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Abstract
The advent of Deep Learning (DL) has significantly propelled the field of diagnostic radiology forward by enhancing 
image analysis and interpretation. The introduction of the Transformer architecture, followed by the development of Large 
Language Models (LLMs), has further revolutionized this domain. LLMs now possess the potential to automate and refine 
the radiology workflow, extending from report generation to assistance in diagnostics and patient care. The integration of 
multimodal technology with LLMs could potentially leapfrog these applications to unprecedented levels.
However, LLMs come with unresolved challenges such as information hallucinations and biases, which can affect 
clinical reliability. Despite these issues, the legislative and guideline frameworks have yet to catch up with technological 
advancements. Radiologists must acquire a thorough understanding of these technologies to leverage LLMs’ potential to the 
fullest while maintaining medical safety and ethics. This review aims to aid in that endeavor.
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Introduction

The inception of Deep Learning (DL) has catalyzed a 
significant progression in artificial intelligence (AI) [1], 
unlocking numerous possibilities, especially in diagnostic 
radiology—an arena pivotal for accurate imaging data 
interpretation. This progression is attributed mainly to the 
emergence of Convolutional Neural Networks (CNNs) 
[2, 3], which have markedly enhanced image recognition, 
segmentation, analysis, and improvement of image quality 
[1, 4–15]. This represents a foundational shift in automated 
feature extraction from imaging data, consequently reducing 
the time and expertise required for interpreting medical 
images. Additionally, DL-powered tools have demonstrated 
their efficacy in improving diagnostic accuracy by aiding 
radiologists in precisely detecting anomalies such as tumors, 
external injuries, and other pathological conditions [16–20]. 
These advancements not only accelerate the diagnostic 
process but also contribute substantially to prognostic 
evaluations, thus playing a crucial role in elevating patient 
care and outcomes [21].

The introduction of the Transformer architecture has 
been a significant milestone in machine learning, paving 
the way for the development of Large Language Models 
(LLMs) such as the Generative Pre-trained Transformer 

(GPT) series. The architecture’s proficiency in handling 
sequential data efficiently through attention mechanisms 
has expedited the evolution of LLMs, which now possess 
the ability to understand and generate human-like text with 
remarkable accuracy. The subsequent advent of ChatGPT 
further accentuated the popularity and utility of LLMs 
by showcasing their capability to engage in more natural, 
dynamic dialogues, thus expanding the scope of applications 
across various fields. In diagnostic radiology, LLMs might 
offer a promising pathway for enhancing multiple aspects of 
the radiology workflow. Their capability to automate report 
generation and expedite information retrieval can potentially 
save significant time for radiologists, thereby ameliorating 
the efficiency and accuracy of diagnostic processes.

Despite the undeniable utility of LLMs, there has been 
a scarcity of reviews describing the rapid development of 
LLMs for clinical radiologists. This article delineates a brief 
history of contemporary LLMs and provides a synopsis of 
their application in radiology for the clinical radiologist.

Overview of DL and LLM before transformer 
architecture

Natural Language Processing (NLP), CNN-based image 
processing, is a branch of AI. Recently, DL has been 
employed extensively in NLP tasks. This wide applicabil-
ity of DL can be attributed to the universal approximation 
theorem [22]. This theorem suggests that a neural network, 
provided with enough layers and neurons, can approxi-
mate any reasonable function with a high degree of accu-
racy. DL thus operates by approximating an ideal func-
tion capable of transforming various data types, such as 
images, music, and text, into other forms of data (Fig. 1). 
In broad terms, the current LLM process involves gener-
ating a response sentence from a given request sentence, 

Fig. 1   Overview of the Deep Learning Process. If there is some relationship between the matrices representing input and output data, Deep 
Learning can learn it given a myriad of training data by the “universal approximation theorem”
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essentially transforming multi-dimensional vectors repre-
senting the request sentence into multi-dimensional vec-
tors representing the response sentence. Despite the devel-
opment of various DL models for language processing 
applications, this fundamental concept remains constant.

Before the inception of the Transformer architecture, 
the domain of NLP chief ly relied on architectural 
frameworks such as Recurrent Neural Networks (RNNs) 
[2], Long Short-Term Memory networks (LSTMs) [23], 
and CNNs. RNNs, with their intrinsic capability to 
encapsulate sequential information, were predominantly 
employed for an array of NLP tasks including but not 
limited to translation, sentiment analysis, and named 
entity recognition. However, they frequently encountered 
challenges with long-term dependencies owing to the 
vanishing or exploding gradient dilemma. To alleviate 
these issues, LSTMs were introduced as a special kind 
of RNN capable of learning long-term dependencies, 
providing a more robust framework for handling sequences 
and time-series data. Nonetheless, while LSTMs mitigated 
the gradient problem to an extent, they still entailed a 
significant computational and temporal demand, especially 
as data complexity increased. Conversely, CNNs were 
more adept at local pattern recognition within data and 
found their application in certain NLP tasks, yet they 
too were encumbered by limitations in capturing long-
range dependencies within text sequences. Moreover, the 
computational and temporal demands of training these 
networks escalated significantly, especially in the face of 
the burgeoning size and intricacy of data.

Recently, it has been elucidated that the efficacy of modi-
fied RNN can be commensurate with that of newer models 
[24], contingent upon the scale. However, the formidable 
computational costs associated with their operation pose a 
significant deterrent, leading to their diminished utilization 
in recent times. It is also recognized that the architectural 
distinctions among these models exert a lesser impact on 
performance compared to the magnitude of parameters 
encompassed [25]. Hence, the details of the structure of 
these models are omitted from this review. The cornerstone 
of operation for these NLP frameworks, inclusive of the 
subsequent Transformer architecture delineated, hinges on 
the initial transmutation of textual sentences into a numeri-
cal sequence termed as tokens, facilitated by a tokenizer. 
Figure 2 shows an example of sentence conversion by an 
online Tokenizer (https://​platf​orm.​openai.​com/​token​izer). 
This token sequence subsequently undergoes a further trans-
mutation into an alternate numerical sequence. This tokeni-
zation process has been used in NLP even before the rapid 
development of Deep Learning, and the basic principle is 
the same in recent LLM.

Advent and evolution of the transformer 
architecture for LLM

The advent of the Transformer architecture marked a signifi-
cant milestone in the realms of NLP and machine learning 
[26–28]. Unlike previous architectures, the Transformer was 
designed to efficiently handle parallel processing, making it 
especially suitable for training on graphics processing units. 
This novel design facilitated a substantial reduction in training 
times and effective management of large datasets, enabling the 
training of large-scale models that were previously unfeasible. 
Furthermore, this escalation in learning scale elucidated rela-
tionships known as scaling laws (Fig. 3), which delineate the 
relationships between model size, dataset size, and the amount 
of computing used for training [25]. This study reported the 
performance of language models on the cross-entropy loss 
scales according to a power-law to these factors.

The scalability and parallel processing capabilities of the 
Transformer architecture accelerated the development of 
large-scale neural network models. Notably, the Generative 
Pre-trained Transformer (GPT) [25, 29, 30] and Bidirectional 
Encoder Representations from Transformers (BERT) [31] 
stand as exemplary embodiments of the large-scale expansion 
and advancement of the Transformer. GPT, developed by 
OpenAI, is an LLM based on the Transformer architecture, 
focusing on predicting the next word in a given text sequence. 
It is generally pre-trained on a vast text corpus and then fine-
tuned for specific tasks. The GPT series (GPT-1, 2, 3, 3.5, 
and 4) aims to enhance performance by augmenting model 
size, with GPT-3 boasting 175 billion parameters [25]. On 
the other hand, BERT, developed by Google, also leverages 
the Transformer architecture but adopts a different approach. 
By considering bidirectional context, BERT achieves superior 
performance on specific NLP tasks, which is particularly 
advantageous in tasks like question-answering and named 
entity recognition.

In any case, as the scale increases, the performance 
of language models on tasks has significantly improved. 
Particularly, large-scale models like GPT-3 have been 
reported to exhibit excellent performance on entirely new 
tasks without retraining or with just a few demonstrations 
[25]. This burgeoning performance with scale underscores 
the remarkable potential and evolution propelled by the 
Transformer architecture, contributing to the broad spectrum 
of advancements in NLP and machine learning fields.

LLM limitations

Despite the remarkable achievements, LLMs have inherent 
limitations. One of the notable issues is hallucination, where 
the model generates incorrect or fictional information that 

https://platform.openai.com/tokenizer
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wasn’t present in the training data [32–36]. This problem 
arises due to several underlying factors and poses challenges 
to the implementation and trustworthiness of LLMs, 
especially in critical fields like healthcare. A notable cause 
of hallucination, the source-reference divergence, arises 
from heuristic data collection methods or inherent challenges 
in certain natural language generation tasks, leading to 
deviations from the provided source during text generation. 
Similarly, exploitation through 'jailbreak' prompts that 
were not intended by the developers, which manipulate 
the model’s behavior or output, and reliance on datasets 
with incomplete or contradictory information significantly 
influence the LLM’s generated responses. These issues are 
exacerbated by misleading training data, where incorrect, 
outdated, or biased information is propagated into the 
generated outputs, further undermining the reliability of 
LLMs in a clinical setting. Mitigation strategies aimed at 
reducing hallucination in LLMs include the employment 
of regularization techniques, augmenting training data, and 
leveraging few-shot learning strategies. However, completely 
preventing hallucination remains a formidable challenge due 
to the inherent limitations of the current LLM architectures 
and the vast and varied nature of the training data.

Inductive biases [37] refer to the set of assumptions that 
a model makes to predict outputs for unseen data. In LLMs, 
these biases might arise from the training data, leading the 
model to generate outputs that may not align with real-world 
scenarios. The performance and the model’s capacity to 
generalize across varying contexts can be adversely affected 
by these biases. Additionally, the “black box” nature of 
LLMs denotes the lack of transparency in understanding 
how the model arrives at a particular decision, which is a 
critical requirement for real-world applications, particularly 
in fields demanding explainability like medical fields.

The output generated by LLM can be inaccurate 
and misleading due to these limitations and can lead to 
misguided clinical problems [38], and LLM output should 
be carefully evaluated by professionals.

Release of ChatGPT and its application 
to medical fields

The public release of ChatGPT on November 30, 2022, 
developed by Open AI, heralded a new era of accessibility, 
drawing a plethora of users from diverse fields. The 

transition to GPT-3.5 used in ChatGPT was a pivotal 
moment, as the incorporation of Reinforcement Learning 
from Human Feedback (RLHF) [39] played a crucial role in 
refining the model's responses, making them more coherent 
and contextually appropriate. This widespread adoption 
triggered a boom, as the model's potential in various 
applications was explored extensively. Additionally, GPT-4 
is slated for public availability on March 14, 2023. While 
the specific architectural details remain undisclosed, it is 
anticipated that GPT-4 will herald enhanced performance 
across diverse domains, marking a substantial advancement 
from its predecessor, GPT-3.5.

In the medical field, ChatGPT showcased an impressive 
aptitude by excelling in medical examinations [40], a 
testament to its proficiency in handling medical knowledge. 
Furthermore, studies have highlighted its competence 
in real-world medication consultations [41], where it 
displayed a higher appropriateness rate in responding to 
public consultation questions compared to those posed 
by healthcare providers in a hospital setting. Although 
ChatGPT’s official warnings mention its use in diagnostics, 
saying, “Making automated decisions in domains that affect 
an individual’s rights or well-being (e.g., law enforcement, 
migration, management of critical infrastructure, safety 
components of products, essential services, credit, 
employment, housing, education, social scoring, or 
insurance)” (https://​openai.​com/​polic​ies/​usage-​polic​ies) and 
the use of ChatGPT on WWW may have a serious concern 
of data leaking unless user manifest opt-out (https://​priva​
cy.​openai.​com/​polic​ies), these achievements highlight 
ChatGPT’s potential in giving important medical insights.

Capable applications of LLM in the radiology 
field

Radiologists routinely engage with a substantial volume of 
textual information encompassing diagnostic request forms, 
medical charts, reports from other examinations, references 
to various guidelines and past literature, diagnostic imaging 
reports, and the generation of scholarly articles. However, 
recent years have witnessed an uptrend in the utilization of 
imaging diagnostic modalities across numerous countries. 
The ensuing amplification in image interpretation and 
reporting duties has precipitated concerns surrounding 
burnout among radiologists [42]. Despite the aforementioned 
limitations, LLMs hold promise as potential adjunctive tools 
to ameliorate the burden associated with such radiological 
endeavors.

The accelerated development and refinement of LLMs 
such as ChatGPT have catalyzed a notable performance 
in medical examinations. For instance, an evaluation of 
ChatGPT on the United States Medical Licensing Exam 

Fig. 2   Various Language Processing with Large Language Model. 
Examples of a computation, b conversation, and c translation, respec-
tively. All of these different language processing tasks can be accom-
plished using the same process: converting input data into a matrix 
using a tokenizer, transforming it into another matrix using a Large 
Language Model, and then converting it back into output data

◂

https://openai.com/policies/usage-policies
https://privacy.openai.com/policies
https://privacy.openai.com/policies
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(USMLE) revealed that it performed at or near the passing 
threshold across all three exams without any specialized 
training or reinforcement [40]. Moreover, in a radiology 
board-style examination, ChatGPT nearly met the passing 
criteria without specific radiology pre-training, while a 
GPT-4 demonstrated superior performance compared to 
GPT-3.5, indicating a significant advancement in model 
capability [43]. ChatGPT based on GPT-4 scored 65% when 
answering Japanese questions from the Japan Radiology 
Board Examination (JRBE) [44]. Another study evaluated 
ChatGPT's performance on the Polish specialty exam in 
radiology and diagnostic imaging. Although ChatGPT 
did not reach the passing threshold of 52%, it came close 
in certain question categories [45]. Although the precise 
performance of LLMs may exhibit variance based on 
language [46], these facts suggest that LLMs may be able 
to play a supplementary role even in quite specialized 
radiology work, even if only for text data at this point.

Given the demonstrated capabilities of LLMs, there exists 
a potential to significantly enhance radiological workflow. 
This enhancement may manifest through proficient 
summarization of medical records, streamlined diagnostic 
imaging studies, clinical decision-making, rewriting, and 
generation of radiology reports [47, 48]. For instance, while 
not a general-purpose LLM akin to GPT-4, an LLM trained 
specifically on medical data, known as PubMedBERT [49], 

has been reported to accurately predict mortality within 24 h 
of admission for patients in intensive care units using solely 
medical record data [50]. This demonstrates the capacity of 
LLMs to adeptly handle and derive meaningful insights from 
textual data such as medical records, extending promise 
for their application in critical care settings. Additionally, 
There is a preliminary study that helps to automatically 
determine imaging studies and protocols based on the 
radiology department's request form [51]. Another paper 
demonstrates that the DL-based NLP model can accurately 
classify the status of bone metastasis in Japanese radiology 
reports, providing a potential tool for the early and efficient 
detection of patients with bone metastasis. [52] Given such 
capabilities, it is conceivable that soon, LLMs could semi-
automatically configure protocols for imaging examinations 
such as CT or MRI, based on the information extracted from 
examination request forms, medical chart data, and other 
diagnostic data.

Furthermore, there are several reports of rewriting 
radiology reports written by radiologists using LLM. 
The utility of structured reporting in radiology has been 
acknowledged, yet it has also been reported that LLMs 
can rewrite free-style reports into structured reports [53]. 
This not only holds promise for daily clinical practice but 
also for the education of radiology residents. Additionally, 
while the interpretation of radiology reports necessitates 
specialized knowledge, it has been reported that LLMs 
are capable of translating these specialized reports into 
more comprehensible language for a general patient [54]. 
This potential application anticipates aiding in patient 
communication and comprehension, further extending 
the scope of LLMs in enhancing patient-centered care in 
radiology.

Report generation assistance through LLMs

One of the most direct applications of LLMs in reducing 
workload within the clinical setting could arguably be in 
assisting with the generation of imaging diagnostic reports 
themselves. While there have been numerous reports on 
this subject from earlier times [55–57], the advent of the 
GPT series has marked a notable advancement. It has been 
reported that LLMs can autonomously generate human-
like radiology reports from merely brief keywords, and 
the differential diagnoses provided are relatively reliable 
[58]. This suggests a significant potential for augmenting 
the efficiency and accuracy of report generation, a critical 
component of the radiological workflow.

The approach delineated in this paper [58] for aiding 
the generation of radiology reports hinges solely on 
the utilization of ChatGPT, obviating the need for any 
specialized training and hence, rendering it a reproducible 

Fig. 3   Schema of Scaling Law. The performance of the Transformer 
follows a simple power law, where the parameters, dataset size and 
computational resources are considered as variables. For instance, if 
the other two variables are not the bottleneck, doubling the number 
of parameters results in a performance improvement by a power of 2. 
(Graphs are plotted on logarithmic scales)
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methodology accessible to all. The requisite inputs for this 
process are limited to basic demographic data such as age 
and gender, keywords embodying the imaging findings, 
and a prompt tailored for report generation. However, it is 
noteworthy that the prompt necessitates customization for 
imaging report generation; the prompt utilized in this paper 
follows a structured format aimed at aiding the generation 
of radiology reports using ChatGPT. This structure 
encompasses three pivotal components: (1) establishing the 
role of the LLM as a radiology specialist, (2) specifying 
the output sections (Findings, Impression, Differential 
Diagnosis), and (3) elaborating on the content for each 
of these sections. This structured approach is predicated 
on previously reported guidelines for radiology reporting 
[59], thereby adhering to the established norms within the 
radiological community.

Figure 4 shows the simplified prompt for generating radi-
ology reports and usage examples. The prompt used in this 
review is as follows: “As a radiologist, create a radiology 
report following the given format. Include up to 5 differen-
tial diagnoses based on the information provided. Findings: 
Describe the factual observations from the imaging study 
using precise technical language. This sets the groundwork 
for the diagnosis. Impression: Summarize the meaning 
of the findings to arrive at a diagnosis or list of possible 
diagnoses. Give recommendations for the next steps, using 
clear language. Differential Diagnosis: List up to 5 possi-
ble diagnoses without describing the diseases, ranked by 
level of suspicion.” By typing simple keywords followed by 
a prompt like this on OpenAI's ChatGPT site (https://​chat.​
openai.​com/), anyone can generate something like a radiol-
ogy report without any additional training.

However, there are inherent challenges that must be 
addressed to ensure the safe and effective deployment 
of LLMs in this context. One such challenge is the 
phenomenon of hallucination, where the model generates 
incorrect or misleading information. This aspect necessitates 
a cautious approach to employing LLMs for diagnostic 
reporting. The potential for hallucinations to misguide 
clinical interpretations underscores the importance of having 
appropriate regulatory frameworks in place to mitigate risks 
associated with the use of LLMs in clinical settings.

Moreover, the legal and ethical frameworks surrounding 
the application of LLMs for diagnostic reporting need to 
be robustly established. As described above, today, even 
those without a background in diagnostic radiology can 
easily generate a large number of reports that are difficult 
to distinguish from diagnostic reports using LLMs. This 
has significant implications for the medical field. Given the 
potential for misinterpretation or misuse of these reports, 
it is crucial that regulations are put in place to ensure that 
only qualified professionals are authorized to interpret and 
apply these findings. Ensuring the responsible use of LLMs 

while maximizing their potential to reduce the workload and 
improve the accuracy and efficiency of diagnostic reporting 
requires a balanced approach. The evolution of legal and 
professional guidelines, in tandem with technological 
advancements, is imperative to foster a conducive 
environment for the integration of LLMs in radiological 
practice, ensuring both patient safety and enhanced clinical 
workflow.

Potential of LLMs in research work

The advent of LLMs like ChatGPT might also bring 
forth a promising avenue for alleviating the burgeoning 
workload in radiological research. It has been reported 
that LLM’s text generation capability has reached a level 
close to that of humans in the research field [60]. In this 
study, researchers asked a chatbot to generate 50 medical 
research abstracts based on excerpts published in JAMA, 
The New England Journal of Medicine, BMJ, The Lancet, 
and Nature Medicine. They then compared these generated 
abstracts with the original ones and asked a group of medical 
researchers to identify any fabricated abstracts. Scientists 
fared a correct identification rate of 68% for generated 
abstracts and 86% for genuine ones; however, they also 
made mistakes, incorrectly classifying 32% of the generated 
abstracts as genuine and 14% of the genuine abstracts as 
generated. An emblematic instance is that a pre-peer review 
version of the paper evaluating ChatGPT's performance at 
USMLE added ChatGPT to the authors [40]. Furthermore, 
LLMs can serve as invaluable adjuncts in review processes, 
assisting researchers and reviewers in tasks such as text 
summarization, extraction, and past literature retrieval. This 
assistance could be particularly beneficial for non-native 
authors, facilitating a smoother and more coherent review 
process [61].

On the contrary, a very recent pre-peer review paper 
examines the possibility of replacing the entire peer review 
process with LLM [62]. In this study, authors compared the 
feedback generated by GPT-4 and human peer reviewers, 
it was found that the overlap rate of points identified by 
GPT-4 and human reviewers was 30.85% on average in the 
Nature journal and 39.23% in the International Conference 
on Learning Representations (ICLR) conference. These rates 
were comparable to the overlap rate between two human 
reviewers, which averaged 28.58% in the Nature journal and 
35.25% in the ICLR conference. Overall, 57.4% of users 
evaluated the feedback from GPT-4 as useful or very useful, 
and 82.4% felt that the feedback from GPT-4 was more 
beneficial than at least some of the feedback from human 
reviewers.

However, the integration of LLMs into the scholarly 
landscape is not devoid of ethical and procedural 

https://chat.openai.com/
https://chat.openai.com/
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Fig. 4   Example of Radiology Report Generated by GPT-4. a Prompts and b Corresponding generated reports. Providing specific instructions on 
the desired role, format, and content of output items within the prompts can enhance the quality of GPT-4 output
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considerations. One primary concern pertains to authorship, 
as LLMs, lacking the capacity for responsibility, cannot 
be listed as authors despite their substantial contribution 
to manuscript creation [63, 64]. Most academic papers’ 
submission guidelines have acknowledged this concern 
by mandating a detailed disclosure if LLMs are employed 
in the manuscript preparation, ensuring a transparent 
acknowledgment of LLM assistance. Moreover, a cautious 
approach towards the utilization of LLMs in review 
processes is advocated to mitigate risks associated with 
confidentiality and other potential malfeasances. While there 
has been a paucity of guidelines on the prudent use of LLMs 
in reviews, the recently published guidelines by Radiology 
[65] underline the importance of cautious employment, with 
a particular emphasis on maintaining confidentiality. This 
prudent approach towards LLM utilization not only fortifies 
the integrity of the review process but also sets a precedent 
for fostering responsible AI integration in radiological 
research.

Future outlook of LLMs in radiology

LLM is currently evolving rapidly, and multimodal 
technology seems to be one of the most notable and relevant 
in the field of radiology. Like LLM, this technology is based 
on transformer architecture, but it can also handle image 
data in a unified manner. Microsoft's Bing AI is currently 
compatible with this multimodal technology and is also 
available to paid users of Open AI’s GPT-4. Currently, the 
main reports revolve around annotations of images and 
videos. However, there is also mention of the potential of AI 
trained on medical data [66]. The integration of multimodal 
technology into LLM, or AI in medical imaging, might bring 
a new dimension to radiology. According to prior research, 
the integration of multimodal technology has the potential 
to revolutionize the precision of image diagnosis in the field 
of diagnostic radiology [67]. Moreover, its implementation 
could substantially reduce the time required for image 
analysis. However, given that, as with research work, LLMs 
are not responsible and may produce reports that seem 
authoritative with a completely different meaning through 
hallucinations, etc., and given that multimodal technology 
is prepared to be used by people with no knowledge of the 
radiology field, it Given that multimodal technology may 
prepare people with no knowledge of radiology to use it, 
legal development and guidelines might be needed for the 
application of this technology in radiology.

Another very promising outcome is the mitigation of 
LLM hallucinations. One way to overcome hallucinations 
in LLMs is by improving the training data. The quality and 
diversity of the training data play a significant role in the 

performance of these models. There have been reports on 
LLMs specific to the medical side, and if these models are 
developed, hallucination could be significantly reduced. 
Another method is to combine with search. The integration 
of search into LLMs can help in reducing the frequency of 
hallucinations by recognizing and rectifying incorrect or 
nonsensical generated text. The third approach is to refine 
the model architecture and learning methods of the neural 
network. Recent literature has reported the potential for 
significantly improved performance over existing LLMs 
by combining conventional neural network methods with 
meta-learning for compositionality [68]. For instance, it 
has the potential to operate efficiently even when faced 
with unfamiliar words or concepts, thereby substantially 
minimizing the requisite volume of learning data. It is 
anticipated that such advancements will persistently 
emerge in the future.

As the development of LLMs is expected to advance 
further, it is also anticipated that the potential risks 
associated with this will increase. As mentioned earlier, 
examples such as radiology report generation, scientific 
review, and medical consultation on social media, there 
is a possibility that LLMs will be used not as copilots, 
but as almost independent agents for some purposes, and 
in extreme cases, it cannot be denied that even those who 
have no knowledge of radiology or medicine may provide 
services. However, there is no method to completely 
solve the problems of LLMs such as hallucinations and 
biases at present. In addition, LLMs implicitly memorize 
the information contained in the training data, and there 
is a possibility that personal information or medical 
information may be included in the generated text. 
Even if LLMs develop, their output may be inaccurate 
or inappropriate and may affect the health and safety of 
patients. Developers and users of LLMs in radiology work 
should use them with a correct understanding of their 
capabilities and limitations, and checking the output of 
LLMs by radiologists will continue to be essential in the 
future.

LLMs have the potential to bring innovation to the 
medical field, but on the other hand, they also have 
the potential to bring crisis to the medical field. The 
development and application of LLMs to the medical field 
should be done carefully and responsibly, but at present, 
the rapid development of technology has not caught up 
with the establishment of guidelines and laws for the use 
of LLMs in radiology work. As guidelines and submission 
rules have been changed for the paper submission and 
the scientific review, similar preparations are urgently 
needed for daily radiology work considering the future 
development of LLMs.
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Conclusion

As LLM continues to mature and evolve, its incorporation 
into diagnostic radiology harbors immense potential for 
advancing this field. However, the speed at which technology 
has developed has outpaced the establishment of consensus, 
guidelines, and legislation for LLM use. Currently, LLM 
models serve a “copilot” role, but shortly, they will gain 
the ability to function as an autonomous “agent”. as 
demonstrated by tasks such as report generation and paper 
review mentioned earlier. Nevertheless, this advancement 
encompasses an array of potential pitfalls concerning 
medical safety and ethics. A thorough understanding of LLM 
by radiologists and collaboration with experts is crucial for 
successfully integrating LLM into radiology.
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