Skip to main content
Log in

Added value of 40 keV virtual monoenergetic images for diagnosing malignant pleural effusion on chest CT

  • Original Article
  • Published:
Japanese Journal of Radiology Aims and scope Submit manuscript

Abstract

Objective

This study aimed to evaluate the added value of 40 keV virtual mono-energetic images (VMIs) obtained from dual-layer detector CT (DLCT) for diagnosing malignant pleural effusion (MPE) in patients presenting with unilateral pleural effusion on chest CT.

Materials and methods

This retrospective study included 75 patients with unilateral pleural effusion who underwent contrast-enhanced chest CT scans using DLCT. Quantitative and qualitative assessments of the visibility of pleural thickening were conducted on both conventional 120 kVp images and 40 keV VMIs. Two independent radiologists reviewed chest CT scans with or without 40 keV VMIs to detect pleural nodules or nodular thickening for the diagnosis of MPE. Diagnostic performances were compared and independent predictors of MPE were identified through multivariate logistic regression analysis using CT and clinicopathologic findings.

Results

Pleural thickening associated with MPE demonstrated a higher contrast-to-noise ratio value and greater visual conspicuity in 40 keV VMIs compared to benign effusions (p < 0.05). For both readers, the use of 40 keV VMIs significantly improved (p < 0.05) the diagnostic performance in terms of sensitivity and area under the curve (AUC) for diagnosing MPE through the detection of pleural nodularity. Inter-observer agreements between the two readers were substantial for both 120 kVp images alone and the combined use of 40 keV VMIs. Initial cytology results and pleural nodularity at 40 keV were identified as independent predictors of MPE.

Conclusion

The use of 40 keV VMIs from DLCT can improve diagnostic performance of readers in detecting MPE among patients with unilateral pleural effusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Leung AN, Muller NL, Miller RR. CT in differential diagnosis of diffuse pleural disease. AJR Am J Roentgenol. 1990;154(3):487–92.

    Article  CAS  PubMed  Google Scholar 

  2. Traill ZC, Davies RJ, Gleeson FV. Thoracic computed tomography in patients with suspected malignant pleural effusions. Clin Radiol. 2001;56(3):193–6.

    Article  CAS  PubMed  Google Scholar 

  3. Arenas-Jimenez J, Alonso-Charterina S, Sanchez-Paya J, Fernandez-Latorre F, Gil-Sanchez S, Lloret-Llorens M. Evaluation of CT findings for diagnosis of pleural effusions. Eur Radiol. 2000;10(4):681–90.

    Article  CAS  PubMed  Google Scholar 

  4. Colt HG. Thoracoscopic management of malignant pleural effusions. Clin Chest Med. 1995;16(3):505–18.

    Article  CAS  PubMed  Google Scholar 

  5. Hallifax RJ, Haris M, Corcoran JP, Leyakathalikhan S, Brown E, Srikantharaja D, et al. Role of CT in assessing pleural malignancy prior to thoracoscopy. Thorax. 2015;70(2):192–3.

    Article  CAS  PubMed  Google Scholar 

  6. Frellesen C, Kaup M, Wichmann JL, Husers K, Scholtz JE, Albrecht MH, et al. Noise-optimized advanced image-based virtual monoenergetic imaging for improved visualization of lung cancer: comparison with traditional virtual monoenergetic imaging. Eur J Radiol. 2016;85(3):665–72.

    Article  PubMed  Google Scholar 

  7. Sekiguchi T, Ozawa Y, Hara M, Nakagawa M, Goto T, Shibamoto Y. Visibility of the hilar lymph nodes using advanced virtual monoenergetic low-keV images for preoperative evaluation of lung cancer. Br J Radiol. 2019;92(1103):20180734.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Kim C, Kim W, Park SJ, Lee YH, Hwang SH, Yong HS, et al. Application of dual-energy spectral computed tomography to thoracic oncology imaging. Korean J Radiol. 2020;21(7):838–50.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Bae K, Jeon KN, Cho SB, Park SE, Moon JI, Baek HJ, Choi BH. Improved opacification of a suboptimally enhanced pulmonary artery in chest CT: experience using a dual-layer detector spectral CT. AJR Am J Roentgenol. 2018;210(4):734–41.

    Article  PubMed  Google Scholar 

  10. Bae K, An HJ, Jung JJ, Kim HC, Jeon KN. Diagnosis of multiple pulmonary cavernous hemangiomas via dual-layer spectral CT: a case report. Medicine (Baltimore). 2020;99(39): e22495.

    Article  PubMed  Google Scholar 

  11. Lennartz S, Le Blanc M, Zopfs D, Große Hokamp N, Abdullayev N, Laukamp KR, Haneder S, Borggrefe J, Maintz D, Persigehl T. Dual-energy CT-derived iodine maps: use in assessing pleural carcinomatosis. Radiology. 2019;290(3):796–804. https://doi.org/10.1148/radiol.2018181567.

    Article  PubMed  Google Scholar 

  12. Zhang X, Duan H, Yu Y, Ma C, Ren Z, Lei Y, He T, Zhang M. Differential diagnosis between benign and malignant pleural effusion with dual-energy spectral CT. PLoS ONE. 2018;13(4): e0193714. https://doi.org/10.1371/journal.pone.0193714.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Muang-im W, et al. Dual-energy spectral CT in assessment of pleural effusion. ASEAN J Radiol. 2022;23(3):206–23. https://doi.org/10.46475/aseanjr.v23i3.193.

    Article  Google Scholar 

  14. Hooper C, Lee YC, Maskell N, Group BTSPG. Investigation of a unilateral pleural effusion in adults: British Thoracic Society Pleural Disease Guideline 2010. Thorax. 2010;65(Suppl 2):ii4-17.

    Article  PubMed  Google Scholar 

  15. Kim JS, Shim SS, Kim Y, Ryu YJ, Lee JH. Chest CT findings of pleural tuberculosis: differential diagnosis of pleural tuberculosis and malignant pleural dissemination. Acta Radiol. 2014;55(9):1063–8.

    Article  PubMed  Google Scholar 

  16. Reuter S, Naur TMH, Clementsen PF, Bodtger U. The value of computed tomography in discriminating malignant from non-malignant causes of unresolved unilateral pleural effusions: a systematic review. Eur Clin Respir J. 2019;6(1):1565803.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Hallifax RJ, Talwar A, Wrightson JM, Edey A, Gleeson FV. State-of-the-art: Radiological investigation of pleural disease. Respir Med. 2017;124:88–99.

    Article  CAS  PubMed  Google Scholar 

  18. Asciak R, Rahman NM. Malignant pleural effusion: from diagnostics to therapeutics. Clin Chest Med. 2018;39(1):181–93.

    Article  PubMed  Google Scholar 

  19. Porcel JM, Pardina M, Bielsa S, Gonzalez A, Light RW. Derivation and validation of a CT scan scoring system for discriminating malignant from benign pleural effusions. Chest. 2015;147(2):513–9.

    Article  PubMed  Google Scholar 

  20. Tsim S, Stobo DB, Alexander L, Kelly C, Blyth KG. The diagnostic performance of routinely acquired and reported computed tomography imaging in patients presenting with suspected pleural malignancy. Lung Cancer. 2017;103:38–43.

    Article  PubMed  Google Scholar 

  21. Hierholzer J, Luo L, Bittner RC, Stroszczynski C, Schroder RJ, Schoenfeld N, et al. MRI and CT in the differential diagnosis of pleural disease. Chest. 2000;118(3):604–9.

    Article  CAS  PubMed  Google Scholar 

  22. Hu X, Gu Q, Zhang K, Deng D, Li L, Li P, Shen H. Dual-energy computed tomography for the diagnosis of mediastinal lymph node metastasis in lung cancer patients: a preliminary study. J Comput Assist Tomogr. 2021;45(3):490–4.

    Article  PubMed  Google Scholar 

  23. Darras KE, Clark SJ, Kang H, Mohammed MF, Barrett S, Chang SD, et al. Virtual monoenergetic reconstruction of contrast-enhanced CT scans of the abdomen and pelvis at 40 keV improves the detection of peritoneal metastatic deposits. Abdom Radiol (NY). 2019;44(2):422–8.

    Article  PubMed  Google Scholar 

  24. Hwang JH, Song KS, Park SI, Lim TH, Kwon KH, Goo DE. Subtle pleural metastasis without large effusion in lung cancer patients: preoperative detection on CT. Korean J Radiol. 2005;6(2):94–101.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Lee J, Park JE, Choi SH, Seo H, Lee SY, Lim JK, et al. Laboratory and radiological discrimination between tuberculous and malignant pleural effusions with high adenosine deaminase levels. Korean J Intern Med. 2022;37(1):137–45.

    Article  CAS  PubMed  Google Scholar 

  26. Abramowitz Y, Simanovsky N, Goldstein MS, Hiller N. Pleural effusion: characterization with CT attenuation values and CT appearance. AJR Am J Roentgenol. 2009;192(3):618–23.

    Article  PubMed  Google Scholar 

  27. Sallach SM, Sallach JA, Vasquez E, Schultz L, Kvale P. Volume of pleural fluid required for diagnosis of pleural malignancy. Chest. 2002;122(6):1913–7.

    Article  PubMed  Google Scholar 

  28. Arenas-Jimenez JJ, Garcia-Garrigos E, Escudero-Fresneda C, Sirera-Matilla M, Garcia-Pastor I, Quirce-Vazquez A, Planells-Alduvin M. Early and delayed phases of contrast-enhanced CT for evaluating patients with malignant pleural effusion. Results of pairwise comparison by multiple observers. Br J Radiol. 2018;91(1089):20180254.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Hooper C, Laurence I, Harvey J, Morley A, Darby M, Edey A, Maskell N. The role of CT pulmonary angiography in the investigation of unilateral pleural effusions. Respiration. 2014;87(1):26–31.

    Article  PubMed  Google Scholar 

  30. Herrera Lara S, Fernandez-Fabrellas E, Juan Samper G, Marco Buades J, Andreu Lapiedra R, Pinilla Moreno A, Morales S-V. Predicting malignant and paramalignant pleural effusions by combining clinical, radiological and pleural fluid analytical parameters. Lung. 2017;195(5):653–60.

    Article  PubMed  Google Scholar 

Download references

Funding

The authors state that this work has not received any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyung Nyeo Jeon.

Ethics declarations

Conflict of interest

The authors have no potential conflicts of interest to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, N., Bae, K., Kim, H.C. et al. Added value of 40 keV virtual monoenergetic images for diagnosing malignant pleural effusion on chest CT. Jpn J Radiol (2024). https://doi.org/10.1007/s11604-024-01571-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11604-024-01571-x

Keywords

Navigation