuresis)	Ò (Ó)	1 (3)	1 (3)	30 (83) ^b	4 (11)	0 (0)	0 (0)	0 (0)	36		
17	Monitoring acute severe hyponatremia (< 120 mmol/L)	19 (53) ^b	14 (39) ^b	3 (8)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	36		
18 ^a	Monitoring acute hyponatremia (120– 134 mmol/L)	1 (3)	9 (25) ^b	12 (33) ^b	14 (39) ^b	0 (0)	0 (0)	0 (0)	0 (0)	36		
19	Monitoring severe chronic hyponatremia (< 120 mmol/L)	4 (11)	$(3(8)^{b})^{b}$	9 (25) ^b	$(42)^{b}$	4 (11) ^b	1 (3)	0 (0)	0 (0)	36		
20	Monitoring chronic hyponatremia (120– 134 mmol/L)		1 (3)	3 (9)	$12^{(34)^{b}}$	13 (37) ^b	3 (9) ^b	1 (3)	2 (6)	35		
21	Monitoring hypernatremia requiring hypotonic IV fluids	5 (14)	17 (47) ^b	7 (19) ^b	7 (19) ^b	0 (0)	0 (0)	0 (0)	0 (0)	36		
22	Monitoring hypernatremia not requiring hypotonic IV fluids	$\begin{pmatrix} 14 \\ 0 \\ 0 \end{pmatrix}$	$\begin{pmatrix} (47) \\ 0 \\ (0) \end{pmatrix}$	$(1)^{b}$	$(15)^{28}$ $(78)^{b}$	3 (8)	0 (0)	0 (0)	1 (3)	36		
23	Initial monitoring of acute hyperkalemia requiring shifting	22 (61) ^b	13 (36) ^b	1 (3)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	36		
24	Initial monitoring of mild/moderate acute hyperkalemia not requiring shifting	$\begin{pmatrix} 01 \\ 0 \\ 0 \end{pmatrix}$	3 (8)	21 (58) ^b	12 (33) ^b	0 (0)	0 (0)	0 (0)	0 (0)	36		
25 ^a	Monitoring stable hyperkalemia (5.5-	0 (0)	1 (3)	3 (8)	(33) 27 (75) ^b	4 (11) ^b	1 (3)	0 (0)	0 (0)	36		
26	6.5 mmol/L) Monitoring new hypokalemia requiring IV/ PO replacement	0 (0)	3 (8)	16 (44) ^b	(75) ^a 17 (47) ^b	0 (0)	0 (0)	0 (0)	0 (0)	36		
27	Monitoring new hypokalemia not requiring potassium replacement	0 (0)	0 (0)	(44) 1 (3)	(47) 24 $(69)^{b}$	9 (26) ^b	0 (0)	0 (0)	1 (3)	35		
Creatir 28 ^a	General surveillance for an inpatient	0 (0)	0 (0)	0 (0)	1 (3)	6 (17)	11	12 (33) ^b	6 (17) ^b	36		
29	Monitoring in patient with sepsis	0 (0)	0 (0)	2 (6)	34	0 (0)	$(31)^{b}$ 0 (0)	0 (0)	0 (0)	36		
30	Initial monitoring with use of new nephrotoxic agents/therapies (contrast, diu- retics, antibiotics, large volume paracente- sic)	0 (0)	0 (0)	0 (0)	$(94)^{b}$ 34 $(94)^{b}$	2 (6)	0 (0)	0 (0)	0 (0)	36		
31	sis) Monitoring in patient with worsening AKI	0 (0)	0 (0)	4	32 (89) ^b	0 (0)	0 (0)	0 (0)	0 (0)	36		
32	Monitoring in patient with improving AKI	0 (0)	0 (0)	(11) 0 (0)	24	$12^{(22)^{b}}$	0 (0)	0 (0)	0 (0)	36		
33 ^a	Monitoring in patient on chronic dialysis	0 (0)	0 (0)	0 (0)	$(67)^{b}$ 1 (3)	$(33)^{b}$ 8 $(22)^{b}$	8 (22) ^b	3 (8) ^b	16 (44) ^b	36		

(continued on next page)

	Table 5. (continued)									
	Scenarios per laboratory test	narios per laboratory test Number of experts (%) who voted for each frequency range								
Urea										
34	Monitoring in stable chronic kidney disease	0 (0)	0 (0)	0 (0)	0 (0)	10 (29) ^b	15 (43) ^b	5 (14) ^b	5 (14)	35
35 ^a	General surveillance for an inpatient	0 (0)	0 (0)	0 (0)	0 (0)	2 (6)	3 (9)	$5(14)^{b}$	$25(71)^{b}$	35
36	Diagnosis of gastrointestinal bleed	0 (0)	0 (0)	0 (0)	3 (9)	1 (3)	0 (0)	$14(40)^{b}$	$17 (49)^{b}$	35 35
37 ^a	Diagnosis of uremic encephalopathy	0 (0)	0 (0)	0 (0)	7 (20)	$3(9)^{b}$	$0(0)^{b}$	$12(34)^{b}$	13 (37) ^b	35
	ational normalized ratio (INR)									
38	General surveillance for an inpatient	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	4 (11)	11 (31)	20 (57)	35
						1	1	b	b	
39	Diagnosis of a bleeding diathesis	0 (0)	1 (3)	0 (0)	14	$3(9)^{b}$	$1(3)^{b}$	16 (46) ^b	0 (0)	35
	(congenital/acquired, e.g., disseminated				$(40)^{b}$					
40	intravascular coagulation, liver disease)	0 (0)	0 (0)	0 (0)	25	10	0 (0)	0 (0)	0 (0)	25
40	Monitoring in patient on warfarin (new	0 (0)	0 (0)	0 (0)	25	10 (29) ^b	0 (0)	0 (0)	0 (0)	35
41	start/new dose/concurrent antibiotics	0 (0)	0 (0)	0 (0)	$(71)^{b}$	(29) ² 13	16	2 (0)	1 (2)	35
41	Monitoring in patient on stable dose	0 (0)	0 (0)	0 (0)	2 (6)	$(37)^{b}$	16 (46) ^b	3 (9)	1 (3)	33
42	warfarin with therapeutic INRs	0 (0)	0 (0)	0 (0)	4 (12)			20 (00)b	0 (0)	34
42	Prior to invasive procedures where INR check is recommended	0 (0)	0 (0)	0 (0)	4 (12)	0 (0)	0 (0)	30 (88) ^b	0 (0)	34
Partial	thromboplastin time (PTT)	Per loc	al heparii	1	Daily	Q2-	Weekly	Once for	Not	Total
1 artiar	unomoopiasun time (111)		n protoco		Daily	3 days	WCCKIY	diagnosis	indicated	10141
43	General surveillance for an in-patient	0(0)	ii piotoco	1	0 (0)	0 (0)	0 (0)	$8 (23)^{b}$	$27 (77)^{b}$	35
44	Diagnosis of a bleeding diathesis	0(0)			4 (11)	1(3)	1(3)	$28(80)^{b}$	1 (3)	35
	(congenital or acquired)	0 (0)			. (11)	1 (0)	1 (3)	20 (00)	- (0)	20
45	Monitoring in patient on intravenous	33 (97) ^b		0 (0)	0 (0)	0 (0)	0 (0)	1 (3)	34
10	heparin infusion	(> /	/		- (0)	- (5)	- (0)	- (-)	- (-)	

Q every, BID twice daily, AKI acute kidney injury ^aScenarios that were modified for round 2 ^bFrequency choices that in combination represent 80% of votes

Table 6 Survey	Results of Round	2; Number (%) of 36 Members	Who	Voted in Each Scenar	io

	Scenarios per Laboratory Tests Number of experts (%) who voted for each frequency range									
Complete blood count			Q6– 8 h	BID	Daily × 3 then	Q2– 3 days	Weekly	None unless diagnostic suspicion	Total	
1a	General surveillance for a stable inpatient awaiting rehabilitation/transition/placement	N/A	N/A	N/A	reassess 0 (0)	0 (0)	2 (6)	$34 (94)^{a}$	36	
1b	General surveillance for a stable inpatient (admitted for > 3 days) with resolving medical issues	N/A	N/A	N/A	0 (0)	13 (36) ^a	15 (42) ^a	8 (22) ^a	36	
3	A slowly bleeding patient NOT requiring crystalloids and/or blood products	0 (0)	1 (3)	13(36) ^a	22 (61) ^a	N/A	N/A	N/A	36	
4	New diagnosis of anemia in newly admitted patient without overt bleeding (hemoglobin < 70 g/L)	N/A	N/A	N/A	34 (94) ^a	2 (6)	0 (0)	0 (0)	36	
5	New diagnosis of anemia in newly admitted patient without overt bleeding (hemoglobin > 70 g/L)	N/A	N/A	N/A	15 (42) ^a	21 (58) ^a	0 (0)	0 (0)	36	
6a	New admission with chronic asymptomatic anemia (hemoglobin 70–120 g/L)	N/A	N/A	N/A	2 (6)	$\frac{18}{(51)^a}$	9 (26) ^a	6 (17) ^a	35	
6b	Stable inpatient (admitted > 3 days) with chronic asymptomatic anemia (hemoglobin 70-120 g/L)	N/A	N/A	N/A	0 (0)	5 (14)	17 (47) ^a	14 (39) ^a	36	
7	New admission with acute inflammatory state	N/A	N/A	N/A	25 (69) ^a	10 (28) ^a	0 (0)	1 (3)	36	
8 Electro	Patient being worked up for new leukocytosis	N/A	N/A	N/A	34 (94) ^a	2 (6)	0 (0)	0 (0)	36	
14a	Stable inpatient awaiting rehabilitation/ transition/placement	N/A	N/A	N/A	0 (0)	0 (0)	6 (17)	30 (83) ^a	36	
14b	Stable inpatient (admitted > 3 days) with resolving medical issues	N/A	N/A	N/A	2 (6)	17 (47) ^a	11 (31) ^a	6 (17) ^a	36	
Creatin 28a	Stable inpatient awaiting rehabilitation/ transition/placement	N/A	N/A	N/A	0 (0)	0 (0)	3 (9)	32 (91) ^a	35	
28b	Stable inpatient (admitted > 3 days) with resolving medical issues	N/A	N/A	N/A	1 (3)	19 (54) ^a	9 (26) ^a	6 (17)	35	
33	Patient on chronic hemodialysis with no residual renal function	N/A	N/A	N/A	0 (0)	2(7)	3 (10)	26 (84) ^a	31	
Electro		120– 122 m	mol/L	123-125 mmol/L		126–128 mmol/L		129– 131 mmol/L		
18a	For a patient with acute hyponatremia (120– 134 mmol/L), above what sodium level would you be comfortable with only daily testing (not more frequently) of sodium?	0 (0)	IIIOV L	8 (23)		22 (63)		5 (14)	35	
Electro 25		Yes, I 36 (10				No, I dis 0 (0)	sagree		36	
Urea 35	Urea testing is NOT indicated for most stable	33 (94	l) ^a			2 (6)			35	
37	inpatients without specific diagnostic suspicion Urea level is NOT indicated in the diagnosis and/or follow up of uremic encephalopathy?	21 (60))			14 (40)			35	

Q every, BID twice daily, N/A frequency option was not available in round 2 of survey ^aFrequency selections that together represent 80% of votes