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Abstract
Purpose To develop a convolutional neural network (CNN) model to diagnose skull-base invasion by nasopharyngeal 
malignancies in CT images and evaluate the model’s diagnostic performance.
Materials and methods We divided 100 malignant nasopharyngeal tumor lesions into a training (n = 70) and a test (n = 30) 
dataset. Two head/neck radiologists reviewed CT and MRI images and determined the positive/negative skull-base invasion 
status of each case (training dataset: 29 invasion-positive and 41 invasion-negative; test dataset: 13 invasion-positive and 17 
invasion-negative). Preprocessing involved extracting continuous slices of the nasopharynx and clivus. The preprocessed 
training dataset was used for transfer learning with Residual Neural Networks 50 to create a diagnostic CNN model, which 
was then tested on the preprocessed test dataset to determine the invasion status and model performance. Original CT images 
from the test dataset were reviewed by a radiologist with extensive head/neck imaging experience (senior reader: SR) and 
another less-experienced radiologist (junior reader: JR). Gradient-weighted class activation maps (Grad-CAMs) were created 
to visualize the explainability of the invasion status classification.
Results The CNN model’s diagnostic accuracy was 0.973, significantly higher than those of the two radiologists (SR: 0.838; 
JR: 0.595). Receiver operating characteristic curve analysis gave an area under the curve of 0.953 for the CNN model (versus 
0.832 and 0.617 for SR and JR; both p < 0.05). The Grad-CAMs suggested that the invasion-negative cases were present 
predominantly in bone marrow, while the invasion-positive cases exhibited osteosclerosis and nasopharyngeal masses.
Conclusions This CNN technique would be useful for CT-based diagnosis of skull-base invasion by nasopharyngeal 
malignancies.
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Abbreviations
Adam  Adaptive moment
AUC   Area under the curve
CNN  Convolutional neural network
CT  X-ray computed tomography
DL  Deep learning
DICOM  Digital imaging and communication in 

medicine
FsGdT1WI  Fat-suppressed gadolinium-enhanced 

T1-weighted imaging
FsT2WI  Fat-suppressed T2-weighted imaging
Grad-CAM  Gradient-weighted class activation map
GdT1WI  Gadolinium-enhanced T1-weighted imaging
HU  Hounsfield units
JPEG  Joint photographic experts group
JR  Junior reader
MRI  Magnetic resonance imaging
NPV  Negative predictive value
PPV  Positive predictive value
ResNet  Residual network
ROC  Receiver operating characteristic
ROI  Region of interest
SR  Senior reader
T1WI  T1-weighted imaging
XAI  Explainable artificial intelligence

Introduction

Since nasopharyngeal tumors can be detected and diagnosed 
by a biopsy performed with endoscopy, the foremost role of 
X-ray computed tomography (CT) or magnetic resonance 
imaging (MRI) in the management of patients with naso-
pharyngeal tumors is to determine the extent of the primary 
tumor and the presence of metastasis. Because the naso-
pharynx is located close to and below the base of the skull, 
nasopharyngeal tumors often involve the skull base. Invasion 
of the skull base is currently classified as T3 according to 
the 8th edition of the Union for International Cancer Control 
clinical TNM staging criteria [1] and is considered to be a 
prognostic factor indicating a high risk of local recurrence 
and a poor survival rate [2].

Computed tomography reveals permeative or erosive 
bone changes of the skull base or spread along foraminal 
pathways. Sclerosis of the pterygoid process with increased 
attenuation of the medullary cavity or thickening of cortical 
bone may also be detected by CT [3]. MRI reveals (i) the 
replacement of high-signal bone marrow with low signal 
intensity and (ii) the enhancement with gadolinium-based 
contrast agent due to tumor invasion on T1-weighted imag-
ing (T1WI) [4]. The observance of a high signal on fat-
suppressed T2-weighted imaging (FsT2WI) is also helpful 
in the diagnosis of bone marrow involvement. Compared 

to nasopharyngeal carcinomas, malignant lymphoma of the 
nasopharynx tends to have less frequent and less extensive 
deep invasion [5], but the finding of invasion itself is similar 
to that of nasopharyngeal carcinoma.

It is generally accepted that CT is superior to MRI in 
demonstrating bony erosion, whereas MRI is better in delin-
eating soft tissue abnormalities [6]. Several reports have 
indicated that MRI is more sensitive than CT for detecting 
skull-base invasion [6–8]; however, another research group 
reported that erosion of the skull base suggested by only 
MRI was not always associated with a high risk of local 
recurrence [9]. It is thus important that clinicians obtain both 
CT and MR findings in cases of suspected skull-base inva-
sion by a nasopharyngeal tumor.

Moreover, MRI requires a long imaging time, and poor 
image quality due to motion artifacts may occur, especially 
in patients with symptoms such as pain or dyspnea. Some 
individuals are unable to undergo MRI due to claustropho-
bia, a metal implant, or an electronic device such as a pace-
maker. There are thus situations in which it is necessary 
to evaluate the presence or absence of skull-base invasion 
using CT.

In various clinical contexts, the application of deep 
learning (DL) algorithms, particularly with a convolutional 
neural network (CNN), to medical imaging has recently 
gained notable interest [10, 11]. Studies have investigated 
DL techniques for the diagnosis of local invasion of malig-
nant tumors on CT images at various anatomical sites [12, 
13], including invasion by head and neck malignancies [14, 
15]. The DL approaches were observed to provide clini-
cally sufficient diagnostic performance equivalent to that 
of a radiologist. In line with these reports, our speculation 
was that the use of a CNN might enable the determination 
of skull-base invasion on CT and assist radiologists in the 
diagnosis of such cases. The present study was conducted to 
create a CNN model for diagnosing skull-base invasion by a 
malignant nasopharyngeal tumor on CT images, and then to 
evaluate diagnostic performance of the model.

Methods

This retrospective study was approved by the Institutional 
Review Board of the Hokkaido University, and the require-
ment for patients’ written informed consent was waived.

Study population

We selected the cases of 115 patients from the medical 
records of our hospital between January 2008 and March 
2022, based on the following inclusion criteria: patients with 
(1) a pathologically confirmed malignant nasopharyngeal 
tumor, (2) pre-treatment axial CT images reconstructed with 
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a soft tissue kernel including the tumor lesion. We excluded 
some patients because of the following exclusion criteria: 
(1) CT image slice thickness > 4 mm (n = 11), or (2) MRI 
had not been conducted (n = 4). Ultimately, 100 cases were 
deemed eligible for this study.

CT and MRI images

Computed tomography images of the 100 cases were 
obtained by various scanners from four vendors. Of the 100 
cases, seven had non-contrast enhanced images only, 76 
had contrast-enhanced images only, and the other 17 cases 
had both non-contrast-enhanced and contrast-enhanced 
images. Image parameters were as follows. Slice orientation: 
axial, Slice thickness: 1.25–4.00 mm, matrix size: approxi-
mately 512 × 512, reconstruction kernel: soft tissue. MRI 
images were also obtained by various scanners from five 
vendors. MRIs were scanned within 2 months before and 
after patient’s CT imaging, and at least two sequences of 
T1WI, FsT2WI, gadolinium-enhanced T1-weighted imag-
ing (GdT1WI), and/or fat-suppressed gadolinium-enhanced 
T1-weighted imaging (FsGdT1WI). Of the 100 cases, 6 had 
non-contrast enhanced images only, and the other 94 had 
both non-contrast-enhanced and contrast-enhanced images. 
The imaging orientation had axial sections and at least one 
of the sagittal or coronal sections. Slice thickness: approxi-
mately 3–5 mm, matrix size: approximately 512 × 512.

Ground truth determination for skull‑base invasion

Two board-certified radiologists with 7 years and 16 years 
of experience in head and neck radiology assessed the 
suitability of the CT and MRI images to interpret, using a 
Digital Imaging and Communication in Medicine (DICOM) 
viewer (XTREK, J-MAC System, Tokyo, Japan). The range 
of evaluation on the axial sections was set from the base of 
the sphenoid sinus to the lower end of the clivus.

For the determination of the ground truth, the two radiol-
ogists evaluated the skull-base invasion by consensus based 
on the presence or absence of MRI findings (low-intensity 
on T1WI, high-intensity on FsT2WI, and enhancement in 
bone marrow), CT imaging findings (permeative or erosive 
bone changes, and/or sclerosis of bone marrow), and the 
patients’ all-available medical records. In CT image assess-
ment, we essentially used axial sections with appropriate 
adjustment of the window level/width for the evaluation. 
Coronal and/or sagittal reconstructed images were also 
used for the evaluation if available. After this image assess-
ment, 42 cases were diagnosed as invasion-positive and the 
remaining 58 cases were diagnosed as invasion-negative. 
Thereafter, for cases classified as invasion-positive, the pres-
ence or absence of invasion findings was also assessed for 
each slice of all CT images within the evaluation range; the 

details are provided below in the Image preprocessing and 
deep-learning analysis section.

Configuration of datasets for training and test

We randomly selected 70 of the 100 cases as the training 
dataset to establish the diagnostic model, and used the 
remaining 30 cases as the test dataset to estimate the perfor-
mance of the established model, so that the datasets’ respec-
tive ratios of invasion-positive to invasion-negative cases 
were maintained. As a result, 29 invasion-positive and 41 
invasion-negative cases comprised the training dataset, and 
13 invasion-positive and 17 invasion-negatives comprised 
the test dataset (Fig. 1).

Image analyses

Image preprocessing and deep‑learning analysis

First, all axial CT images were segmented, with rectangu-
lar regions of interest (ROI) manually drawn to include the 
nasopharynx and skull base (especially the clivus) with an 
ROI size of approximately 18  cm2. We used the CT images 
in the vertical range from the base of the sphenoid sinus to 
the lower end of the clivus, and we set the rectangular ROI 
range from the pterygoid to the posterior end of the clivus 
in the anterior–posterior direction and the bilateral internal 
carotid arteries in the lateral direction. The CT window of 
all images was set to the window level 60 Hounsfield units 
(HU) and window widths 600 HU. Finally, all preprocessed 
images were saved in Joint Photographic Experts Group 
(JPEG) format.

To create the invasion-positive group in the training data-
set, only the specific slices classified as invasion-positive 
(see the Sect. ‘Ground truth determination for skull-base 
invasion’) were included. This dataset consisted of 146 
images from 33 cases (non-contrast only: n = 1, contrast 
only: n = 24, both non-contrast and contrast: n = 4). We 
included all of the extracted slices in the invasion-negative 
group; this dataset consisted of 226 images from 47 cases 
(non-contrast only: n = 4, contrast only: n = 31, both non-
contrast and contrast: n = 6).

Prior to training, a total of 21 additional images were 
generated by data augmentation to improve the robustness 
of the model, by horizontal flipping, random rotating, and 
vertically and/or horizontally shifting each image. Finally, 
the training dataset consisted of 3212 images for the inva-
sion-positive group and 4972 images for the negative group.

In the test dataset, we used all images of each case in 
both the invasion-positive and -negative groups. The inva-
sion-positive group consisted of 86 images (69 invasion-
positive slices and 17 invasion-negative slices; every case 
contained at least one invasion-positive slice) from 15 cases 
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(non-contrast only: n = 1, contrast only: n = 10, both non-
contrast and contrast: n = 2). The invasion-negative group 
consisted of 99 images from 22 cases (non-contrast only: 
n = 1, contrast only: n = 11, both non-contrast and contrast: 
n = 5). No data augmentation was performed on the test 
dataset.

We used transfer learning from a pre-trained CNN algo-
rithm for image classification to distinguish the invasion-
positive or -negative status of the axial CT images. The 
Residual Network 50 (ResNet50) was used as the original 
model in this work. The ResNet extracts residual features 
as a subtraction of features learned from the input of that 
layer using “skip connections.” The ResNet50 architecture 
contained one 3 × 3 convolutional layer, one max-pooling 
layer, and 16 residual blocks. Each block contained one 1 × 1 
convolutional layer, one 3 × 3 convolutional layer, and one 
1 × 1 convolutional layer. The residual connection was from 
the beginning of the block to the end of the block. The out-
put of the last block was connected to a fully connected layer 
with a sigmoid function to make the prediction [16]. To train 
the model, while training the final fully connected layer, the 
previous layers’ parameters were kept at the original weights 
of the ResNet50. This enabled us to retain the broader fea-
tures of the ResNet50 model and adapt the model to the CT 
images with a limited number of trainable parameters.

For the training session, we used the adaptive moment 
(Adam) optimizer. Hyperparameters were set to 15 epochs, 
a mini-batch size of 64, and the learning rate 1.0 ×  10−4. 
During training, 30% of the training data was used for inter-
nal validation in transfer learning. The ResNet50 model can 
analyze the input image and generate a probability indicating 
the category to which it belonged. In this study, the model 

produced a binary classification of invasion-positive or -neg-
ative status for the test dataset.

When evaluating the developed CNN model on the test 
dataset, the first step was to classify all slices as invasion-
positive or -negative in each patient using the CNN model. 
The number of continuous slices that the CNN model deter-
mined to be invasion-positive was then added up and con-
verted into a diagnosis for each patient. The image process-
ing and deep-learning analysis steps are illustrated in Fig. 2.

The CNN model was established using an Ubuntu 18.04 
long-term support-based server with a Core i9 10980XE 
18-core/36-thread 3.0-GHz central processing unit, four 
NVIDIA Quadro RTX8000 graphics processing unit cards, 
and 128-GB (16 GB × 8) DDR4-2933 quad-channel memory 
for training and validation. Transfer learning took approxi-
mately 50 min. MATLAB (R2021a, MathWorks, Natick, 
MA, USA) and Metavol software (https:// www. metav ol. org) 
[17] were used for all image analyses.

Visual evaluation by radiologists

Two radiologists, one of whom had extensive experience 
with head and neck imaging (senior reader (SR), 13 years’ 
radiology experience and board-certified) and the other 
with less experience (junior reader (JR), 1 year of radiology 
experience) reviewed the CT images of the test dataset and 
determined whether the nasopharyngeal tumor was invasion-
positive or -negative from the base of the sphenoid sinus to 
the lower end of the clivus. All of the axial CT slices with 
a complete field of view (not segmented images) were used 
for evaluation, with appropriate adjustment of the window 
level/width for the evaluation.

Fig. 1  Study population, recruitment pathway, and ground truth labeling

https://www.metavol.org
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Visual representation with a Grad‑CAM

Advancements in DL have facilitated the analysis of com-
plex medical images with minimal human intervention. 
However, most DL models are often considered ‘black 
boxes’ due to their nonlinear underlying structures. This 
has led to the emergence of explainable artificial intel-
ligence (XAI) research, which aims to enhance transpar-
ency in AI models and interpret the fidelity of their infer-
ences [18]. Gradient-weighted class activation mapping 
(Grad-CAM) is one of the most commonly used XAI 
methods for enhancing the visual evaluation of the site 
at which a CNN model is focusing its attention during 
inference [19]. In the present study, the Grad-CAM was 
created by extracting feature maps from the convolutional 
layers, and it provided visualization with a heat map indi-
cating where the attention of the network is highlighted 
according to the input images. We tested whether the 
CNN model was able to focus on the nasopharyngeal 
lesion itself and the clivus using the Grad-CAM heatmap 
on preprocessed CT images of the test dataset.

ROI setting test by another radiologist

To evaluate the diagnostic results of the CNN model due to 
the differences in the person who set the rectangular ROI, 
another radiologist (2 years’ radiology experience) set the 
ROI on the axial-section CT images of the test dataset after 
teaching the extent of lesion extraction (see the ‘Image pre-
processing’ section above).

Statistical analyses

The diagnostic performances of the test dataset obtained 
with the developed CNN diagnostic model and that of the 
test dataset obtained by the two radiologists (SR and JR) 
were respectively evaluated. In the analysis of the CNN 
model, the optimal number of continuous invasion-positive 
slices to diagnosis invasion-positive or -negative status for 
each patient was determined from the Youden index using 
in the receiver operating characteristic (ROC) curve analy-
sis. We evaluated the diagnostic performance by calculating 
the area under the ROC curve (AUC), accuracy, sensitivity, 

Fig. 2  Image preprocessing on CT images for the deep-learning 
(DL) analysis. First, as image preprocessing, a rectangular region of 
interest (ROI) was manually placed to include the nasopharynx and 
skull base on axial CT images (red rectangle). The landmarks for the 
area of the ROI were the pterygoid process in the front, the poste-
rior end of the oblique plateau in the back, and the internal carotid 
artery at the side. Next, images segmented by ROI were extracted as 
continuous slices in the range from the base of the sphenoid sinus 
to the lower end of the clivus. Finally, for the training dataset, data 

augmentation was performed by horizontally flipping, rotating, and/
or shifting the images. The training dataset images, having undergone 
preprocessing and data augmentation, were trained on ResNet50 to 
create a diagnostic CNN model. This CNN model evaluated the pre-
processed images of the test dataset, determining the positive/nega-
tive status for each slice. Based on the consecutive number of slices 
classified as positive by the CNN model, positive or negative determi-
nations were made for each case
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specificity, positive predictive value (PPV), and negative 
predictive value (NPV). The diagnostic performance of the 
CNN model alone was compared with the visual evaluation 
by each of the two radiologists. The χ2-test was used for 
the AUC comparisons. Statistical significance was defined 
as p-values < 0.05. All statistical analyses were performed 
using BellCurve for Excel (Social Survey Research Informa-
tion Co., Tokyo).

Results

Patient characteristics

The characteristics of the 100 patients were as follows: the 
median (range) age was 60 years (18–85) and the male-to-
female ratio was 78:22. Among the 94 cases of nasopharyn-
geal carcinoma, 89 were classified as squamous cell carci-
noma (including low to undifferentiated types), and the other 
five cases were classified as other histological types such as 
adenocarcinoma. There were six cases of malignant lym-
phoma. The T-classification of nasopharyngeal carcinoma 
based on the patients’ medical records was as follows: T1 
(n = 26), T2 (n = 18), T3 (n = 27), and T4 (n = 22); one case 
had no recorded T-classification.

Diagnostic performance of the CNN model

For each patient in the test dataset, ROC curve analysis was 
performed to classify invasion-positive or -negative lesion 
using the number of continuous slices determined as inva-
sion-positive by our newly developed CNN model based on 
ResNet50. The AUC of the CNN model was 0.953 (95% 
confidence interval [CI] 0.861–1.045). On the CNN model 
when two or more continuous slices were set as the best cut-
off point based on the Youden index, the following values 
were obtained: 0.973 accuracy (95%CI 0.858–0.999), 0.933 
sensitivity (95%CI 0.681–0.998), 1.000 specificity (95%CI 
1.000–1.000), 1.000 PPV (95%CI 1.000–1.000), and 0.957 
NPV (95%CI 0.781–0.999).

Radiologists' diagnostic performances

The diagnostic performances of the two radiologists in 
evaluating the presence or absence of skull-base inva-
sion on the test dataset CT images were as follows: 
SR: AUC 0.832 (95%CI 0.704–0.960), 0.833 accu-
racy (95%CI 0.653–0.944), 0.769 sensitivity (95%CI 
0.462–0.950), 0.882 specificity (95%CI 0.636–0.985), 
0.833 PPV (95%CI 0.516–0.979), and 0.833 NPV 
(95%CI 0.586–0.964). The corresponding values for 
the JR were: AUC 0.617 (95%CI 0.459–0.774), 0.600 

accuracy (95%CI 0.406–0.773), 0.692 sensitivity (95%CI 
0.386–0.909), 0.529 specificity (95%CI 0.278–0.770), 
0.529 PPV (95%CI 0.278–0.770), and 0.692 NPV (95%CI 
0.386–0.909).

Figure 3 shows the ROC curve obtained from the CNN 
model on the test dataset and the point plot of the sensitiv-
ity and specificity values obtained from the visual evalu-
ation of the two radiologists. The diagnostic performance 
of the CNN model and that of the two radiologists are 
depicted in Table 1. The AUC was largest for the CNN 
model, the SR, and the JR, in that order, and there were 
also significant differences between these values (the CNN 
model vs. the SR: p = 0.050, the CNN model vs. the JR: 
p < 0.001, the SR vs. the JR: p = 0.012).

Fig. 3  The ROC curve analyses by the CNN model and by the two 
radiologists. The ROC curve for the CNN-based deep-learning model 
of ResNet50 is shown. The point plots of the sensitivity and speci-
ficity values obtained by the two specialist radiologists (senior reader 
and junior reader) are also shown

Table 1  The diagnostic performances

AUC  area under the curve, CNN convolutional neural network, NPV 
negative predictive value, PPV positive predictive value

CNN model Senior Reader Junior Reader

AUC 0.953 0.832 0.617
Accuracy 0.973 0.833 0.600
Sensitivity 0.933 0.769 0.692
Specificity 1.000 0.882 0.529
PPV 1.000 0.833 0.529
NPV 0.957 0.833 0.692
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Visual representation with Grad‑CAM

Figures 4, 5, and 6 provide CT and MRI images of rep-
resentative invasion-negative and positive cases combined 
with Grad-CAM heatmaps. The bright red areas of the Grad-
CAM heatmaps indicate the areas where the CNN model is 
considered by the model to be most relevant for assessing the 
presence or absence of skull-base invasion by the tumor, fol-
lowed by the heatmaps’ yellow and green areas, in sequence. 
In the invasion-negative cases, the heatmaps focused primar-
ily on bone marrow of the clivus without osteosclerosis and/
or soft tissue density, and a similar pattern was seen in all 

17 invasion-negative cases with varying degrees of atten-
tion. In the invasion-positive cases, the heatmaps focused 
mainly on nasopharyngeal masses and/or osteosclerosis or 
bone destruction of the clivus, which was confirmed in 12 
of the 13 invasion-positive cases (one false-negative case 
occurred).

ROI setting test by another radiologist

The images extracted in the newly established ROIs in 
the test dataset were fed into the CNN model, and the 
ROC curve analysis of the invasion-positive or -negative 

Fig. 4  Representative case with a Grad-CAM heatmap: invasion-
negative. a CT. b FsGdT1WI. c Grad-CAM heatmap. Nasopharyn-
geal carcinoma is seen on the left lateral wall (white arrow); the 
CT images show no bone destruction in the clivus, whereas a slight 
osteosclerotic change within the bone marrow was observed (white 
arrowhead); However, the MRI images show normal anterior verte-

bral muscles between the tumor and clivus and no remarkable con-
trast enhancement on the clivus (white arrowhead). The skull-base 
invasion classification is thus negative. The heatmap focused mainly 
on bone marrow without soft tissue density or osteosclerosis (white 
arrowhead)

Fig. 5  Representative case with a Grad-CAM heatmap: invasion-
positive; Case 1. a CT. b FsGdT1WI. c Grad-CAM heatmap. Naso-
pharyngeal carcinoma occupies the pharyngeal cavity (white arrow), 
and the CT images show an osteosclerosis of the bone marrow, corre-
sponding to the contrast enhancement on MRI images (white arrow-
head). This indicates a finding of skull-base invasion. The heatmap 

focuses on the nasopharyngeal mass (white arrow) and the osteoscle-
rosis of the bone marrow (white arrowhead). The CT images also 
show a possible erosion on the front of the clivus, but this area is 
located at the border of the hotspot on the heatmap; it was unclear 
whether the CNN model emphasized this finding
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classification for each patient was performed using the 
number of continuous invasion-positive slices (see the 
‘Deep learning analysis’ section above). This AUC was 
0.971 (95%CI 0.861–1.045), which is not significantly 
different from the ROC-AUC at the original ROI setting 
(p = 0.730) (Fig. 7).

Discussion

Our results demonstrate that the use of the CNN technique 
for the diagnosis of skull-base invasion by nasopharyngeal 
malignant tumors in CT images was successful. The trained 
radiologists were more accurate in diagnosing skull-base 
invasion than the untrained radiologist, and the developed 
diagnostic model showed higher diagnostic performance 
than either type of radiologist. Deep learning techniques 
thus have the potential to provide high diagnostic accuracy 
in investigations of skull-base invasion on CT images, even 
without the contribution of an experienced radiologist. With 
the further development of this technique, it is expected that 
accurate staging of nasopharyngeal malignant tumors and 
appropriate treatment selection will be possible, ultimately 
leading to improved patient prognosis.

Although CT is an effective modality for evaluating 
bone, especially cortical bone invasion, CT is subject to 
beam-hardening artifacts and limited resolution of contrast 
enhancement in the bone marrow, which can make it difficult 
to assess bone invasion [20]. The diagnostic performance of 
different modalities for skull-base invasion in nasopharyn-
geal carcinoma has been described [20, 21], and in one of 
those studies, conventional CT had 78.6% sensitivity and 
86.1% specificity, while combining bone subtraction iodine 
imaging using area-detector CT achieved 92.9% sensitivity 
and 95.6% specificity [20]. The other study was validated 
with dual-energy CT and used simulated single-energy CT; 
the study’s authors reported 75.0% sensitivity and 93.2% 
specificity, and when the iodine concentration and the effec-
tive atomic number (Zeff) values were combined, 90.7% sen-
sitivity and 95.3% specificity were observed [21].

However, these imaging devices or methods require 
new technology, and the number of facilities where such 

Fig. 6  Representative case with a Grad-CAM heatmap: invasion-
positive; Case 2. a CT. b FsGdT1WI. c Grad-CAM heatmap. Naso-
pharyngeal carcinoma is present on the left lateral wall (white arrow); 
CT images show faint osteosclerosis of the clivus as a slight high 
density area (white arrowhead). However, there is clear contrast 

enhancement on MRI images (white arrowheads). This indicates a 
finding of skull-base invasion. The heat map focuses on bone marrow 
osteosclerosis (white arrowheads). Notably, the CNN model success-
fully judged this case as invasion-positive, whereas the senior radiolo-
gist gave an incorrect diagnosis (i.e., invasion-negative)

Fig. 7  ROC curve analysis at the original and newly established ROI 
setting. The ROC curves obtained by the CNN model analysis at the 
original ROI setting in the test dataset (black line; the same curve 
provided in Fig. 3) and at the newly established ROI by another radi-
ologist (red line) was respectively presented
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imaging is available is limited. We find that the diagnostic 
performance of the developed CNN model (93.3% sensi-
tivity and 100% specificity) is comparable to the results 
of the above-cited studies. Our present findings were also 
obtained with only conventional CT images, which unlike 
the above-mentioned studies, may be available at any facil-
ity. Although we did not use a fully automated pipeline in 
this study (since manual setting of the rectangular ROIs 
was required), almost the same diagnostic performance 
was successfully obtained when another junior radiolo-
gist conducted the ROI placement. This result indicates 
that the interobserver variability will be acceptable for 
clinical use.

Investigations of the usefulness of deep-learning 
approaches to diagnose the presence of local invasion by 
malignant tumors in CT images have included examina-
tions of visceral pleural invasion in early-stage lung cancer 
[12], muscular invasion in bladder cancer [13], and extran-
odal extension in lymph node metastases of head and neck 
squamous cell carcinoma [14]. However, to the best of our 
knowledge, there are very few similar reports on head and 
neck tumors, with the most recent being the 2022 applica-
tion of deep-learning approache to the diagnosis of orbital 
invasion by nasal/sinonasal tumors [15]. The applications 
of CNN techniques for nasopharyngeal tumors (mainly car-
cinoma) have gradually increased in recent years, including 
image segmentation [22, 23], disease classification [24], 
prognosis prediction [25], and the prediction of treatment 
response [26]. However, most of these studies included MRI 
findings as training data for use, and few used CT results 
as training data. In addition, to the best of our knowledge, 
there are no reports of CNN models for diagnosing skull-
base invasion by nasopharyngeal tumors, which we consider 
novel results of the present study.

A Grad-CAM has been demonstrated to be able to provide 
a visual and intuitive understanding of the rationale behind 
CNN classification. For example, in a study that classified 
subsolid nodules in the lungs into three classes (benign/
preinvasive lesions, minimally invasive adenocarcinomas, 
and invasive adenocarcinomas), the Grad-CAM heatmaps 
focused on the shape of the lesion’s edges, consolidation 
components, and air bronchograms, which aligned with the 
important features that radiologists should evaluate when 
diagnosing malignant nodules [27]. In our present investiga-
tion, the Grad-CAM heatmaps focused on the normal bone 
marrow of the clivus without ossification and/or the soft 
tissue density in the invasion-negative cases. In contrast, the 
heatmaps focused on the nasopharyngeal tumor itself and/
or the ossification or bone destruction of the clivus in most 
of the invasion-positive cases. These findings might be key 
points to which radiologists pay attention when evaluating 
the presence or absence of skull-base invasion in daily clini-
cal practice.

This study has some limitations. The sample size was 
small (n = 100) due to the single-institutional study design, 
and the results should thus be treated as preliminary. We 
partly overcame the sample size limitations by data aug-
mentation. In addition, due to the standard practice of 
chemoradiotherapy for the treatment of nasopharyngeal 
cancer, there was a lack of histopathologic verification of 
skull-base invasion. In reports regarding the laryngeal car-
tilage, in areas adjacent to the tumor, contrast enhancement 
can also be caused by reactive inflammation, edema, and 
fibrosis [28], raising the possibility of false positives in the 
present patients’ MRI findings. However, it is important to 
note that the treatment decisions were based primarily on 
the presence of signal changes indicative of invasion, and 
there was no significant discrepancy between the clinical 
judgments and the ground truth in this study. Finally, CNN 
model training was performed using only axial CT images 
with specific window level/width settings. Visual evaluation 
by both radiologists (JR and SR) was also performed using 
axial CT only, although window level/width adjustment was 
available. These settings were somewhat divergent from the 
actual clinical situation.

Conclusions

The CNN-based deep learning technique can be valuable for 
diagnosing skull-base invasion by nasopharyngeal tumors on 
CT images. This technique may become a useful diagnostic 
support tool, especially in medical institutions and radiology 
departments in which there is a lack of expertise in head and 
neck imaging.
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