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BACKGROUND: Numerous interventions are available to
boostmedication adherence, but the targeting of these inter-
ventions often relies on crude measures of poor adherence.
Group-based trajectorymodels identify individualswith sim-
ilar longitudinal prescription filling patterns. Identifying dis-
tinct adherence trajectoriesmay bemore useful for targeting
interventions, although the association between adherence
trajectories and clinical outcomes is unknown.
OBJECTIVE: To examine the association between adher-
ence trajectories for oral hypoglycemics andsubsequenthos-
pitalizations among diabetes patients.
DESIGN: Retrospective cohort study.
PATIENTS: A total of 16,256 Pennsylvania Medicaid enroll-
ees, non-dually eligible for Medicare, initiating oral hypogly-
cemics between 2007 and 2009.
MAINMEASURES:Weused group-based trajectorymodels
to identify trajectories of oralhypoglycemics in the12months
post-treatment initiation, using monthly proportion of days
covered (PDC) as the adherence measure. Multivariable Cox
proportional hazard models were used to examine the asso-
ciation between trajectories and time to first diabetes-related
hospitalization/emergency department (ED) visits in the fol-
lowing year. We used the C-index to compare prediction
performance between adherence trajectories and dichoto-
mous cutpoints (annual PDC <80 vs. ≥80 %).
RESULTS: The mean annual PDC was 0.58 (SD 0.32).
Seven trajectories were identified: perfect adherers (9 % of
the cohort), nearly perfect adherers (31.4 %), moderate adh-
erers (21.0 %), low adherers (11.0 %), late discontinuers
(6.8 %), early discontinuers (9.7 %), and non-adherers with
only one fill (11.1%). Compared to perfect adherers, trajecto-
ries ofmoderateadherers (HR=1.48,95%CI1.25,1.75), low
adherers (HR = 1.51, 95 % CI 1.25, 1.83), and non-adherers
with only one fill (HR = 1.35, 95%CI 1.09, 1.67) had greater

risk of diabetes-related hospitalizations/ED visits. Predictive
accuracy was improved using trajectories compared to di-
chotomized cutpoints (C-index = 0.714 vs. 0.652).
CONCLUSIONS: Oral hypoglycemic treatment trajectories
were highly variable in this large Medicaid cohort. Low and
moderate adherers and those filling only one prescription
hadamodestlyhigher riskofhospitalizations/EDvisits com-
pared to perfect adherers. Trajectorymodelsmaybe valuable
in identifying specific non-adherence patterns for targeting
interventions.
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INTRODUCTION

Diabetes affects over 29 million Americans and poses an
enormous economic burden, accounting for $176 billion
in direct costs in 2012.1 High diabetes-related costs are
due, in part, to the development of complications, hospi-
talizations, premature disability, and mortality as a conse-
quence of suboptimal medication adherence.2,3 Numerous
interventions for boosting medication adherence are avail-
able for patients with diabetes, but targeting of these
interventions often relies on crude measures of poor ad-
herence that assume all patients having identical non-
adherence patterns over time. In order to design targeted
and tailored interventions to improve adherence, methods
are needed to identify distinct non-adherence patterns,
since medication use is a dynamic behavior that may
change over time.4

Adherence is routinely measured based on prescription
refills using administrative claims data. These claims-based
measures are used in health plan quality ratings, in identifying
non-adherent patients for targeted interventions by health
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systems, in research investigating the impact of medication
non-adherence on clinical outcomes3,5–9 and in predicting
health care costs and utilization.10–12 However, most studies,
and all current quality reporting measures, use a single adher-
ence measure to represent average medication refills in a year
(e.g., proportion of days covered [PDC] above a predefined
threshold). The use of a single measure of adherence may
mask substantial underlying heterogeneity in refill patterns
that could have important implications for intervention effec-
tiveness and, ultimately, patient outcomes and healthcare
costs. For example, an average annual adherence measure
could assign the same level of adherence to a patient who
was partially adherent for 1 year and a patient who was fully
adherent for 6 months and then discontinued treatment.
Group-based trajectory models identify patient subgroups

with similar patterns of medication refills and summarize the
trajectory of average adherence for each group over time in an
easily understandable graphical depiction.13–16 In prior work,
trajectory models have been applied to statin adherence, dem-
onstrating variability in adherence patterns over time and an
association with cardiovascular events.17 However, no studies
have examined the association between adherence trajectories
for oral hypoglycemics and clinical outcomes in diabetes, or
compared their predictive performance to traditional adher-
ence metrics. In this study, we used group-based trajectory
models to identify distinct patterns of oral hypoglycemic refills
over time in a large state Medicaid program.13–16 We exam-
ined the association between these trajectories, as opposed to
traditional dichotomous adherence measures (i.e., annual PDC
≥80 vs. <80 %), and subsequent diabetes-related and all-cause
hospitalizations or emergency department (ED) visits. Finally,
we compared prediction performance using adherence trajec-
tories versus dichotomous measures.

METHODS

Data Sources

This study was a retrospective cohort analysis of Pennsylvania
Medicaid administrative claims data for all fee-for-service and
managed care enrollees from 2007 to 2011. Enrollment
exceeded 2 million annually. The datasets include enrollment
files, Medicaid claims, and encounter data for outpatient,
inpatient, long-term care, professional services, and prescrip-
tion drug claims. Prescription data contain national drug
codes, date of prescription fill, quantity dispensed, days of
supply, and prescriber information. This study was deemed
exempt human subjects research by the University of Pitts-
burgh Institutional Review Board.

Study Design and Cohort

We limited our analyses to enrollees aged 18–64 years who
were not dually eligible for Medicare, because we were unable
to observe Part D prescriptions. Type 2 diabetes patients were

identified based on the presence of any International Classi-
fication of Diseases, Ninth Revision, Clinical Modification
(ICD-9) codes 250.0x through 250.9x (where x = 0 or 2) on
outpatient, inpatient, or professional claims, and/or having any
oral hypoglycemic claims.18 An index date was defined as the
date of a patient’s first prescription fill for oral hypoglycemics
between July 1, 2007, and December 31, 2009, with no anti-
diabetes prescriptions in the prior 6 months (i.e., new users).
We followed each patient’s refill claims for 12 months follow-
ing the index date. Patients were required to have ≥18 months
of continuous enrollment (i.e., 6 months pre-index date as
baseline period and 1 year post) to obtain information on
predictors and allow for complete follow-up for adherence
measurement. We excluded patients who had 1) a diagnosis
of gestational diabetes, 2) metformin used for polycystic ovary
syndrome only, 3) insulin, pramlintide, or exenatide prescrip-
tions only, or 4) prolonged institutionalization (i.e., cumulative
nursing home or inpatient stay ≥90 days) during the index
year, because medications were likely administered by nurses
or caregivers (Fig. 1).

Outcome Measures

Our primary outcome variable was time to first diabetes-
related hospitalizations/ED visit during the 12 months after
the first year of treatment. Diabetes-related hospitalizations
included inpatient admissions for diabetes, hyperglycemia,
hypoglycemia, electrolyte imbalance, diabetes retinopathy,
nephropathy and neuropathy, or peripheral circulatory disor-
der, and were identified by a qualifying ICD-9 code as the
primary discharge diagnosis or current procedural terminology
(CPT) codes in any position (see online appendix,
eTable 1).19–25 Our secondary outcome was time to first all-
cause hospitalization/ED visit during the 12 months after the
first year of treatment, given that medication non-adherence
may manifest as numerous different adverse outcomes (e.g.,
falls) and, therefore, increase the risk of all-cause
hospitalizations/ED visits.3,26–29

Exposures: Adherence to Oral Hypoglycemics

We constructed two adherence measures in the first year of
oral hypoglycemic treatment: 1) a traditional measure using
average annual PDC,30–32, and 2) the trajectory of adherence
defined by monthly PDC with oral hypoglycemics over the
first year. Group-based trajectory models account for both the
timing and extent of non-adherence and can therefore identify
more heterogeneity in non-adherence behavior than traditional
single measures.
Adherence Measure. Based on dispensing date and days
supplied, we created a supply diary for each patient-day by
stringing together consecutive fills of oral hypoglycemics.33

First, we calculated an interval-based PDC with oral hypogly-
cemics over a 1-year period starting from the index oral
hypoglycemic prescription.20,30 For those with concurrent
prescriptions of multiple oral hypoglycemic classes, we
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calculated an average of the PDC across oral hypoglycemic
classes and then generated a group mean of these averages
over a 1-year period.30 Second, we calculated monthly PDC
with ≥1 oral hypoglycemic medication (i.e., the number of
days covered with oral hypoglycemic/30 days), given that
95 % of oral hypoglycemic claims were 30-day prescrip-
tions.30 We considered all oral hypoglycemic medications as
interchangeable when calculating monthly PDC.30 When a
dispensing occurred before the previous dispensing should
have run out, utilization of the new oral hypoglycemic fill
was assumed to begin the day after the end of the previous
dispensing. We adjusted PDC for inpatient stays, as recom-
mended by Medicare.20

Group-Based Trajectory Models. Group-based trajectory
models were used to identify and characterize patient
subgroups following differential trajectories of adherence
over time.34,35 We first transformed the monthly PDC with
oral hypoglycemics using the arcsine transformation, and
modeled the monthly PDC using a censored normal
distribution; the time variable was months since initiating
treatment (1–12). The purpose of the data transformation
was to meet the assumption for the finite mixture trajectory
model with a censored normal distribution for each
trajectory.34,35 We used the most flexible functional form of
time, using up to a fifth-order polynomial to allow the trajec-
tories to emerge from the data. The output of trajectory models

Figure 1 Sample Size Flow Chart. Abbreviations: OHA: oral hyperglycemic agents; T1DM: type 1 diabetes mellitus; T2DM: type 2 diabetes
mellitus. Note: We included two other exclusion criteria but they were not listed in the chart because n= 0: (1) women who used metformin
only, had a diagnosis for polycystic ovary syndrome, but no diagnosis for diabetes; (2) hyperglycemia not otherwise specified (ICD-9 790.6

without any diabetes code).

1054 Lo-Ciganic et al.: Adherence Trajectories and Hospitalization Risk JGIM



includes estimated group probabilities and trajectory curves of
PDC.36,37 The final model was selected based on 1) Bayesian
information criterion (BIC), wherein the largest value indi-
cates the best-fitting model, and 2) application of Nagin’s
criteria to assess final model adequacy.36

Covariates

Our covariates, including sociodemographic characteristics,
measures of service use, health status, and diabetes
treatment/care-related factors, were based on prior studies of
adherence.10,38–46 We focused on factors measured on or
before initiation of oral hypoglycemics in order to avoid
including as predictors changes in patient health status that
may themselves be consequences of the use (or non-use) of
oral hypoglycemics. Sociodemographic factors included age,
gender, race/ethnicity (white, black, Hispanic, or other), type
of health plan (fee-for-service or managed care plan), and
Medicaid eligibility category (General Assistance, Supple-
mental Security Income, Temporary Assistance for Needy
Families [TANF], or Waiver). Measures of service use (mea-
sured in the 6 months before the index prescription) included
numbers of outpatient visits, ED visits, and hospitalizations,
the number of prescribers, average monthly number of pre-
scriptions, and number of pharmacies.43 Health status factors
included patient comorbidity, defined by the Elixhauser
comorbidity index (excluding diabetes, range: 0–29)47,48,
and diabetes severity as defined by the diabetes complications
severity index (DCSI, range 0–13) during the baseline peri-
od.49,50 Finally, we adjusted for diabetes treatment/care-
related factors in the year after treatment initiation (i.e., index
year). We included the number of anti-diabetic medication
classes and duration of insulin therapy during the index year.
We also included variables for having HbA1C tests, eye
exams, nephropathy screenings, or LDL-C tests based on the
procedure codes to adjust for general adherence behaviors (see
online appendix, eTable 2).51–53

Statistical Analysis

We compared characteristics across identified trajectories with
appropriate statistical tests (e.g., chi-square tests). We used
multivariable Cox proportional hazards models to assess the
association between oral hypoglycemic trajectories and time
to first hospitalization/ED visit within the 12 months after the
first-year treatment. Enrollees who discontinued Medicaid or
died were censored events. Statistical significance was deter-
mined using p<0.05.
To ensure robustness of the results, we conducted two

additional analyses. First, given that medication adherence
may have more a direct influence on short-term outcomes,
we examined the association between trajectories and risk of
outcomes during the 3 months instead of 12 months after the
first year of treatment. The results from this analysis were
qualitatively similar to our primary analysis; therefore, we
present only the main results. Second, we conducted a post

hoc analysis comparing the prediction performance of the
models using adherence trajectories versus dichotomized cut-
points (PDC <80 % vs. ≥80 %). We used the Harrell concor-
dance index (C-index) to assess prediction performance.54–56

The C-index measures the ability of a model to discriminate
between patients who did and did not have events (range 0.5
[completely non-predictive] to 1 [perfectly predictive]). All
analyses were performed using Stata® 13 (StataCorp LP, Col-
lege Station, TX) and the TRAJ procedure for trajectory
models (www.andrew.cmu.edu/user/bjones).13,14,34

RESULTS

Study Cohort Characteristics

Among 16,256 patients initiating oral hypoglycemics (mean
age 45.5 years; 68 % women; Table 1), the average number of
monthly prescriptions in the 6 months prior to treatment
initiation was 4.8. Overall, 14.6 % had ≥1 insulin prescription
in the first year of treatment. The mean annual PDC was 0.58
(SD 0.32), and 36.4 % had PDC ≥80 % in the 12 months after
treatment initiation.

Adherence Trajectories

The overall PDC declined from 0.98 (0.10) in the first month
to 0.51 (0.43) in the 12th month (see online appendix, eFigure
1). In the trajectory analysis, a seven-group model had the best
test characteristics based on BIC (-130792.41) and Nagin’s
criteria (average posterior probability ≥0.7, narrow CIs for
estimated probability, and values of the odds correct classifi-
cation >5 for all groups). In Figure 2, these seven trajectories
are characterized and labeled according to the timing of dis-
continuation of treatment and the level of PDC (perfect:
100 %, nearly perfect: 80–100 %, moderate: 50–<80 %, low:
<50 %). Only 9.0 % of the cohort refilled oral hypoglycemics
persistently over the entire year (perfect adherers), and 31.4 %
were nearly perfect adherers. Two trajectories refilled oral
hypoglycemics consistently at two different PDC levels over
time: moderate (21.0 %) and low (11.0 %) adherers. Two
trajectories were characterized by the timing of discontinua-
tion of treatment: 9.7 % discontinued before 6 months (early
discontinuers) and 6.8 % had moderate adherence before
8 months and then discontinued treatment later during the year
(late discontinuers). One-tenth (11.1 %) were non-adherers
who refilled only their first oral hypoglycemic prescription.
Table 1 compares patients by adherence trajectory group.

Compared to perfect adherers, enrollees who discontinued oral
hypoglycemics were younger (39.4–48.8 vs. 49.7 years), non-
white (43.3–57.3 % vs. 37.3 %), and eligible for Medicaid
through TANF (15.4–39.1 % vs. 12.3 %). The groups discon-
tinuing or poorly adhering to oral hypoglycemics had more
frequent ED visits (1.0–1.7 vs. 0.9) and higher use of multiple
pharmacies (34.7–45.6% vs. 30.0%) at baseline. Patients who
discontinued or were poor adherers used fewer anti-diabetes
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medication classes (1.2–1.7 vs. 2.0)and had fewer diabetes-
related tests (HbA1C tests: 37.2–82.1 % vs. 86.6 %; nephrop-
athy tests: 14.5–48.5 % vs. 50.9 %; LDL-C tests: 51.4–75.7 %
vs. 79.7 %). These differences were all statistically significant
(p<0.001).

Hospitalizations and ED Visits

Overall, 15.9 % of the sample had diabetes-related
hospitalizations/ED visits (median months to event = 10.6),
and 55.7 % had all-cause hospitalizations/ED visits (median
months to event = 3.5). Compared to perfect adherers, patients
in the trajectories of moderate adherers (hazard ratio [HR] =
1.48, 95 % CI 1.25, 1.75), low adherers (HR = 1.51, 95 % CI
1.25, 1.83), and non-adherers with only one oral hypoglyce-
mic fill (HR = 1.35, 95 % CI 1.09, 1.67) had a greater risk of
diabetes-related hospitalizations/ED visits in the subsequent
year (Table 2). Other factors associated with an increased risk
of diabetes-related hospitalizations/ED visits in the following
year included higher numbers of ED visits (HR = 1.04, 95 %
CI 1.03, 1.05), hospitalizations (HR = 1.36, 95 % CI 1.19,
1.54), and total monthly prescriptions (HR = 1.03, 95 % CI
1.02, 1.05) in the 6 months prior to treatment initiation (see
online appendix, eTable 3). Patients who received multiple
classes of anti-diabetes medications (HR = 1.16, 95%CI 1.08,
1.23) and had insulin fills ≥90 days (HR = 1.29, 95 % CI 1.11,
1.50) during the index year also had an increased risk of
diabetes-related hospitalizations/ED visits (see online
appendix, eTable 3).
The performance for predicting diabetes-related

hospitalizations/ED visits was improved in the multivariate
Cox proportional models with trajectory groups (C-index =
0.714, 95 % CI 0.682, 0.745) compared to dichotomized

groups (C-index = 0.652, 95 % CI 0.614, 0.694). Similar
associations were found for all-cause hospitalizations/ED vis-
its (Table 2) and for diabetes-related and all-cause hospital-
izations (see online appendix, eTable 4).

DISCUSSION

We identified seven adherence trajectories over the first year of
oral hypoglycemic treatment. This high variability in treat-
ment underscores the need to understand dynamic patterns of
adherence that may provide important information for target-
ing interventions, over and above cross-sectional measures of
adherence (e.g., average PDC). Our study yielded three addi-
tional important findings. First, adherence to oral hypoglyce-
mics remains dramatically low. Almost 60 % of new users of
oral hypoglycemics discontinued medication at some point in
the first year, with most patterns showing a decrease over time
or consistent poor adherence. Second, not all of the non-
adherence trajectories were associated with significant risk of
diabetes-related hospitalizations/ED visits. Patients maintain-
ing low (PDC ~20–40 %) or moderate adherence (PDC
~60 %) over the first year and patients filling only one pre-
scription had a 35–51 % greater risk of diabetes-related
hospitalizations/ED visits than perfect adherers. Third, includ-
ing adherence trajectories in the multivariable model showed
meaningful improvement in prediction (>0.025) for diabetes-
related hospitalizations/ED visits compared to using the tradi-
tional 80 % threshold.56

Group-based trajectory models are novel methods that are
increasingly applied for examining dynamic adherence pat-
terns.13–16 To our knowledge, our study provides some of the
first data supporting the predictive validity of adherence

Figure 2 Trajectories of First-Year Adherence to Oral Hypoglycemics. The numbers in parentheses in the legend represent proportions of each
trajectory group among all patients.
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trajectories with regard to clinical outcomes in diabetes. Con-
sistent with the findings from Franklin and colleagues,15,19 our
study showed that longitudinal non-adherence patterns were
highly variable, with improved prediction performance for
clinical outcomes. One of the challenges in applying trajectory
models to adherence is measuring concurrent adherence to
multiple related medications (e.g., metformin, glyburide); we
are aware of no prior trajectory analysis that has overcome this
challenge. Given this limitation in trajectory analysis, we
assumed all hypoglycemics to be interchangeable in our anal-
ysis, which may overestimate adherence.30 Methods are need-
ed for identifying simultaneous adherence trajectories in com-
plex treatment regimens.
In light of better predictive performance related to clinical

outcomes and an ability to capture changes in adherence,
trajectory models may be preferable to traditional cross-
sectional measures when designing and evaluating adherence
interventions. For example, it may be possible to observe non-
adherence patterns over a shorter period of time (e.g.,
6 months) and customize interventions based on trajectory
membership. Using single-value measures of adherence
obfuscates distinct non-adherence patterns over time.17 These
behavioral patterns may reflect levels of engagement in treat-
ment, side effects, or self-management style over time that
require different intervention content, timing, duration, and
intensity in order to be maximally effective.57 Using trajectory
models in concert with more frequent measurement of adher-
ence (e.g., monthly, quarterly) may help payers and clinicians
identify the appropriate timing of interventions to improve
adherence, better allocate resources to those with higher risk,
and ultimately improve disease management and outcomes.

Not all of the trajectories had a greater risk of
hospitalizations/ED visits compared to perfect adherers. For
example, this risk among early discontinuers, whose adher-
ence steadily dropped off during the first 6 months, was
similar to that of perfect adherers. Early discontinuers
appeared to have less severe diabetes and receive fewer
diabetes-related tests (e.g., lipid levels), raising the question
of whether these individuals have general non-adherence
behaviors, or whether perhaps their diabetes improved to the
point that medications were no longer needed. Regardless, the
differential risk across trajectories, and the improved predic-
tion of hospitalizations/ED visits when using trajectory
groups, highlights the potential for developing more accurate
predictions about who will need interventions at a given time
to prevent adverse outcomes, allowing for the efficient use of
scarce resources.
Several limitations should be considered when interpreting

these results. First, our study relied on administrative data that
lack clinical and socio-behavioral information (e.g., HbA1C
results) and information on reasons for treatment discontinu-
ation (e.g., physician decision). It is unknown whether and
how the dispensed drugs were actually used by the patients.
Patients who never filled their first prescription (i.e., primary
non-adherence) or who had other sources of prescription cov-
erage (e.g., safety net programs, free samples) were also not
captured in this analysis.44 Second, we required 1-year con-
tinuous enrollment to allow for complete follow-up for adher-
ence measures. If patients with intermittent enrollment in
Medicaid programs were more likely to be poor adherers, we
would underestimate the risk of clinical outcomes among
those in non-adherence trajectories. Third, we cannot rule

Table 2 Multivariable Cox Proportional Hazard Models of Adherence Trajectories of Oral Hypoglycemics and Risk of Hospitalizations/
Emergency Department (ED) Visits

Trajectory
group

No. in
each
group

Diabetes-related hospitalizations/ED visits All-cause hospitalizations/ED visits

% in the
trajectory
group

HR
(95 % CI)

P value % in the
trajectory
group

HR
(95 % CI)

P value

Perfect adherers 1461 14.4 Referent – 46.3 Referent –
Nearly perfect
adherers

5097 14.4 1.06 (0.90, 1.25) 0.48 51.1 1.17 (1.07, 1.28) <0.0001

Moderate adherers 3412 18.9 1.48 (1.25, 1.75) <0.0001 59.5 1.47 (1.34, 1.62) <0.0001
Low adherers 1796 19.5 1.51 (1.25, 1.83) <0.0001 64.1 1.59 (1.44, 1.77) <0.0001
Late discontinuers 1110 15.7 1.21 (0.98, 1.15) 0.08 57.5 1.34 (1.19, 1.51) <0.0001
Early
discontinuers

1570 13.6 1.10 (0.89, 1.36) 0.36 55.4 1.31 (1.17, 1.46) <0.0001

Non-adherers with
1 fill

1810 14.0 1.35 (1.09, 1.67) 0.006 59.9 1.60 (1.43, 1.79) <0.0001

C-index (95 % CI) 0.714 (0.682, 0.745) 0.781 (0.729, 0.828)
PDC ≥80 % 5912 13.9 Referent – 49.4 Referent –
PDC <80 % 10,344 17.0 1.38 (1.25, 1.51) <0.0001 59.3 1.29 (1.23, 1.36) <0.0001
C-index (95 % CI) 0.652 (0.614, 0.694) 0.769

(0.751, 0.786)

Separate multivariable Cox proportional hazard models were used to adjust for sociodemographic factors, health status, and diabetes treatment- and
care-related covariates. Final models included age, gender, race/ethnicity, type of health plan, type of Medicaid eligibility, number of outpatient visits,
number of emergency department visits, number of hospitalizations, number of prescribers, number of unique pharmacies, average number of monthly
prescriptions, Elixhauser comorbidity index, and diabetes complication severity index during the 6 months prior or as of the index date. We also
included the number of anti-diabetes medication classes, insulin use, and having diabetes-related tests in the 12 months after the index oral
hypoglycemic prescription
ED emergency department, HR hazard ratio, PDC proportion of days covered
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out unmeasured confounders (e.g., healthy user bias) in this
observational study.58 However, including variables for re-
ceiving recommended screenings (proxy measures of healthy
behavior) did not impact the results. Finally, we cannot rule
out the possibility that our sample includes pre-diabetes
patients receiving metformin alone or patients who had been
non-adherers and were reinitiating treatment. However, the
trajectory results and associated risk of hospitalizations/ED
visits were similar in two sensitivity analyses: 1) excluding
1022 patients who had metformin alone and no diabetes
diagnosis from our cohort; 2) applying a 12-month baseline
period to identify new users of oral hypoglycemics.59

CONCLUSIONS

In this large Medicaid cohort, we identified seven distinct
trajectories of oral hypoglycemic treatment, with variable
association with diabetes-related hospitalizations/ED visits.
The use of adherence trajectories instead of cross-sectional
measures improves the ability to predict diabetes-related
hospitalizations/ED visits from claims data. These trajectories
also demonstrate intuitive longitudinal changes in adherence
patterns over time that can be used to target and tailor inter-
ventions. Such interventions are desperately needed to im-
prove health outcomes in diabetes.
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